Files
mufs/mfs/Selection.py

230 lines
7.0 KiB
Python
Executable File

from math import log
from sys import float_info
from itertools import combinations
import numpy as np
class Metrics:
@staticmethod
def conditional_entropy(x, y, base=2):
"""quantifies the amount of information needed to describe the outcome
of Y given that the value of X is known
computes H(Y|X)
Parameters
----------
x : np.array
values of the variable
y : np.array
array of labels
base : int, optional
base of the logarithm, by default 2
Returns
-------
float
conditional entropy of y given x
"""
xy = np.c_[x, y]
return Metrics.entropy(xy, base) - Metrics.entropy(x, base)
@staticmethod
def entropy(y, base=2):
"""measure of the uncertainty in predicting the value of y
Parameters
----------
y : np.array
array of labels
base : int, optional
base of the logarithm, by default 2
Returns
-------
float
entropy of y
"""
_, count = np.unique(y, return_counts=True, axis=0)
proba = count.astype(float) / len(y)
proba = proba[proba > 0.0]
return np.sum(proba * np.log(1.0 / proba)) / log(base)
@staticmethod
def information_gain(x, y, base=2):
"""Measures the reduction in uncertainty about the value of y when the
value of X is known (also called mutual information)
(https://www.sciencedirect.com/science/article/pii/S0020025519303603)
Parameters
----------
x : np.array
values of the variable
y : np.array
array of labels
base : int, optional
base of the logarithm, by default 2
Returns
-------
float
Information gained
"""
return Metrics.entropy(y, base) - Metrics.conditional_entropy(
x, y, base
)
@staticmethod
def symmetrical_uncertainty(x, y):
"""Compute symmetrical uncertainty. Normalize* information gain (mutual
information) with the entropies of the features in order to compensate
the bias due to high cardinality features. *Range [0, 1]
(https://www.sciencedirect.com/science/article/pii/S0020025519303603)
Parameters
----------
x : np.array
values of the variable
y : np.array
array of labels
Returns
-------
float
symmetrical uncertainty
"""
return (
2.0
* Metrics.information_gain(x, y)
/ (Metrics.entropy(x) + Metrics.entropy(y))
)
class MFS:
"""Compute Fast Fast Correlation Based Filter
Yu, L. and Liu, H.; Feature Selection for High-Dimensional Data: A Fast
Correlation Based Filter Solution,Proc. 20th Intl. Conf. Mach. Learn.
(ICML-2003)
and
Correlated Feature Selection as in "Correlation-based Feature Selection for
Machine Learning" by Mark A. Hall
"""
def __init__(self):
self._initialize()
def _initialize(self):
self._result = None
self._scores = []
self._su_labels = None
self._su_features = {}
def _compute_su_labels(self):
if self._su_labels is None:
num_features = self.X_.shape[1]
self._su_labels = np.zeros(num_features)
for col in range(num_features):
self._su_labels[col] = Metrics.symmetrical_uncertainty(
self.X_[:, col], self.y_
)
return self._su_labels
def _compute_su_features(self, feature_a, feature_b):
if (feature_a, feature_b) not in self._su_features:
self._su_features[
(feature_a, feature_b)
] = Metrics.symmetrical_uncertainty(
self.X_[:, feature_a], self.X_[:, feature_b]
)
return self._su_features[(feature_a, feature_b)]
def _compute_merit(self, features):
rcf = self._su_labels[features].sum()
rff = 0.0
k = len(features)
for pair in list(combinations(features, 2)):
rff += self._compute_su_features(*pair)
return rcf / ((k ** 2 - k) * rff)
def cfs(self, X, y):
"""CFS forward best first heuristic search
Parameters
----------
X : np.array
array of features
y : np.array
vector of labels
"""
self._initialize()
self.X_ = X
self.y_ = y
s_list = self._compute_su_labels()
# Descending orders
feature_order = (-s_list).argsort().tolist()
merit = float_info.min
exit_condition = 0
candidates = []
# start with the best feature (max symmetrical uncertainty wrt label)
first_candidate = feature_order.pop(0)
candidates.append(first_candidate)
self._scores.append(s_list[first_candidate])
while exit_condition < 5: # as proposed in the original algorithm
id_selected = -1
for idx, feature in enumerate(feature_order):
candidates.append(feature)
merit_new = self._compute_merit(candidates)
if merit_new > merit:
id_selected = idx
merit = merit_new
exit_condition = 0
candidates.pop()
if id_selected == -1:
exit_condition += 1
else:
candidates.append(feature_order[id_selected])
self._scores.append(merit_new)
del feature_order[id_selected]
if len(feature_order) == 0:
# Force leaving the loop
exit_condition = 5
self._result = candidates
return self
def fcbs(self, X, y, threshold):
if threshold < 1e-4:
raise ValueError("Threshold cannot be less than 1e4")
self._initialize()
self.X_ = X
self.y_ = y
s_list = self._compute_su_labels()
feature_order = (-s_list).argsort()
feature_dup = feature_order.copy().tolist()
self._result = []
for index_p in feature_order:
# Don't self compare
feature_dup.pop(0)
# Remove redundant features
if s_list[index_p] == 0.0:
# the feature has been removed from the list
continue
if s_list[index_p] < threshold:
break
# Remove redundant features
for index_q in feature_dup:
# test if feature(index_q) su with feature(index_p) is
su_pq = self._compute_su_features(index_p, index_q)
if su_pq >= s_list[index_q]:
# remove feature from list
s_list[index_q] = 0.0
self._result.append(index_p)
self._scores.append(s_list[index_p])
return self
def get_results(self):
return self._result
def get_scores(self):
return self._scores