mirror of
https://github.com/Doctorado-ML/mufs.git
synced 2025-08-18 17:15:52 +00:00
Implement Metric methods and tests
This commit is contained in:
@@ -1,3 +1,86 @@
|
||||
from math import log
|
||||
import numpy as np
|
||||
|
||||
|
||||
class Metrics:
|
||||
@staticmethod
|
||||
def conditional_entropy(x, y, base=2):
|
||||
"""quantifies the amount of information needed to describe the outcome
|
||||
of Y given that the value of X is known
|
||||
computes H(Y|X)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : np.array
|
||||
values of the variable
|
||||
y : np.array
|
||||
array of labels
|
||||
base : int, optional
|
||||
base of the logarithm, by default 2
|
||||
|
||||
Returns
|
||||
-------
|
||||
float
|
||||
conditional entropy of y given x
|
||||
"""
|
||||
xy = np.c_[x, y]
|
||||
return Metrics.entropy(xy, base) - Metrics.entropy(x, base)
|
||||
|
||||
@staticmethod
|
||||
def entropy(y, base=2):
|
||||
"""measure of the uncertainty in predicting the value of y
|
||||
|
||||
Parameters
|
||||
----------
|
||||
y : np.array
|
||||
array of labels
|
||||
base : int, optional
|
||||
base of the logarithm, by default 2
|
||||
|
||||
Returns
|
||||
-------
|
||||
float
|
||||
entropy of y
|
||||
"""
|
||||
_, count = np.unique(y, return_counts=True, axis=0)
|
||||
proba = count.astype(float) / len(y)
|
||||
proba = proba[proba > 0.0]
|
||||
return np.sum(proba * np.log(1.0 / proba)) / log(base)
|
||||
|
||||
@staticmethod
|
||||
def information_gain(x, y, base=2):
|
||||
"""Measures the reduction in uncertainty about the value of y when the
|
||||
value of X is known (also called mutual information)
|
||||
(https://www.sciencedirect.com/science/article/pii/S0020025519303603)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : np.array
|
||||
values of the variable
|
||||
y : np.array
|
||||
array of labels
|
||||
base : int, optional
|
||||
base of the logarithm, by default 2
|
||||
|
||||
Returns
|
||||
-------
|
||||
float
|
||||
Information gained
|
||||
"""
|
||||
return Metrics.entropy(y, base) - Metrics.conditional_entropy(
|
||||
x, y, base
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def symmetrical_uncertainty(x, y):
|
||||
|
||||
return (
|
||||
2.0
|
||||
* Metrics.information_gain(x, y)
|
||||
/ (Metrics.entropy(x) + Metrics.entropy(y))
|
||||
)
|
||||
|
||||
|
||||
class CFS:
|
||||
def __init__(self, a):
|
||||
self.a = a
|
||||
|
Reference in New Issue
Block a user