import unittest from sklearn.datasets import load_iris from mdlp import MDLP import numpy as np from ..Selection import Metrics class Metrics_test(unittest.TestCase): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) mdlp = MDLP(random_state=1) X, self.y = load_iris(return_X_y=True) self.X = mdlp.fit_transform(X, self.y).astype("int64") self.m, self.n = self.X.shape # @classmethod # def setup(cls): def test_entropy(self): metric = Metrics() datasets = [ ([0, 0, 0, 0, 1, 1, 1, 1], 2, 1.0), ([0, 1, 0, 2, 1, 2], 3, 1.0), ([0, 0, 0, 0, 0, 0, 0, 2, 2, 2], 2, 0.8812908992306927), ([1, 1, 1, 5, 2, 2, 3, 3, 3], 4, 0.9455305560363263), ([1, 1, 1, 2, 2, 3, 3, 3, 5], 4, 0.9455305560363263), ([1, 1, 5], 2, 0.9182958340544896), (self.y, 3, 0.999999999), ] for dataset, base, entropy in datasets: computed = metric.entropy(dataset, base) self.assertAlmostEqual(entropy, computed) def test_conditional_entropy(self): metric = Metrics() results_expected = [ 0.490953458537736, 0.7110077966379169, 0.15663362014829718, 0.13032469395094992, ] for expected, col in zip(results_expected, range(self.n)): computed = metric.conditional_entropy(self.X[:, col], self.y, 3) self.assertAlmostEqual(expected, computed) self.assertAlmostEqual( 0.6309297535714573, metric.conditional_entropy( [1, 3, 2, 3, 2, 1], [1, 2, 0, 1, 1, 2], 3 ), ) # https://planetcalc.com/8414/?joint=0.4%200%0A0.2%200.4&showDetails=1 self.assertAlmostEqual( 0.5509775004326938, metric.conditional_entropy([1, 1, 2, 2, 2], [0, 0, 0, 2, 2], 2), ) def test_information_gain(self): metric = Metrics() results_expected = [ 0.5090465414622638, 0.28899220336208287, 0.8433663798517026, 0.8696753060490499, ] for expected, col in zip(results_expected, range(self.n)): computed = metric.information_gain(self.X[:, col], self.y, 3) self.assertAlmostEqual(expected, computed) # https://planetcalc.com/8419/ # ?_d=FrDfFN2COAhqh9Pb5ycqy5CeKgIOxlfSjKgyyIR.Q5L0np-g-hw6yv8M1Q8_ results_expected = [ 0.806819679, 0.458041805, 1.336704086, 1.378402748, ] for expected, col in zip(results_expected, range(self.n)): computed = metric.information_gain(self.X[:, col], self.y, 2) self.assertAlmostEqual(expected, computed) def test_symmetrical_uncertainty(self): metric = Metrics() results_expected = [ 0.33296547388990266, 0.19068147573570668, 0.810724587460511, 0.870521418179061, ] for expected, col in zip(results_expected, range(self.n)): computed = metric.symmetrical_uncertainty(self.X[:, col], self.y) self.assertAlmostEqual(expected, computed)