from sklearn.datasets import load_iris from fimdlp.mdlp import FImdlp from fimdlp.cppfimdlp import CFImdlp from sklearn.ensemble import RandomForestClassifier import numpy as np import time from scipy.io import arff import pandas as pd # class_name = "speaker" # file_name = "kdd_JapaneseVowels.arff" class_name = "class" # file_name = "mfeat-factors.arff" file_name = "letter.arff" data = arff.loadarff(file_name) df = pd.DataFrame(data[0]) df.dropna(axis=0, how="any", inplace=True) dataset = df X = df.drop(class_name, axis=1) features = X.columns class_name = class_name y, _ = pd.factorize(df[class_name]) X = X.to_numpy() # data = load_iris() # X = data.data # y = data.target # features = data.feature_names test = FImdlp() now = time.time() # test.fit(X, y, features=[i for i in (range(3, 14))]) test.fit(X, y) fit_time = time.time() print("Fitting: ", fit_time - now) now = time.time() Xt = test.transform(X) print("Transforming: ", time.time() - now) print(test.get_cut_points()) clf = RandomForestClassifier(random_state=0) print(clf.fit(Xt, y).score(Xt, y)) print(Xt)