mirror of
https://github.com/Doctorado-ML/FImdlp.git
synced 2025-08-19 09:25:53 +00:00
Refactor project for setuptools
This commit is contained in:
136
src/fimdlp/tests/FImdlp_test.py
Normal file
136
src/fimdlp/tests/FImdlp_test.py
Normal file
@@ -0,0 +1,136 @@
|
||||
import unittest
|
||||
import sklearn
|
||||
from sklearn.datasets import load_iris
|
||||
import numpy as np
|
||||
from ..mdlp import FImdlp
|
||||
|
||||
|
||||
class FImdlpTest(unittest.TestCase):
|
||||
def test_init(self):
|
||||
clf = FImdlp()
|
||||
self.assertEqual(-1, clf.n_jobs)
|
||||
self.assertFalse(clf.proposal)
|
||||
clf = FImdlp(proposal=True, n_jobs=7)
|
||||
self.assertTrue(clf.proposal)
|
||||
self.assertEqual(7, clf.n_jobs)
|
||||
|
||||
def test_fit_proposal(self):
|
||||
clf = FImdlp(proposal=True)
|
||||
clf.fit([[1, 2], [3, 4]], [1, 2])
|
||||
self.assertEqual(clf.n_features_, 2)
|
||||
self.assertListEqual(clf.X_.tolist(), [[1, 2], [3, 4]])
|
||||
self.assertListEqual(clf.y_.tolist(), [1, 2])
|
||||
self.assertListEqual([[], []], clf.get_cut_points())
|
||||
X, y = load_iris(return_X_y=True)
|
||||
clf.fit(X, y)
|
||||
self.assertEqual(clf.n_features_, 4)
|
||||
self.assertTrue(np.array_equal(X, clf.X_))
|
||||
self.assertTrue(np.array_equal(y, clf.y_))
|
||||
expected = [
|
||||
[
|
||||
4.900000095367432,
|
||||
5.0,
|
||||
5.099999904632568,
|
||||
5.400000095367432,
|
||||
5.699999809265137,
|
||||
],
|
||||
[2.6999998092651367, 2.9000000953674316, 3.1999998092651367],
|
||||
[2.3499999046325684, 4.5, 4.800000190734863],
|
||||
[0.75, 1.399999976158142, 1.5, 1.7000000476837158],
|
||||
]
|
||||
self.assertListEqual(expected, clf.get_cut_points())
|
||||
self.assertListEqual([0, 1, 2, 3], clf.features_)
|
||||
clf.fit(X, y, features=[0, 2, 3])
|
||||
self.assertListEqual([0, 2, 3], clf.features_)
|
||||
|
||||
def test_fit_original(self):
|
||||
clf = FImdlp(proposal=False)
|
||||
clf.fit([[1, 2], [3, 4]], [1, 2])
|
||||
self.assertEqual(clf.n_features_, 2)
|
||||
self.assertListEqual(clf.X_.tolist(), [[1, 2], [3, 4]])
|
||||
self.assertListEqual(clf.y_.tolist(), [1, 2])
|
||||
self.assertListEqual([[], []], clf.get_cut_points())
|
||||
X, y = load_iris(return_X_y=True)
|
||||
clf.fit(X, y)
|
||||
self.assertEqual(clf.n_features_, 4)
|
||||
self.assertTrue(np.array_equal(X, clf.X_))
|
||||
self.assertTrue(np.array_equal(y, clf.y_))
|
||||
expected = [
|
||||
[5.5, 5.800000190734863],
|
||||
[3.0999999046325684],
|
||||
[2.450000047683716, 4.800000190734863, 5.099999904632568],
|
||||
[0.800000011920929, 1.7000000476837158],
|
||||
]
|
||||
self.assertListEqual(expected, clf.get_cut_points())
