mirror of
https://github.com/Doctorado-ML/mufs.git
synced 2025-08-18 00:55:53 +00:00
arf and csv test
This commit is contained in:
38
k.py
38
k.py
@@ -3,10 +3,35 @@ from sklearn.datasets import load_wine
|
||||
from mfs import MFS
|
||||
from mfs.Metrics import Metrics
|
||||
from stree import Stree
|
||||
import numpy as np
|
||||
from scipy.io import arff
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
|
||||
mfsc = MFS(discrete=False)
|
||||
mfsd = MFS(discrete=True)
|
||||
X, y = load_wine(return_X_y=True)
|
||||
|
||||
# Xo, y = load_wine(return_X_y=True)
|
||||
# X = Xo.copy()
|
||||
# scaler = StandardScaler()
|
||||
# for c in range(X.shape[1]):
|
||||
# X[:, c] = scaler.fit_transform(X[:, c].reshape(-1, 1)).reshape(-1)
|
||||
|
||||
|
||||
# data = np.genfromtxt("balance-scale.csv")
|
||||
# X = data[:, -1:]
|
||||
# y = data[:, -1]
|
||||
|
||||
|
||||
data, meta = arff.loadarff(
|
||||
"/Users/rmontanana/Code/stree_datasets/data/tanveer/balance-scale/balance-scale.arff"
|
||||
)
|
||||
train = np.array([data["f1"], data["f2"], data["f3"], data["f4"]])
|
||||
y = data["clase"]
|
||||
X = train.T
|
||||
|
||||
|
||||
for c in range(X.shape[1]):
|
||||
print(f"Mean: {np.mean(X[:,c])} Std: {np.std(X[:,c])}")
|
||||
m, n = X.shape
|
||||
print("* Differential entropy in X")
|
||||
for i in range(n):
|
||||
@@ -39,5 +64,14 @@ clf = Stree(random_state=0)
|
||||
print("cfs discreto", clf.fit(X[:, cfs_d], y).score(X[:, cfs_d], y))
|
||||
print("cfs continuo", clf.fit(X[:, cfs_f], y).score(X[:, cfs_f], y))
|
||||
clf = Stree(random_state=0)
|
||||
subf = fcfb_f[:6]
|
||||
# subf = fcfb_f[:6]
|
||||
subf = fcfb_f
|
||||
print("fcfb", clf.fit(X[:, subf], y).score(X[:, subf], y))
|
||||
|
||||
for c in range(X.shape[1]):
|
||||
for k in range(X.shape[1]):
|
||||
ac = 0
|
||||
for v in range(X[:, c].shape[0]):
|
||||
if X[v, c] == X[v, k]:
|
||||
ac += 1
|
||||
print(f"{c} {k} {ac}")
|
||||
|
Reference in New Issue
Block a user