Fix some tests

This commit is contained in:
2021-06-01 23:14:22 +02:00
parent b15a059b1d
commit eb00e1516a
4 changed files with 68 additions and 12 deletions

View File

@@ -1,6 +1,7 @@
import unittest
import numpy as np
from sklearn.datasets import load_iris, load_wine
from ..entropy_estimators import entropy
from mdlp import MDLP
from ..Selection import Metrics
@@ -25,9 +26,9 @@ class Metrics_test(unittest.TestCase):
([1, 1, 5], 2, 0.9182958340544896),
(self.y_i, 3, 0.999999999),
]
for dataset, base, entropy in datasets:
for dataset, base, entropy_expected in datasets:
computed = metric.entropy(dataset, base)
self.assertAlmostEqual(entropy, computed)
self.assertAlmostEqual(entropy_expected, computed)
def test_differential_entropy(self):
metric = Metrics()
@@ -41,11 +42,13 @@ class Metrics_test(unittest.TestCase):
(self.X_i_c, 37, 3.06627326925228),
(self.X_w_c, 37, 63.13827518897429),
]
for dataset, base, entropy in datasets:
for dataset, base, entropy_expected in datasets:
computed = metric.differential_entropy(
np.array(dataset, dtype="float64"), base
)
self.assertAlmostEqual(entropy, computed, msg=str(dataset))
self.assertAlmostEqual(
entropy_expected, computed, msg=str(dataset)
)
expected = [
1.6378708764142766,
2.0291571802275037,
@@ -68,6 +71,29 @@ class Metrics_test(unittest.TestCase):
)
self.assertAlmostEqual(computed, res_expected)
def test_dif_ent(self):
expected = [
1.6378708764142766,
2.0291571802275037,
0.8273865123744271,
3.203935772642847,
4.859193341386733,
1.3707315434976266,
1.8794952925706312,
-0.2983180654207054,
1.4521478934625076,
2.834404839362728,
0.4894081282811191,
1.361210381692561,
7.6373991502818175,
]
n_samples, n_features = self.X_w_c.shape
for c, res_expected in enumerate(expected):
computed = entropy(
self.X_w_c[:, c].reshape(-1, 1), k=n_samples - 2
)
print("-*-", computed)
def test_conditional_entropy(self):
metric = Metrics()
results_expected = [
@@ -133,10 +159,10 @@ class Metrics_test(unittest.TestCase):
def test_symmetrical_uncertainty_continuous(self):
metric = Metrics()
results_expected = [
-0.08368315199022527,
-0.08539330663499867,
-0.026524185532893957,
-0.016238166071083728,
0.3116626663552704,
0.22524988105092494,
0.24511182026415218,
0.07114329389542708,
]
for expected, col in zip(results_expected, range(self.X_w.shape[1])):
computed = metric.symmetrical_unc_continuous(