diff --git a/c.txt b/c.txt deleted file mode 100644 index e8af2e8..0000000 --- a/c.txt +++ /dev/null @@ -1,4993 +0,0 @@ -idx: 20 entropy_left: 0 entropy_right : 1.54858 -> 0 150 -idx: 21 entropy_left: 0.276195 entropy_right : 1.54983 -> 0 150 -idx: 22 entropy_left: 0.530406 entropy_right : 1.55119 -> 0 150 -idx: 24 entropy_left: 0.49715 entropy_right : 1.54198 -> 0 150 -idx: 25 entropy_left: 0.639556 entropy_right : 1.54334 -> 0 150 -idx: 29 entropy_left: 0.574828 entropy_right : 1.5202 -> 0 150 -idx: 30 entropy_left: 0.67468 entropy_right : 1.52168 -> 0 150 -idx: 33 entropy_left: 0.631172 entropy_right : 1.49921 -> 0 150 -idx: 34 entropy_left: 0.708597 entropy_right : 1.50071 -> 0 150 -idx: 44 entropy_left: 0.592825 entropy_right : 1.37643 -> 0 150 -idx: 45 entropy_left: 0.653179 entropy_right : 1.37798 -> 0 150 -idx: 51 entropy_left: 0.599033 entropy_right : 1.23679 -> 0 150 -idx: 52 entropy_left: 0.64961 entropy_right : 1.23772 -> 0 150 -idx: 53 entropy_left: 0.641248 entropy_right : 1.2047 -> 0 150 -idx: 58 entropy_left: 0.821126 entropy_right : 1.20561 -> 0 150 -idx: 59 entropy_left: 0.812822 entropy_right : 1.16707 -> 0 150 -idx: 61 entropy_left: 0.862354 entropy_right : 1.16534 -> 0 150 -idx: 62 entropy_left: 0.935303 entropy_right : 1.16872 -> 0 150 -idx: 68 entropy_left: 1.03193 entropy_right : 1.15739 -> 0 150 -idx: 69 entropy_left: 1.02463 entropy_right : 1.1095 -> 0 150 -idx: 70 entropy_left: 1.03619 entropy_right : 1.10587 -> 0 150 -idx: 71 entropy_left: 1.08958 entropy_right : 1.11046 -> 0 150 -idx: 72 entropy_left: 1.08223 entropy_right : 1.05114 -> 0 150 -idx: 74 entropy_left: 1.10157 entropy_right : 1.04172 -> 0 150 -idx: 75 entropy_left: 1.14578 entropy_right : 1.04629 -> 0 150 -idx: 76 entropy_left: 1.13871 entropy_right : 0.956889 -> 0 150 -idx: 77 entropy_left: 1.14685 entropy_right : 0.950567 -> 0 150 -idx: 78 entropy_left: 1.18483 entropy_right : 0.954434 -> 0 150 -idx: 79 entropy_left: 1.19186 entropy_right : 0.947707 -> 0 150 -idx: 81 entropy_left: 1.25487 entropy_right : 0.955759 -> 0 150 -idx: 83 entropy_left: 1.26593 entropy_right : 0.941186 -> 0 150 -idx: 84 entropy_left: 1.29227 entropy_right : 0.94566 -> 0 150 -idx: 87 entropy_left: 1.30416 entropy_right : 0.918296 -> 0 150 -idx: 88 entropy_left: 1.32757 entropy_right : 0.923579 -> 0 150 -idx: 89 entropy_left: 1.33047 entropy_right : 0.912734 -> 0 150 -idx: 91 entropy_left: 1.37095 entropy_right : 0.923842 -> 0 150 -idx: 95 entropy_left: 1.37806 entropy_right : 0.869893 -> 0 150 -idx: 97 entropy_left: 1.41154 entropy_right : 0.883585 -> 0 150 -idx: 99 entropy_left: 1.41304 entropy_right : 0.847862 -> 0 150 -idx: 101 entropy_left: 1.44125 entropy_right : 0.863121 -> 0 150 -idx: 102 entropy_left: 1.44158 entropy_right : 0.842658 -> 0 150 -idx: 104 entropy_left: 1.46554 entropy_right : 0.858981 -> 0 150 -idx: 105 entropy_left: 1.46567 entropy_right : 0.836641 -> 0 150 -idx: 106 entropy_left: 1.47629 entropy_right : 0.845351 -> 0 150 -idx: 107 entropy_left: 1.47621 entropy_right : 0.820364 -> 0 150 -idx: 109 entropy_left: 1.49514 entropy_right : 0.839004 -> 0 150 -idx: 110 entropy_left: 1.49492 entropy_right : 0.811278 -> 0 150 -idx: 113 entropy_left: 1.5183 entropy_right : 0.841852 -> 0 150 -idx: 114 entropy_left: 1.51803 entropy_right : 0.811278 -> 0 150 -idx: 117 entropy_left: 1.53649 entropy_right : 0.845351 -> 0 150 -idx: 118 entropy_left: 1.53619 entropy_right : 0.811278 -> 0 150 -idx: 120 entropy_left: 1.54626 entropy_right : 0.836641 -> 0 150 -idx: 122 entropy_left: 1.54538 entropy_right : 0.749595 -> 0 150 -idx: 127 entropy_left: 1.56449 entropy_right : 0.828056 -> 0 150 -idx: 130 entropy_left: 1.56296 entropy_right : 0.60984 -> 0 150 -idx: 132 entropy_left: 1.56876 entropy_right : 0.650022 -> 0 150 -idx: 133 entropy_left: 1.5681 entropy_right : 0.522559 -> 0 150 -idx: 134 entropy_left: 1.57065 entropy_right : 0.543564 -> 0 150 -idx: 135 entropy_left: 1.56992 entropy_right : 0.353359 -> 0 150 -idx: 137 entropy_left: 1.57442 entropy_right : 0.391244 -> 0 150 -idx: 138 entropy_left: 1.57369 entropy_right : 0 -> 0 150 -cut: 4.9 index: 20 -start: 0 cut: 20 end: 150 -k=3 k1=1 k2=3 ent=1.58496 ent1=0 ent2=1.54858 -ig=0.242859 delta=4.53471 N 150 term 0.0783592 -¡Ding! 4.9 20 -idx: 21 entropy_left: 0 entropy_right : 1.54983 -> 20 150 -idx: 22 entropy_left: 1 entropy_right : 1.55119 -> 20 150 -idx: 24 entropy_left: 1.5 entropy_right : 1.54198 -> 20 150 -idx: 25 entropy_left: 1.52193 entropy_right : 1.54334 -> 20 150 -idx: 29 entropy_left: 1.22439 entropy_right : 1.5202 -> 20 150 -idx: 30 entropy_left: 1.29546 entropy_right : 1.52168 -> 20 150 -idx: 33 entropy_left: 1.14012 entropy_right : 1.49921 -> 20 150 -idx: 34 entropy_left: 1.19812 entropy_right : 1.50071 -> 20 150 -idx: 44 entropy_left: 0.888686 entropy_right : 1.37643 -> 20 150 -idx: 45 entropy_left: 0.951046 entropy_right : 1.37798 -> 20 150 -idx: 51 entropy_left: 0.834646 entropy_right : 1.23679 -> 20 150 -idx: 52 entropy_left: 0.887307 entropy_right : 1.23772 -> 20 150 -idx: 53 entropy_left: 0.871024 entropy_right : 1.2047 -> 20 150 -idx: 58 entropy_left: 1.03042 entropy_right : 1.20561 -> 20 150 -idx: 59 entropy_left: 1.01782 entropy_right : 1.16707 -> 20 150 -idx: 61 entropy_left: 1.05297 entropy_right : 1.16534 -> 20 150 -idx: 62 entropy_left: 1.14261 entropy_right : 1.16872 -> 20 150 -idx: 68 entropy_left: 1.1872 entropy_right : 1.15739 -> 20 150 -idx: 69 entropy_left: 1.17968 entropy_right : 1.1095 -> 20 150 -idx: 70 entropy_left: 1.18297 entropy_right : 1.10587 -> 20 150 -idx: 71 entropy_left: 1.24499 entropy_right : 1.11046 -> 20 150 -idx: 72 entropy_left: 1.23746 entropy_right : 1.05114 -> 20 150 -idx: 74 entropy_left: 1.24111 entropy_right : 1.04172 -> 20 150 -idx: 75 entropy_left: 1.29065 entropy_right : 1.04629 -> 20 150 -idx: 76 entropy_left: 1.28389 entropy_right : 0.956889 -> 20 150 -idx: 77 entropy_left: 1.28467 entropy_right : 0.950567 -> 20 150 -idx: 78 entropy_left: 1.32594 entropy_right : 0.954434 -> 20 150 -idx: 79 entropy_left: 1.32577 entropy_right : 0.947707 -> 20 150 -idx: 81 entropy_left: 1.39144 entropy_right : 0.955759 -> 20 150 -idx: 83 entropy_left: 1.38887 entropy_right : 0.941186 -> 20 150 -idx: 84 entropy_left: 1.41534 entropy_right : 0.94566 -> 20 150 -idx: 87 entropy_left: 1.40806 entropy_right : 0.918296 -> 20 150 -idx: 88 entropy_left: 1.43132 entropy_right : 0.923579 -> 20 150 -idx: 89 entropy_left: 1.42819 entropy_right : 0.912734 -> 20 150 -idx: 91 entropy_left: 1.46711 entropy_right : 0.923842 -> 20 150 -idx: 95 entropy_left: 1.45236 entropy_right : 0.869893 -> 20 150 -idx: 97 entropy_left: 1.48385 entropy_right : 0.883585 -> 20 150 -idx: 99 entropy_left: 1.47556 entropy_right : 0.847862 -> 20 150 -idx: 101 entropy_left: 1.50124 entropy_right : 0.863121 -> 20 150 -idx: 102 entropy_left: 1.49707 entropy_right : 0.842658 -> 20 150 -idx: 104 entropy_left: 1.51799 entropy_right : 0.858981 -> 20 150 -idx: 105 entropy_left: 1.51392 entropy_right : 0.836641 -> 20 150 -idx: 106 entropy_left: 1.52293 entropy_right : 0.845351 -> 20 150 -idx: 107 entropy_left: 1.51885 entropy_right : 0.820364 -> 20 150 -idx: 109 entropy_left: 1.53443 entropy_right : 0.839004 -> 20 150 -idx: 110 entropy_left: 1.53049 entropy_right : 0.811278 -> 20 150 -idx: 113 entropy_left: 1.54856 entropy_right : 0.841852 -> 20 150 -idx: 114 entropy_left: 1.54493 entropy_right : 0.811278 -> 20 150 -idx: 117 entropy_left: 1.55787 entropy_right : 0.845351 -> 20 150 -idx: 118 entropy_left: 1.55455 entropy_right : 0.811278 -> 20 150 -idx: 120 entropy_left: 1.56096 entropy_right : 0.836641 -> 20 150 -idx: 122 entropy_left: 1.55451 entropy_right : 0.749595 -> 20 150 -idx: 127 entropy_left: 1.56496 entropy_right : 0.828056 -> 20 150 -idx: 130 entropy_left: 1.55647 entropy_right : 0.60984 -> 20 150 -idx: 132 entropy_left: 1.55916 entropy_right : 0.650022 -> 20 150 -idx: 133 entropy_left: 1.55638 entropy_right : 0.522559 -> 20 150 -idx: 134 entropy_left: 1.55743 entropy_right : 0.543564 -> 20 150 -idx: 135 entropy_left: 1.55467 entropy_right : 0.353359 -> 20 150 -idx: 137 entropy_left: 1.55627 entropy_right : 0.391244 -> 20 150 -idx: 138 entropy_left: 1.55365 entropy_right : 0 -> 20 150 -cut: 4.9 index: 21 -start: 20 cut: 21 end: 150 -k=3 k1=1 k2=3 ent=1.54858 ent1=0 ent2=1.54983 -ig=0.0106729 delta=4.6476 N 130 term 0.0896833 -idx: 22 entropy_left: 0 entropy_right : 1.55119 -> 21 150 -idx: 24 entropy_left: 0.918296 entropy_right : 1.54198 -> 21 150 -idx: 25 entropy_left: 1.5 entropy_right : 1.54334 -> 21 150 -idx: 29 entropy_left: 1.06128 entropy_right : 1.5202 -> 21 150 -idx: 30 entropy_left: 1.22439 entropy_right : 1.52168 -> 21 150 -idx: 33 entropy_left: 1.04085 entropy_right : 1.49921 -> 21 150 -idx: 34 entropy_left: 1.14012 entropy_right : 1.50071 -> 21 150 -idx: 44 entropy_left: 0.80767 entropy_right : 1.37643 -> 21 150 -idx: 45 entropy_left: 0.888686 entropy_right : 1.37798 -> 21 150 -idx: 51 entropy_left: 0.770344 entropy_right : 1.23679 -> 21 150 -idx: 52 entropy_left: 0.834646 entropy_right : 1.23772 -> 21 150 -idx: 53 entropy_left: 0.818091 entropy_right : 1.2047 -> 21 150 -idx: 58 entropy_left: 1.00862 entropy_right : 1.20561 -> 21 150 -idx: 59 entropy_left: 0.995263 entropy_right : 1.16707 -> 21 150 -idx: 61 entropy_left: 1.03689 entropy_right : 1.16534 -> 21 150 -idx: 62 entropy_left: 1.12825 entropy_right : 1.16872 -> 21 150 -idx: 68 entropy_left: 1.18351 entropy_right : 1.15739 -> 21 150 -idx: 69 