mirror of
https://github.com/Doctorado-ML/mufs.git
synced 2025-08-18 00:55:53 +00:00
Select implementaion of diff entropy and mi
This commit is contained in:
43
k.py
Normal file
43
k.py
Normal file
@@ -0,0 +1,43 @@
|
||||
import warnings
|
||||
from sklearn.datasets import load_wine
|
||||
from mfs import MFS
|
||||
from mfs.Metrics import Metrics
|
||||
from stree import Stree
|
||||
|
||||
mfsc = MFS(discrete=False)
|
||||
mfsd = MFS(discrete=True)
|
||||
X, y = load_wine(return_X_y=True)
|
||||
m, n = X.shape
|
||||
print("* Differential entropy in X")
|
||||
for i in range(n):
|
||||
print(i, Metrics.differential_entropy(X[:, i], k=10))
|
||||
print("* Information Gain")
|
||||
print("- Discrete features")
|
||||
print(Metrics.information_gain(X, y))
|
||||
for i in range(n):
|
||||
print(i, Metrics.information_gain(X[:, i], y))
|
||||
print("- Continuous features")
|
||||
print(Metrics.information_gain_cont(X, y))
|
||||
for i in range(n):
|
||||
print(i, Metrics.information_gain_cont(X[:, i], y))
|
||||
# Classification
|
||||
warnings.filterwarnings("ignore")
|
||||
print("CFS Discrete")
|
||||
cfs_d = mfsd.cfs(X, y).get_results()
|
||||
print(cfs_d)
|
||||
print("CFS continuous")
|
||||
cfs_f = mfsc.cfs(X, y).get_results()
|
||||
print(cfs_f)
|
||||
print("FCBF Discrete")
|
||||
print(mfsd.fcbf(X, y, 5e-2).get_results())
|
||||
print("FCBF continuous")
|
||||
fcfb_f = mfsc.fcbf(X, y, 5e-2).get_results()
|
||||
print(fcfb_f, len(fcfb_f), "X.shape=", X.shape)
|
||||
clf = Stree(random_state=0)
|
||||
print("completo", clf.fit(X, y).score(X, y))
|
||||
clf = Stree(random_state=0)
|
||||
print("cfs discreto", clf.fit(X[:, cfs_d], y).score(X[:, cfs_d], y))
|
||||
print("cfs continuo", clf.fit(X[:, cfs_f], y).score(X[:, cfs_f], y))
|
||||
clf = Stree(random_state=0)
|
||||
subf = fcfb_f[:6]
|
||||
print("fcfb", clf.fit(X[:, subf], y).score(X[:, subf], y))
|
Reference in New Issue
Block a user