9 Commits

Author SHA1 Message Date
d0f1cc5979 fix format issue 2022-03-10 14:32:33 +01:00
b958bccef6 Fix cfs merit formula 2022-03-10 12:56:47 +01:00
a0f172ac13 Update version number and sample 2021-10-28 14:30:28 +02:00
Ricardo Montañana Gómez
cfb37d2f6c Merge pull request #3 from Doctorado-ML/Add-IWSS-(#2)
Add iwss (#2)
2021-10-28 12:39:57 +02:00
5d1720c9ae Update ci file 2021-10-28 12:22:21 +02:00
1c5f1977e5 Complete iwss based implementation (#2) 2021-10-28 11:55:40 +02:00
27f8a370c5 Begin IWSS implementation
Update requirements
Create requirements for dev
2021-10-10 19:06:57 +02:00
Ricardo Montañana Gómez
9d74bc8a70 Add package version badge to README 2021-08-17 12:02:15 +02:00
Ricardo Montañana Gómez
ba7dc3eeb3 Merge pull request #1 from Doctorado-ML/updateCI
Update ci file
2021-08-02 18:46:25 +02:00
12 changed files with 190 additions and 40 deletions

View File

@@ -27,7 +27,7 @@ jobs:
pip install -q cython
pip install -q numpy
pip install -q git+git://github.com/doctorado-ml/mdlp
pip install -q -r requirements.txt
pip install -q -r requirements/dev.txt
pip install -q --upgrade codecov coverage black flake8 codacy-coverage
- name: Lint
run: |

View File

@@ -1,6 +1,6 @@
repos:
- repo: https://github.com/ambv/black
rev: 20.8b1
rev: 22.1.0
hooks:
- id: black
exclude: ".virtual_documents"

View File

@@ -1,6 +1,8 @@
![CI](https://github.com/Doctorado-ML/mufs/workflows/CI/badge.svg)
[![Codacy Badge](https://app.codacy.com/project/badge/Grade/66ad727eb13e4c7a8816db1e44d994a7)](https://www.codacy.com/gh/Doctorado-ML/mufs/dashboard?utm_source=github.com&utm_medium=referral&utm_content=Doctorado-ML/mufs&utm_campaign=Badge_Grade)
[![Language grade: Python](https://img.shields.io/lgtm/grade/python/g/Doctorado-ML/mufs.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/Doctorado-ML/mufs/context:python)
[![PyPI version](https://badge.fury.io/py/MUFS.svg)](https://badge.fury.io/py/MUFS)
![https://img.shields.io/badge/python-3.8%2B-blue](https://img.shields.io/badge/python-3.8%2B-brightgreen)
# MUFS
@@ -15,3 +17,7 @@ Proceedings, Twentieth International Conference on Machine Learning. ed. / T. Fa
### Correlation-based Feature Selection
Hall, M. A. (1999), 'Correlation-based Feature Selection for Machine Learning'.
### IWSS
Based on: P. Bermejo, J. A. Gamez and J. M. Puerta, "Incremental Wrapper-based subset Selection with replacement: An advantageous alternative to sequential forward selection," 2009 IEEE Symposium on Computational Intelligence and Data Mining, 2009, pp. 367-374, doi: 10.1109/CIDM.2009.4938673.

View File

@@ -26,7 +26,7 @@ class MUFS:
"""
def __init__(self, max_features=None, discrete=True):
self._max_features = max_features
self.max_features = max_features
self._discrete = discrete
self.symmetrical_uncertainty = (
Metrics.symmetrical_uncertainty
@@ -53,8 +53,10 @@ class MUFS:
"""
self.X_ = X
self.y_ = y
if self._max_features is None:
if self.max_features is None:
self._max_features = X.shape[1]
else:
self._max_features = self.max_features
self._result = None
self._scores = []
self._su_labels = None
@@ -105,7 +107,9 @@ class MUFS:
def _compute_merit(self, features):
"""Compute the merit function for cfs algorithms
"Good feature subsets contain features highly correlated with
(predictive of) the class, yet uncorrelated with (not predictive of)
each other"
Parameters
----------
features : list
@@ -124,7 +128,7 @@ class MUFS:
k = len(features)
for pair in list(combinations(features, 2)):
rff += self._compute_su_features(*pair)
return rcf / sqrt(k + (k ** 2 - k) * rff)
return k * rcf / sqrt(k + (k**2 - k) * rff)
def cfs(self, X, y):
"""Correlation-based Feature Selection
@@ -264,3 +268,58 @@ class MUFS:
list of scores of the features selected
"""
return self._scores if self._fitted else []
def iwss(self, X, y, threshold):
"""Incremental Wrapper Subset Selection
Parameters
----------
X : np.array
array of features
y : np.array
vector of labels
threshold : float
threshold to select relevant features
Returns
-------
self
self
Raises
------
ValueError
if the threshold is less than a selected value of 1e-7
or greater than .5
"""
if threshold < 0 or threshold > 0.5:
raise ValueError(
"Threshold cannot be less than 0 or greater than 0.5"
)
self._initialize(X, y)
s_list = self._compute_su_labels()
feature_order = (-s_list).argsort()
features = feature_order.copy().tolist()
candidates = []
# Add first and second features to result
first_feature = features.pop(0)
candidates.append(first_feature)
self._scores.append(s_list[first_feature])
candidates.append(features.pop(0))
merit = self._compute_merit(candidates)
self._scores.append(merit)
for feature in features:
candidates.append(feature)
merit_new = self._compute_merit(candidates)
delta = abs(merit - merit_new) / merit if merit != 0.0 else 0.0
if merit_new > merit or delta < threshold:
if merit_new > merit:
merit = merit_new
self._scores.append(merit_new)
else:
candidates.pop()
break
if len(candidates) == self._max_features:
break
self._result = candidates
return self