entropy_left: 1.17528 entropy_right : 1.1095 -> 21 150 -idx: 70 entropy_left: 1.17968 entropy_right : 1.10587 -> 21 150 -idx: 71 entropy_left: 1.24243 entropy_right : 1.11046 -> 21 150 -idx: 72 entropy_left: 1.23425 entropy_right : 1.05114 -> 21 150 -idx: 74 entropy_left: 1.23971 entropy_right : 1.04172 -> 21 150 -idx: 75 entropy_left: 1.2897 entropy_right : 1.04629 -> 21 150 -idx: 76 entropy_left: 1.28235 entropy_right : 0.956889 -> 21 150 -idx: 77 entropy_left: 1.28389 entropy_right : 0.950567 -> 21 150 -idx: 78 entropy_left: 1.32545 entropy_right : 0.954434 -> 21 150 -idx: 79 entropy_left: 1.32594 entropy_right : 0.947707 -> 21 150 -idx: 81 entropy_left: 1.39189 entropy_right : 0.955759 -> 21 150 -idx: 83 entropy_left: 1.39041 entropy_right : 0.941186 -> 21 150 -idx: 84 entropy_left: 1.41691 entropy_right : 0.94566 -> 21 150 -idx: 87 entropy_left: 1.41087 entropy_right : 0.918296 -> 21 150 -idx: 88 entropy_left: 1.43412 entropy_right : 0.923579 -> 21 150 -idx: 89 entropy_left: 1.43132 entropy_right : 0.912734 -> 21 150 -idx: 91 entropy_left: 1.47011 entropy_right : 0.923842 -> 21 150 -idx: 95 entropy_left: 1.45641 entropy_right : 0.869893 -> 21 150 -idx: 97 entropy_left: 1.4877 entropy_right : 0.883585 -> 21 150 -idx: 99 entropy_left: 1.4798 entropy_right : 0.847862 -> 21 150 -idx: 101 entropy_left: 1.50524 entropy_right : 0.863121 -> 21 150 -idx: 102 entropy_left: 1.50124 entropy_right : 0.842658 -> 21 150 -idx: 104 entropy_left: 1.5219 entropy_right : 0.858981 -> 21 150 -idx: 105 entropy_left: 1.51799 entropy_right : 0.836641 -> 21 150 -idx: 106 entropy_left: 1.52686 entropy_right : 0.845351 -> 21 150 -idx: 107 entropy_left: 1.52293 entropy_right : 0.820364 -> 21 150 -idx: 109 entropy_left: 1.53822 entropy_right : 0.839004 -> 21 150 -idx: 110 entropy_left: 1.53443 entropy_right : 0.811278 -> 21 150 -idx: 113 entropy_left: 1.55205 entropy_right : 0.841852 -> 21 150 -idx: 114 entropy_left: 1.54856 entropy_right : 0.811278 -> 21 150 -idx: 117 entropy_left: 1.56105 entropy_right : 0.845351 -> 21 150 -idx: 118 entropy_left: 1.55787 entropy_right : 0.811278 -> 21 150 -idx: 120 entropy_left: 1.56398 entropy_right : 0.836641 -> 21 150 -idx: 122 entropy_left: 1.5578 entropy_right : 0.749595 -> 21 150 -idx: 127 entropy_left: 1.56753 entropy_right : 0.828056 -> 21 150 -idx: 130 entropy_left: 1.55942 entropy_right : 0.60984 -> 21 150 -idx: 132 entropy_left: 1.56184 entropy_right : 0.650022 -> 21 150 -idx: 133 entropy_left: 1.55916 entropy_right : 0.522559 -> 21 150 -idx: 134 entropy_left: 1.56009 entropy_right : 0.543564 -> 21 150 -idx: 135 entropy_left: 1.55743 entropy_right : 0.353359 -> 21 150 -idx: 137 entropy_left: 1.55879 entropy_right : 0.391244 -> 21 150 -idx: 138 entropy_left: 1.55627 entropy_right : 0 -> 21 150 -cut: 4.95 index: 22 -start: 21 cut: 22 end: 150 -k=3 k1=1 k2=3 ent=1.54983 ent1=0 ent2=1.55119 -ig=0.0106688 delta=4.64792 N 129 term 0.090294 -idx: 24 entropy_left: 0 entropy_right : 1.54198 -> 22 150 -idx: 25 entropy_left: 0.918296 entropy_right : 1.54334 -> 22 150 -idx: 29 entropy_left: 0.591673 entropy_right : 1.5202 -> 22 150 -idx: 30 entropy_left: 0.811278 entropy_right : 1.52168 -> 22 150 -idx: 33 entropy_left: 0.684038 entropy_right : 1.49921 -> 22 150 -idx: 34 entropy_left: 0.811278 entropy_right : 1.50071 -> 22 150 -idx: 44 entropy_left: 0.574636 entropy_right : 1.37643 -> 22 150 -idx: 45 entropy_left: 0.666578 entropy_right : 1.37798 -> 22 150 -idx: 51 entropy_left: 0.578795 entropy_right : 1.23679 -> 22 150 -idx: 52 entropy_left: 0.650022 entropy_right : 1.23772 -> 22 150 -idx: 53 entropy_left: 0.637388 entropy_right : 1.2047 -> 22 150 -idx: 58 entropy_left: 0.852405 entropy_right : 1.20561 -> 22 150 -idx: 59 entropy_left: 0.841852 entropy_right : 1.16707 -> 22 150 -idx: 61 entropy_left: 0.890492 entropy_right : 1.16534 -> 22 150 -idx: 62 entropy_left: 1.03689 entropy_right : 1.16872 -> 22 150 -idx: 68 entropy_left: 1.10094 entropy_right : 1.15739 -> 22 150 -idx: 69 entropy_left: 1.09364 entropy_right : 1.1095 -> 22 150 -idx: 70 entropy_left: 1.0992 entropy_right : 1.10587 -> 22 150 -idx: 71 entropy_left: 1.17968 entropy_right : 1.11046 -> 22 150 -idx: 72 entropy_left: 1.17201 entropy_right : 1.05114 -> 22 150 -idx: 74 entropy_left: 1.1789 entropy_right : 1.04172 -> 22 150 -idx: 75 entropy_left: 1.23971 entropy_right : 1.04629 -> 22 150 -idx: 76 entropy_left: 1.23266 entropy_right : 0.956889 -> 22 150 -idx: 77 entropy_left: 1.23465 entropy_right : 0.950567 -> 22 150 -idx: 78 entropy_left: 1.28389 entropy_right : 0.954434 -> 22 150 -idx: 79 entropy_left: 1.28467 entropy_right : 0.947707 -> 22 150 -idx: 81 entropy_left: 1.36131 entropy_right : 0.955759 -> 22 150 -idx: 83 entropy_left: 1.36003 entropy_right : 0.941186 -> 22 150 -idx: 84 entropy_left: 1.39041 entropy_right : 0.94566 -> 22 150 -idx: 87 entropy_left: 1.38446 entropy_right : 0.918296 -> 22 150 -idx: 88 entropy_left: 1.41087 entropy_right : 0.923579 -> 22 150 -idx: 89 entropy_left: 1.40806 entropy_right : 0.912734 -> 22 150 -idx: 91 entropy_left: 1.45189 entropy_right : 0.923842 -> 22 150 -idx: 95 entropy_left: 1.43789 entropy_right : 0.869893 -> 22 150 -idx: 97 entropy_left: 1.47293 entropy_right : 0.883585 -> 22 150 -idx: 99 entropy_left: 1.46482 entropy_right : 0.847862 -> 22 150 -idx: 101 entropy_left: 1.49322 entropy_right : 0.863121 -> 22 150 -idx: 102 entropy_left: 1.48909 entropy_right : 0.842658 -> 22 150 -idx: 104 entropy_left: 1.51214 entropy_right : 0.858981 -> 22 150 -idx: 105 entropy_left: 1.50809 entropy_right : 0.836641 -> 22 150 -idx: 106 entropy_left: 1.51799 entropy_right : 0.845351 -> 22 150 -idx: 107 entropy_left: 1.51392 entropy_right : 0.820364 -> 22 150 -idx: 109 entropy_left: 1.53101 entropy_right : 0.839004 -> 22 150 -idx: 110 entropy_left: 1.52707 entropy_right : 0.811278 -> 22 150 -idx: 113 entropy_left: 1.54686 entropy_right : 0.841852 -> 22 150 -idx: 114 entropy_left: 1.54322 entropy_right : 0.811278 -> 22 150 -idx: 117 entropy_left: 1.55743 entropy_right : 0.845351 -> 22 150 -idx: 118 entropy_left: 1.5541 entropy_right : 0.811278 -> 22 150 -idx: 120 entropy_left: 1.56116 entropy_right : 0.836641 -> 22 150 -idx: 122 entropy_left: 1.55468 entropy_right : 0.749595 -> 22 150 -idx: 127 entropy_left: 1.56628 entropy_right : 0.828056 -> 22 150 -idx: 130 