import unittest from mdlp import MDLP from sklearn.datasets import load_wine from ..Selection import MFS class MFS_test(unittest.TestCase): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) mdlp = MDLP(random_state=1) X, self.y = load_wine(return_X_y=True) self.X = mdlp.fit_transform(X, self.y).astype("int64") self.m, self.n = self.X.shape # @classmethod # def setup(cls): # pass def test_initialize(self): mfs = MFS() mfs.fcbs(self.X, self.y, 0.05) mfs._initialize() self.assertIsNone(mfs.get_results()) self.assertListEqual([], mfs.get_scores()) self.assertDictEqual({}, mfs._su_features) self.assertIsNone(mfs._su_labels) def test_csf(self): mfs = MFS() expected = [6, 4] self.assertListEqual(expected, mfs.cfs(self.X, self.y).get_results()) expected = [0.5218299405215557, 2.4168234005280964] self.assertListEqual(expected, mfs.get_scores()) def test_fcbs(self): mfs = MFS() computed = mfs.fcbs(self.X, self.y, threshold=0.05).get_results() expected = [6, 9, 12, 0, 11, 4] self.assertListEqual(expected, computed) expected = [ 0.5218299405215557, 0.46224298637417455, 0.44518278979085646, 0.38942355544213786, 0.3790082191220976, 0.24972405134844652, ] self.assertListEqual(expected, mfs.get_scores())