|
||||
self.assertListEqual([0, 1, 2, 3], clf.features_)
|
||||
clf.fit(X, y, features=[0, 2, 3])
|
||||
self.assertListEqual([0, 2, 3], clf.features_)
|
||||
|
||||
def test_fit_Errors(self):
|
||||
clf = FImdlp()
|
||||
with self.assertRaises(ValueError):
|
||||
clf.fit([[1, 2], [3, 4]], [1, 2, 3])
|
||||
with self.assertRaises(ValueError):
|
||||
clf.fit([[1, 2], [3, 4]], [1, 2], features=["a", "b", "c"])
|
||||
with self.assertRaises(ValueError):
|
||||
clf.fit([[1, 2], [3, 4]], [1, 2], unexpected="class_name")
|
||||
|
||||
def test_transform_original(self):
|
||||
clf = FImdlp(proposal=False)
|
||||
clf.fit([[1, 2], [3, 4]], [1, 2])
|
||||
self.assertEqual(
|
||||
clf.transform([[1, 2], [3, 4]]).tolist(), [[0, 0], [0, 0]]
|
||||
)
|
||||
X, y = load_iris(return_X_y=True)
|
||||
clf.fit(X, y)
|
||||
self.assertEqual(clf.n_features_, 4)
|
||||
self.assertTrue(np.array_equal(X, clf.X_))
|
||||
self.assertTrue(np.array_equal(y, clf.y_))
|
||||
self.assertListEqual(
|
||||
clf.transform(X).tolist(), clf.fit(X, y).transform(X).tolist()
|
||||
)
|
||||
expected = [
|
||||
[0, 0, 1, 1],
|
||||
[2, 0, 1, 1],
|
||||
[1, 0, 1, 1],
|
||||
[0, 0, 1, 1],
|
||||
[1, 0, 1, 1],
|
||||
[1, 0, 1, 1],
|
||||
[1, 0, 1, 1],
|
||||
]
|
||||
self.assertTrue(np.array_equal(clf.transform(X[90:97]), expected))
|
||||
with self.assertRaises(ValueError):
|
||||
clf.transform([[1, 2, 3], [4, 5, 6]])
|
||||
with self.assertRaises(sklearn.exceptions.NotFittedError):
|
||||
clf = FImdlp(proposal=False)
|
||||
clf.transform([[1, 2], [3, 4]])
|
||||
|
||||
def test_transform_proposal(self):
|
||||
clf = FImdlp(proposal=True)
|
||||
clf.fit([[1, 2], [3, 4]], [1, 2])
|
||||
self.assertEqual(
|
||||
clf.transform([[1, 2], [3, 4]]).tolist(), [[0, 0], [0, 0]]
|
||||
)
|
||||
X, y = load_iris(return_X_y=True)
|
||||
clf.fit(X, y)
|
||||
self.assertEqual(clf.n_features_, 4)
|
||||
self.assertTrue(np.array_equal(X, clf.X_))
|
||||
self.assertTrue(np.array_equal(y, clf.y_))
|
||||
self.assertListEqual(
|
||||
clf.transform(X).tolist(), clf.fit(X, y).transform(X).tolist()
|
||||
)
|
||||
expected = [
|
||||
[4, 0, 1, 1],
|
||||
[5, 2, 2, 2],
|
||||
[5, 0, 1, 1],
|
||||
[1, 0, 1, 1],
|
||||
[4, 1, 1, 1],
|
||||
[5, 2, 1, 1],
|
||||
[5, 1, 1, 1],
|
||||
]
|
||||
self.assertTrue(np.array_equal(clf.transform(X[90:97]), expected))
|
||||
with self.assertRaises(ValueError):
|
||||
clf.transform([[1, 2, 3], [4, 5, 6]])
|
||||
with self.assertRaises(sklearn.exceptions.NotFittedError):
|
||||
clf = FImdlp(proposal=True)
|
||||
clf.transform([[1, 2], [3, 4]])
|
Reference in New Issue
Block a user