entropy_left: 1.55775 entropy_right : 0.60984 -> 22 150 -idx: 132 entropy_left: 1.56078 entropy_right : 0.650022 -> 22 150 -idx: 133 entropy_left: 1.55796 entropy_right : 0.522559 -> 22 150 -idx: 134 entropy_left: 1.55916 entropy_right : 0.543564 -> 22 150 -idx: 135 entropy_left: 1.55638 entropy_right : 0.353359 -> 22 150 -idx: 137 entropy_left: 1.55823 entropy_right : 0.391244 -> 22 150 -idx: 138 entropy_left: 1.55559 entropy_right : 0 -> 22 150 -cut: 5 index: 24 -start: 22 cut: 24 end: 150 -k=3 k1=1 k2=3 ent=1.55119 ent1=0 ent2=1.54198 -ig=0.0332967 delta=4.61625 N 128 term 0.0906635 -idx: 25 entropy_left: 0 entropy_right : 1.54334 -> 24 150 -idx: 29 entropy_left: 0.721928 entropy_right : 1.5202 -> 24 150 -idx: 30 entropy_left: 0.918296 entropy_right : 1.52168 -> 24 150 -idx: 33 entropy_left: 0.764205 entropy_right : 1.49921 -> 24 150 -idx: 34 entropy_left: 0.881291 entropy_right : 1.50071 -> 24 150 -idx: 44 entropy_left: 0.60984 entropy_right : 1.37643 -> 24 150 -idx: 45 entropy_left: 0.702467 entropy_right : 1.37798 -> 24 150 -idx: 51 entropy_left: 0.605187 entropy_right : 1.23679 -> 24 150 -idx: 52 entropy_left: 0.676942 entropy_right : 1.23772 -> 24 150 -idx: 53 entropy_left: 0.663197 entropy_right : 1.2047 -> 24 150 -idx: 58 entropy_left: 0.873981 entropy_right : 1.20561 -> 24 150 -idx: 59 entropy_left: 0.863121 entropy_right : 1.16707 -> 24 150 -idx: 61 entropy_left: 0.909022 entropy_right : 1.16534 -> 24 150 -idx: 62 entropy_left: 1.06067 entropy_right : 1.16872 -> 24 150 -idx: 68 entropy_left: 1.115 entropy_right : 1.15739 -> 24 150 -idx: 69 entropy_left: 1.10807 entropy_right : 1.1095 -> 24 150 -idx: 70 entropy_left: 1.11221 entropy_right : 1.10587 -> 24 150 -idx: 71 entropy_left: 1.19455 entropy_right : 1.11046 -> 24 150 -idx: 72 entropy_left: 1.1872 entropy_right : 1.05114 -> 24 150 -idx: 74 entropy_left: 1.19144 entropy_right : 1.04172 -> 24 150 -idx: 75 entropy_left: 1.2533 entropy_right : 1.04629 -> 24 150 -idx: 76 entropy_left: 1.2466 entropy_right : 0.956889 -> 24 150 -idx: 77 entropy_left: 1.24739 entropy_right : 0.950567 -> 24 150 -idx: 78 entropy_left: 1.29723 entropy_right : 0.954434 -> 24 150 -idx: 79 entropy_left: 1.29685 entropy_right : 0.947707 -> 24 150 -idx: 81 entropy_left: 1.37398 entropy_right : 0.955759 -> 24 150 -idx: 83 entropy_left: 1.37057 entropy_right : 0.941186 -> 24 150 -idx: 84 entropy_left: 1.40099 entropy_right : 0.94566 -> 24 150 -idx: 87 entropy_left: 1.39215 entropy_right : 0.918296 -> 24 150 -idx: 88 entropy_left: 1.41856 entropy_right : 0.923579 -> 24 150 -idx: 89 entropy_left: 1.41487 entropy_right : 0.912734 -> 24 150 -idx: 91 entropy_left: 1.45853 entropy_right : 0.923842 -> 24 150 -idx: 95 entropy_left: 1.44143 entropy_right : 0.869893 -> 24 150 -idx: 97 entropy_left: 1.47626 entropy_right : 0.883585 -> 24 150 -idx: 99 entropy_left: 1.46681 entropy_right : 0.847862 -> 24 150 -idx: 101 entropy_left: 1.49492 entropy_right : 0.863121 -> 24 150 -idx: 102 entropy_left: 1.49019 entropy_right : 0.842658 -> 24 150 -idx: 104 entropy_left: 1.51289 entropy_right : 0.858981 -> 24 150 -idx: 105 entropy_left: 1.5083 entropy_right : 0.836641 -> 24 