mirror of
https://github.com/Doctorado-ML/mufs.git
synced 2025-08-18 00:55:53 +00:00
Add max_features to selection
Add first approach to continuous variables
This commit is contained in:
@@ -1,5 +1,6 @@
|
||||
import unittest
|
||||
from sklearn.datasets import load_iris
|
||||
import numpy as np
|
||||
from sklearn.datasets import load_iris, load_wine
|
||||
from mdlp import MDLP
|
||||
from ..Selection import Metrics
|
||||
|
||||
@@ -8,12 +9,10 @@ class Metrics_test(unittest.TestCase):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
mdlp = MDLP(random_state=1)
|
||||
X, self.y = load_iris(return_X_y=True)
|
||||
self.X = mdlp.fit_transform(X, self.y).astype("int64")
|
||||
self.m, self.n = self.X.shape
|
||||
|
||||
# @classmethod
|
||||
# def setup(cls):
|
||||
self.X_i_c, self.y_i = load_iris(return_X_y=True)
|
||||
self.X_i = mdlp.fit_transform(self.X_i_c, self.y_i).astype("int64")
|
||||
self.X_w_c, self.y_w = load_wine(return_X_y=True)
|
||||
self.X_w = mdlp.fit_transform(self.X_w_c, self.y_w).astype("int64")
|
||||
|
||||
def test_entropy(self):
|
||||
metric = Metrics()
|
||||
@@ -24,12 +23,51 @@ class Metrics_test(unittest.TestCase):
|
||||
([1, 1, 1, 5, 2, 2, 3, 3, 3], 4, 0.9455305560363263),
|
||||
([1, 1, 1, 2, 2, 3, 3, 3, 5], 4, 0.9455305560363263),
|
||||
([1, 1, 5], 2, 0.9182958340544896),
|
||||
(self.y, 3, 0.999999999),
|
||||
(self.y_i, 3, 0.999999999),
|
||||
]
|
||||
for dataset, base, entropy in datasets:
|
||||
computed = metric.entropy(dataset, base)
|
||||
self.assertAlmostEqual(entropy, computed)
|
||||
|
||||
def test_differential_entropy(self):
|
||||
metric = Metrics()
|
||||
datasets = [
|
||||
([0, 0, 0, 0, 1, 1, 1, 1], 6, 1.0026709900837547096),
|
||||
([0, 1, 0, 2, 1, 2], 5, 1.3552453009332424),
|
||||
([0, 0, 0, 0, 0, 0, 0, 2, 2, 2], 7, 1.7652626150881443),
|
||||
([1, 1, 1, 5, 2, 2, 3, 3, 3], 8, 1.9094631320594582),
|
||||
([1, 1, 1, 2, 2, 3, 3, 3, 5], 8, 1.9094631320594582),
|
||||
([1, 1, 5], 2, 2.5794415416798357),
|
||||
(self.X_i_c, 37, 3.06627326925228),
|
||||
(self.X_w_c, 37, 63.13827518897429),
|
||||
]
|
||||
for dataset, base, entropy in datasets:
|
||||
computed = metric.differential_entropy(
|
||||
np.array(dataset, dtype="float64"), base
|
||||
)
|
||||
self.assertAlmostEqual(entropy, computed, msg=str(dataset))
|
||||
expected = [
|
||||
1.6378708764142766,
|
||||
2.0291571802275037,
|
||||
0.8273865123744271,
|
||||
3.203935772642847,
|
||||
4.859193341386733,
|
||||
1.3707315434976266,
|
||||
1.8794952925706312,
|
||||
-0.2983180654207054,
|
||||
1.4521478934625076,
|
||||
2.834404839362728,
|
||||
0.4894081282811191,
|
||||
1.361210381692561,
|
||||
7.6373991502818175,
|
||||
]
|
||||
n_samples, n_features = self.X_w_c.shape
|
||||
for c, res_expected in zip(range(n_features), expected):
|
||||
computed = metric.differential_entropy(
|
||||
self.X_w_c[:, c], n_samples - 1
|
||||
)
|
||||
self.assertAlmostEqual(computed, res_expected)
|
||||
|
||||
def test_conditional_entropy(self):
|
||||
metric = Metrics()
|
||||
results_expected = [
|
||||
@@ -39,7 +77,7 @@ class Metrics_test(unittest.TestCase):
|
||||
0.13032469395094992,
|
||||
]
|
||||
for expected, col in zip(results_expected, range(self.n)):
|
||||
computed = metric.conditional_entropy(self.X[:, col], self.y, 3)
|
||||
computed = metric.conditional_entropy(self.X_i[:, col], self.y, 3)
|
||||
self.assertAlmostEqual(expected, computed)
|
||||
self.assertAlmostEqual(
|
||||
0.6309297535714573,
|
||||
@@ -62,7 +100,7 @@ class Metrics_test(unittest.TestCase):
|
||||
0.8696753060490499,
|
||||
]
|
||||
for expected, col in zip(results_expected, range(self.n)):
|
||||
computed = metric.information_gain(self.X[:, col], self.y, 3)
|
||||
computed = metric.information_gain(self.X_i[:, col], self.y, 3)
|
||||
self.assertAlmostEqual(expected, computed)
|
||||
# https://planetcalc.com/8419/
|
||||
# ?_d=FrDfFN2COAhqh9Pb5ycqy5CeKgIOxlfSjKgyyIR.Q5L0np-g-hw6yv8M1Q8_
|
||||
@@ -73,7 +111,7 @@ class Metrics_test(unittest.TestCase):
|
||||
1.378402748,
|
||||
]
|
||||
for expected, col in zip(results_expected, range(self.n)):
|
||||
computed = metric.information_gain(self.X[:, col], self.y, 2)
|
||||
computed = metric.information_gain(self.X_i[:, col], self.y, 2)
|
||||
self.assertAlmostEqual(expected, computed)
|
||||
|
||||
def test_symmetrical_uncertainty(self):
|
||||
@@ -85,5 +123,20 @@ class Metrics_test(unittest.TestCase):
|
||||
0.870521418179061,
|
||||
]
|
||||
for expected, col in zip(results_expected, range(self.n)):
|
||||
computed = metric.symmetrical_uncertainty(self.X[:, col], self.y)
|
||||
computed = metric.symmetrical_uncertainty(self.X_i[:, col], self.y)
|
||||
self.assertAlmostEqual(expected, computed)
|
||||
|
||||
def test_symmetrical_uncertainty_continuous(self):
|
||||
metric = Metrics()
|
||||
results_expected = [
|
||||
0.33296547388990266,
|
||||
0.19068147573570668,
|
||||
0.810724587460511,
|
||||
0.870521418179061,
|
||||
]
|
||||
for expected, col in zip(results_expected, range(self.n)):
|
||||
computed = metric.symmetrical_unc_continuous(
|
||||
self.X_i[:, col], self.y
|
||||
)
|
||||
print(computed)
|
||||
# self.assertAlmostEqual(expected, computed)
|
||||
|
Reference in New Issue
Block a user