View File

@@ -1,6 +1,6 @@
from .Selection import MUFS
__version__ = "0.1.1"
__version__ = "0.1.2"
__author__ = "Ricardo Montañana Gómez"
__author_email__ = "Ricardo.Montanana@alu.uclm.es"
__copyright__ = "Copyright 2021, Ricardo Montañana Gómez"

View File

@@ -1,11 +1,14 @@
import unittest
import os
import pandas as pd
import numpy as np
from mdlp import MDLP
from sklearn.datasets import load_wine, load_iris
from ..Selection import MUFS
class MUFS_test(unittest.TestCase):
class MUFSTest(unittest.TestCase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
mdlp = MDLP(random_state=1)
@@ -31,33 +34,38 @@ class MUFS_test(unittest.TestCase):
def test_csf_wine(self):
mufs = MUFS()
expected = [6, 12, 9, 4, 10, 0]
self.assertListAlmostEqual(
expected = [6, 12, 9, 4, 10, 0, 7, 8]
self.assertListEqual(
expected, mufs.cfs(self.X_w, self.y_w).get_results()
)
expected = [
0.5218299405215557,
0.602513857132804,
0.4877384978817362,
0.3743688234383051,
0.28795671854246285,
0.2309165735173175,
1.205027714265608,
1.4632154936452084,
1.4974752937532203,
1.4397835927123144,
1.385499441103905,
1.340618857006277,
1.2989177695790775,
]
self.assertListAlmostEqual(expected, mufs.get_scores())
def test_csf_wine_cont(self):
mufs = MUFS(discrete=False)
expected = [10, 6, 0, 2, 11, 9]
expected = [10, 6, 0, 2, 11, 9, 8, 1, 5]
self.assertListEqual(
expected, mufs.cfs(self.X_wc, self.y_w).get_results()
)
expected = [
0.735264150416997,
0.8321684551546848,
0.7439915858469107,
0.6238883340158233,
0.513637402071709,
0.41596400981378984,
1.6643369103093697,
2.231974757540732,
2.4955533360632933,
2.568187010358545,
2.495784058882739,
2.4409992149141915,
2.3665143407182456,
2.280111788845658,
]
self.assertListAlmostEqual(expected, mufs.get_scores())
@@ -67,23 +75,19 @@ class MUFS_test(unittest.TestCase):
self.assertListAlmostEqual(
expected, mufs.cfs(self.X_w, self.y_w).get_results()
)
expected = [
0.5218299405215557,
0.602513857132804,
0.4877384978817362,
]
expected = [0.5218299405215557, 1.205027714265608, 1.4632154936452084]
self.assertListAlmostEqual(expected, mufs.get_scores())
def test_csf_iris(self):
mufs = MUFS()
expected = [3, 2, 0, 1]
computed = mufs.cfs(self.X_i, self.y_i).get_results()
self.assertListAlmostEqual(expected, computed)
self.assertListEqual(expected, computed)
expected = [
0.870521418179061,
0.8968651482682227,
0.5908278453318913,
0.40371971570693366,
1.7937302965364454,
1.7724835359956739,
1.6148788628277346,
]
self.assertListAlmostEqual(expected, mufs.get_scores())
@@ -148,3 +152,54 @@ class MUFS_test(unittest.TestCase):
0.44518278979085646,
]
self.assertListAlmostEqual(expected, mufs.get_scores())
def test_iwss_wine(self):
mufs = MUFS()
expected = [6, 9, 12, 0, 11, 10, 5]
self.assertListEqual(
expected, mufs.iwss(self.X_w, self.y_w, 0.2).get_results()
)
expected = [
0.5218299405215557,
1.189564575222017,
1.4632154936452084,
1.428626297656075,
1.3384248731269246,
1.2869213430115078,
1.1949414936926785,
]
self.assertListAlmostEqual(expected, mufs.get_scores())
def test_iwss_wine_max_features(self):
mufs = MUFS(max_features=3)
expected = [6, 9, 12]
self.assertListEqual(
expected, mufs.iwss(self.X_w, self.y_w, 0.4).get_results()
)
expected = [0.5218299405215557, 1.189564575222017, 1.4632154936452084]
self.assertListAlmostEqual(expected, mufs.get_scores())
def test_iwss_exception(self):
mufs = MUFS()
with self.assertRaises(ValueError):
mufs.iwss(self.X_w, self.y_w, 0.51)
with self.assertRaises(ValueError):
mufs.iwss(self.X_w, self.y_w, -0.01)
def test_iwss_better_merit_condition(self):
folder = os.path.dirname(os.path.abspath(__file__))
data = pd.read_csv(
os.path.join(folder, "balloons_R.dat"),
sep="\t",
index_col=0,
)
X = data.drop("clase", axis=1).to_numpy()
y = data["clase"].to_numpy()
mufs = MUFS()
expected = [0, 2, 3, 1]
self.assertListEqual(expected, mufs.iwss(X, y, 0.3).get_results())
def test_iwss_empty(self):
mufs = MUFS()
X = np.delete(self.X_i, [0, 1], 1)
self.assertListEqual(mufs.iwss(X, self.y_i, 0.3).get_results(), [1, 0])

