from sklearn.datasets import load_iris from fimdlp.mdlp import FImdlp from fimdlp.cppfimdlp import CFImdlp import numpy as np data = load_iris() X = data.data y = data.target features = data.feature_names test = FImdlp() test.fit(X, y, features=features).transform(X) # X = np.array( # [ # [5.1, 3.5, 1.4, 0.2], # [5.2, 3.0, 1.4, 0.2], # [5.3, 3.2, 1.3, 0.2], # [5.3, 3.1, 1.5, 0.2], # ] # ) # y = np.array([0, 0, 0, 1]) # test.fit(X, y).transform(X)