mirror of
https://github.com/Doctorado-ML/FImdlp.git
synced 2025-08-18 08:55:51 +00:00
Add python implementation of the algorithm
This commit is contained in:
128
sample.py
128
sample.py
@@ -61,69 +61,69 @@ data = load_iris()
|
||||
X = data.data
|
||||
y = data.target
|
||||
features = data.feature_names
|
||||
# test = FImdlp()
|
||||
# test.fit(X, y, features=features)
|
||||
# test.transform(X)
|
||||
# test.get_cut_points()
|
||||
for proposal in [True, False]:
|
||||
X = data.data
|
||||
y = data.target
|
||||
print("*** Proposal: ", proposal)
|
||||
test = CFImdlp(debug=True, proposal=proposal)
|
||||
test.fit(X[:, 0], y)
|
||||
result = test.get_cut_points()
|
||||
for item in result:
|
||||
print(
|
||||
f"Class={item['classNumber']} - ({item['start']:3d}, "
|
||||
f"{item['end']:3d}) -> ({item['fromValue']:3.1f}, "
|
||||
f"{item['toValue']:3.1f}]"
|
||||
)
|
||||
print(test.get_discretized_values())
|
||||
print("+" * 40)
|
||||
X = np.array(
|
||||
[
|
||||
[5.1, 3.5, 1.4, 0.2],
|
||||
[5.2, 3.0, 1.4, 0.2],
|
||||
[5.3, 3.2, 1.3, 0.2],
|
||||
[5.4, 3.1, 1.5, 0.2],
|
||||
]
|
||||
)
|
||||
y = np.array([0, 0, 0, 1])
|
||||
print(test.fit(X[:, 0], y).transform(X[:, 0]))
|
||||
result = test.get_cut_points()
|
||||
for item in result:
|
||||
print(
|
||||
f"Class={item['classNumber']} - ({item['start']:3d}, {item['end']:3d})"
|
||||
f" -> ({item['fromValue']:3.1f}, {item['toValue']:3.1f}]"
|
||||
)
|
||||
print("*" * 40)
|
||||
# print(Xs, ys)
|
||||
# print("**********************")
|
||||
# test = [(0, 3), (4, 4), (5, 5), (6, 8), (9, 9)]
|
||||
# print(ys)
|
||||
# for start, end in test:
|
||||
# print("Testing ", start, end, ys[:end], ys[end:])
|
||||
# print("Information gain: ", information_gain(ys, ys[:end], ys[end:]))
|
||||
# print(test.transform(X))
|
||||
# print(X)
|
||||
# print(indices)
|
||||
# print(np.array(X)[indices])
|
||||
test = FImdlp()
|
||||
test.fit(X, y)
|
||||
test.transform(X)
|
||||
print(test.get_cut_points())
|
||||
# for proposal in [True, False]:
|
||||
# X = data.data
|
||||
# y = data.target
|
||||
# print("*** Proposal: ", proposal)
|
||||
# test = CFImdlp(debug=True, proposal=proposal)
|
||||
# test.fit(X[:, 0], y)
|
||||
# result = test.get_cut_points()
|
||||
# for item in result:
|
||||
# print(
|
||||
# f"Class={item['classNumber']} - ({item['start']:3d}, "
|
||||
# f"{item['end']:3d}) -> ({item['fromValue']:3.1f}, "
|
||||
# f"{item['toValue']:3.1f}]"
|
||||
# )
|
||||
# print(test.get_discretized_values())
|
||||
# print("+" * 40)
|
||||
# X = np.array(
|
||||
# [
|
||||
# [5.1, 3.5, 1.4, 0.2],
|
||||
# [5.2, 3.0, 1.4, 0.2],
|
||||
# [5.3, 3.2, 1.3, 0.2],
|
||||
# [5.4, 3.1, 1.5, 0.2],
|
||||
# ]
|
||||
# )
|
||||
# y = np.array([0, 0, 0, 1])
|
||||
# print(test.fit(X[:, 0], y).transform(X[:, 0]))
|
||||
# result = test.get_cut_points()
|
||||
# for item in result:
|
||||
# print(
|
||||
# f"Class={item['classNumber']} - ({item['start']:3d}, {item['end']:3d})"
|
||||
# f" -> ({item['fromValue']:3.1f}, {item['toValue']:3.1f}]"
|
||||
# )
|
||||
# print("*" * 40)
|
||||
# # print(Xs, ys)
|
||||
# # print("**********************")
|
||||
# # test = [(0, 3), (4, 4), (5, 5), (6, 8), (9, 9)]
|
||||
# # print(ys)
|
||||
# # for start, end in test:
|
||||
# # print("Testing ", start, end, ys[:end], ys[end:])
|
||||
# # print("Information gain: ", information_gain(ys, ys[:end], ys[end:]))
|
||||
# # print(test.transform(X))
|
||||
# # print(X)
|
||||
# # print(indices)
|
||||
# # print(np.array(X)[indices])
|
||||
|
||||
|
||||
# # k = test.cut_points(X[:, 0], y)
|
||||
# # print(k)
|
||||
# # k = test.cut_points_ant(X[:, 0], y)
|
||||
# # print(k)
|
||||
# # test.debug_points(X[:, 0], y)
|
||||
# X = [5.7, 5.3, 5.2, 5.1, 5.0, 5.6, 5.1, 6.0, 5.1, 5.9]
|
||||
# y = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2]
|
||||
# indices = [4, 3, 6, 8, 2, 1, 5, 0, 9, 7]
|
||||
# clf = CFImdlp(debug=True, proposal=False)
|
||||
# clf.fit(X, y)
|
||||
# print(clf.get_cut_points())
|
||||
# y = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2]
|
||||
# # To check
|
||||
# indices2 = np.argsort(X)
|
||||
# Xs = np.array(X)[indices2]
|
||||
# ys = np.array(y)[indices2]
|
||||
kdd_JapaneseVowels
|
||||
# # # k = test.cut_points(X[:, 0], y)
|
||||
# # # print(k)
|
||||
# # # k = test.cut_points_ant(X[:, 0], y)
|
||||
# # # print(k)
|
||||
# # # test.debug_points(X[:, 0], y)
|
||||
# # X = [5.7, 5.3, 5.2, 5.1, 5.0, 5.6, 5.1, 6.0, 5.1, 5.9]
|
||||
# # y = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2]
|
||||
# # indices = [4, 3, 6, 8, 2, 1, 5, 0, 9, 7]
|
||||
# # clf = CFImdlp(debug=True, proposal=False)
|
||||
# # clf.fit(X, y)
|
||||
# # print(clf.get_cut_points())
|
||||
# # y = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2]
|
||||
# # # To check
|
||||
# # indices2 = np.argsort(X)
|
||||
# # Xs = np.array(X)[indices2]
|
||||
# # ys = np.array(y)[indices2]
|
||||
# kdd_JapaneseVowels
|
||||
|
Reference in New Issue
Block a user