View File

@@ -6,7 +6,7 @@ from mdlp import MDLP
from ..Selection import Metrics
class Metrics_test(unittest.TestCase):
class MetricsTest(unittest.TestCase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
mdlp = MDLP(random_state=1)

View File

@@ -1,4 +1,4 @@
from .MUFS_test import MUFS_test
from .Metrics_test import Metrics_test
from .MUFS_test import MUFSTest
from .Metrics_test import MetricsTest
__all__ = ["MUFS_test", "Metrics_test"]
__all__ = ["MUFSTest", "MetricsTest"]

17
mufs/tests/balloons_R.dat Executable file
View File

@@ -0,0 +1,17 @@
f1 f2 f3 f4 clase
1 0.968246 -0.968246 0.968246 0.968246 1
2 0.968246 -0.968246 0.968246 -0.968246 1
3 0.968246 -0.968246 -0.968246 0.968246 1
4 0.968246 -0.968246 -0.968246 -0.968246 1
5 0.968246 0.968246 0.968246 0.968246 1
6 0.968246 0.968246 0.968246 -0.968246 0
7 0.968246 0.968246 -0.968246 0.968246 0
8 0.968246 0.968246 -0.968246 -0.968246 0
9 -0.968246 -0.968246 0.968246 0.968246 1
10 -0.968246 -0.968246 0.968246 -0.968246 0
11 -0.968246 -0.968246 -0.968246 0.968246 0
12 -0.968246 -0.968246 -0.968246 -0.968246 0
13 -0.968246 0.968246 0.968246 0.968246 1
14 -0.968246 0.968246 0.968246 -0.968246 0
15 -0.968246 0.968246 -0.968246 0.968246 0
16 -0.968246 0.968246 -0.968246 -0.968246 0

3
requirements/dev.txt Normal file
View File

@@ -0,0 +1,3 @@
-r production.txt
mdlp
pandas

View File

@@ -1,2 +1 @@
scikit-learn>0.24
mdlp

View File

@@ -1,4 +1,5 @@
import warnings
import time
from mufs import MUFS
from mufs.Metrics import Metrics
from stree import Stree
@@ -26,16 +27,26 @@ for i in range(n):
# Classification
warnings.filterwarnings("ignore")
print("CFS")
now = time.time()
cfs_f = mufsc.cfs(X, y).get_results()
print(cfs_f)
time_cfs = time.time() - now
print(cfs_f, "items: ", len(cfs_f), f"time: {time_cfs:.3f} seconds")
print("FCBF")
fcfb_f = mufsc.fcbf(X, y, 5e-2).get_results()
print(fcfb_f, len(fcfb_f))
now = time.time()
fcbf_f = mufsc.fcbf(X, y, 0.07).get_results()
time_fcbf = time.time() - now
print(fcbf_f, "items: ", len(fcbf_f), f"time: {time_fcbf:.3f} seconds")
now = time.time()
print("IWSS")
iwss_f = mufsc.iwss(X, y, 0.5).get_results()
time_iwss = time.time() - now
print(iwss_f, "items: ", len(iwss_f), f"time: {time_iwss:.3f} seconds")
print("X.shape=", X.shape)
clf = Stree(random_state=0)
print("Accuracy whole dataset", clf.fit(X, y).score(X, y))
clf = Stree(random_state=0)
print("Accuracy cfs", clf.fit(X[:, cfs_f], y).score(X[:, cfs_f], y))
clf = Stree(random_state=0)
subf = fcfb_f
print("Accuracy fcfb", clf.fit(X[:, subf], y).score(X[:, subf], y))
print("Accuracy fcfb", clf.fit(X[:, fcbf_f], y).score(X[:, fcbf_f], y))
clf = Stree(random_state=0)
print("Accuracy iwss", clf.fit(X[:, iwss_f], y).score(X[:, iwss_f], y))