from sklearn.datasets import load_wine from mfs import MFS from mfs.Metrics import Metrics mfsc = MFS(discrete=False) mfsd = MFS(discrete=True) X, y = load_wine(return_X_y=True) m, n = X.shape print("* Differential entropy in X") for i in range(n): print(i, Metrics.differential_entropy(X[:, i], k=10)) print("* Information Gain") print("- Discrete features") print(Metrics.information_gain(X, y)) for i in range(n): print(i, Metrics.information_gain(X[:, i], y)) print("- Continuous features") print(Metrics.information_gain_cont(X, y)) for i in range(n): print(i, Metrics.information_gain_cont(X[:, i], y)) print("CFS Discrete") print(mfsd.cfs(X, y).get_results()) print("CFS continuous") print(mfsc.cfs(X, y).get_results()) print("FCBF Discrete") print(mfsd.fcbf(X, y, 1e-7).get_results()) print("FCBF continuous") print(mfsc.fcbf(X, y, 1e-7).get_results())