150 -idx: 106 entropy_left: 1.51801 entropy_right : 0.845351 -> 24 150 -idx: 107 entropy_left: 1.51342 entropy_right : 0.820364 -> 24 150 -idx: 109 entropy_left: 1.53012 entropy_right : 0.839004 -> 24 150 -idx: 110 entropy_left: 1.52572 entropy_right : 0.811278 -> 24 150 -idx: 113 entropy_left: 1.5449 entropy_right : 0.841852 -> 24 150 -idx: 114 entropy_left: 1.54085 entropy_right : 0.811278 -> 24 150 -idx: 117 entropy_left: 1.55443 entropy_right : 0.845351 -> 24 150 -idx: 118 entropy_left: 1.55074 entropy_right : 0.811278 -> 24 150 -idx: 120 entropy_left: 1.55738 entropy_right : 0.836641 -> 24 150 -idx: 122 entropy_left: 1.55025 entropy_right : 0.749595 -> 24 150 -idx: 127 entropy_left: 1.56091 entropy_right : 0.828056 -> 24 150 -idx: 130 entropy_left: 1.5516 entropy_right : 0.60984 -> 24 150 -idx: 132 entropy_left: 1.5543 entropy_right : 0.650022 -> 24 150 -idx: 133 entropy_left: 1.55125 entropy_right : 0.522559 -> 24 150 -idx: 134 entropy_left: 1.5523 entropy_right : 0.543564 -> 24 150 -idx: 135 entropy_left: 1.54929 entropy_right : 0.353359 -> 24 150 -idx: 137 entropy_left: 1.55085 entropy_right : 0.391244 -> 24 150 -idx: 138 entropy_left: 1.54801 entropy_right : 0 -> 24 150 -cut: 5 index: 25 -start: 24 cut: 25 end: 150 -k=3 k1=1 k2=3 ent=1.54198 ent1=0 ent2=1.54334 -ig=0.010886 delta=4.64794 N 126 term 0.0921725 -idx: 29 entropy_left: 0 entropy_right : 1.5202 -> 25 150 -idx: 30 entropy_left: 0.721928 entropy_right : 1.52168 -> 25 150 -idx: 33 entropy_left: 0.543564 entropy_right : 1.49921 -> 25 150 -idx: 34 entropy_left: 0.764205 entropy_right : 1.50071 -> 25 150 -idx: 44 entropy_left: 0.485461 entropy_right : 1.37643 -> 25 150 -idx: 45 entropy_left: 0.60984 entropy_right : 1.37798 -> 25 150 -idx: 51 entropy_left: 0.515947 entropy_right : 1.23679 -> 25 150 -idx: 52 entropy_left: 0.605187 entropy_right : 1.23772 -> 25 150 -idx: 53 entropy_left: 0.591673 entropy_right : 1.2047 -> 25 150 -idx: 58 entropy_left: 0.845351 entropy_right : 1.20561 -> 25 150 -idx: 59 entropy_left: 0.833765 entropy_right : 1.16707 -> 25 150 -idx: 61 entropy_left: 0.887976 entropy_right : 1.16534 -> 25 150 -idx: 62 entropy_left: 1.04323 entropy_right : 1.16872 -> 25 150 -idx: 68 entropy_left: 1.11037 entropy_right : 1.15739 -> 25 150 -idx: 69 entropy_left: 1.10265 entropy_right : 1.1095 -> 25 150 -idx: 70 entropy_left: 1.10807 entropy_right : 1.10587 -> 25 150 -idx: 71 entropy_left: 1.1916 entropy_right : 1.11046 -> 25 150 -idx: 72 entropy_left: 1.18351 entropy_right : 1.05114 -> 25 150 -idx: 74 entropy_left: 1.1898 entropy_right : 1.04172 -> 25 150 -idx: 75 entropy_left: 1.25235 entropy_right : 1.04629 -> 25 150 -idx: 76 entropy_left: 1.24499 entropy_right : 0.956889 -> 25 150 -idx: 77 entropy_left: 1.2466 entropy_right : 0.950567 -> 25 150 -idx: 78 entropy_left: 1.29689 entropy_right : 0.954434 -> 25 150 -idx: 79 entropy_left: 1.29723 entropy_right : 0.947707 -> 25 150 -idx: 81 entropy_left: 1.3748 entropy_right : 0.955759 -> 25 150 -idx: 83 entropy_left: 1.37255 entropy_right : 0.941186 -> 25 150 -idx: 84 entropy_left: 1.40304 entropy_right : 0.94566 -> 25 150 -idx: 87 entropy_left: 1.3955 entropy_right : 0.918296 -> 25 150 -idx: 88 entropy_left: 1.42192 entropy_right : 0.923579 -> 25 150 -idx: 89 entropy_left: 1.41856 entropy_right : 0.912734 -> 25 150 -idx: 91 entropy_left: 1.4621 entropy_right : 0.923842 -> 25 150 -idx: 95 entropy_left: 1.44607 entropy_right : 0.869893 -> 25 150 -idx: 97 entropy_left: 1.48068 entropy_right : 0.883585 -> 25 150 -idx: 99 entropy_left: 1.47163 entropy_right : 0.847862 -> 25 150 -idx: 101 entropy_left: 1.49947 entropy_right : 0.863121 -> 25 150 -idx: 102 entropy_left: 1.49492 entropy_right : 0.842658 -> 25 150 -idx: 104 entropy_left: 1.51731 entropy_right : 0.858981 -> 25 150 -idx: 105 entropy_left: 1.51289 entropy_right : 0.836641 -> 25 150 -idx: 106 entropy_left: 1.52244 entropy_right : 0.845351 -> 25 150 -idx: 107 entropy_left: 1.51801 entropy_right : 0.820364 -> 25 150 -idx: 109 entropy_left: 1.53438 entropy_right : 0.839004 -> 25 150 -idx: 110 entropy_left: 1.53012 entropy_right : 0.811278 -> 25 150 -idx: 113 entropy_left: 1.54881 entropy_right : 0.841852 -> 25 150 -idx: 114 entropy_left: 1.5449 entropy_right : 0.811278 -> 25 150 -idx: 117 entropy_left: 1.55799 entropy_right : 0.845351 -> 25 150 -idx: 118 entropy_left: 1.55443 entropy_right : 0.811278 -> 25 150 -idx: 120 entropy_left: 1.56075 entropy_right : 0.836641 -> 25 150 -idx: 122 entropy_left: 1.55388 entropy_right : 0.749595 -> 25 150 -idx: 127 entropy_left: 1.56377 entropy_right : 0.828056 -> 25 150 -idx: 130 entropy_left: 1.55482 entropy_right : 0.60984 -> 25 150 -idx: 132 entropy_left: 1.55723 entropy_right : 0.650022 -> 25 150 -idx: 133 entropy_left: 1.5543 entropy_right : 0.522559 -> 25 150 -idx: 134 entropy_left: 1.55521 entropy_right : 0.543564 -> 25 150 -idx: 135 entropy_left: 1.5523 entropy_right : 0.353359 -> 25 150 -idx: 137 entropy_left: 1.55359 entropy_right : 0.391244 -> 25 150 -idx: 138 entropy_left: 1.55085 entropy_right : 0 -> 25 150 -cut: 5 index: 29 -start: 25 cut: 29 end: 150 -k=3 k1=1 k2=3 ent=1.54334 ent1=0 ent2=1.5202 -ig=0.07179 delta=4.57443 N 125 term 0.092229 -idx: 30 entropy_left: 0 entropy_right : 1.52168 -> 29 150 -idx: 33 entropy_left: 0.811278 entropy_right : 1.49921 -> 29 150 -idx: 34 entropy_left: 0.970951 entropy_right : 1.50071 -> 29 150 -idx: 44 entropy_left: 0.566509 entropy_right : 1.37643 -> 29 150 -idx: 45 entropy_left: 0.696212 entropy_right : 1.37798 -> 29 150 -idx: 51 entropy_left: 0.574636 entropy_right : 1.23679 -> 29 150 -idx: 52 entropy_left: 0.666578 entropy_right : 1.23772 -> 29 150 -idx: 53 entropy_left: 0.650022 entropy_right : 1.2047 -> 29 150 -idx: 58 entropy_left: 0.893571 entropy_right : 1.20561 -> 29 150 -idx: 59 entropy_left: 0.881291 entropy_right : 1.16707 -> 29 150 -idx: 61 entropy_left: 0.928362 entropy_right : 1.16534 -> 29 150 -idx: 62 entropy_left: 1.09614 entropy_right : 1.16872 -> 29 150 -idx: 68 entropy_left: 1.13859 entropy_right : 1.15739 -> 29 150 -idx: 69 entropy_left: 1.13207 entropy_right : 1.1095 -> 29 150 -idx: 70 entropy_left: 1.13399 entropy_right : 1.10587 -> 29 150 -idx: 71 entropy_left: 1.22169 entropy_right : 1.11046 -> 29 150 -idx: 72 entropy_left: 1.21462 entropy_right : 1.05114 -> 29 150 -idx: 74 entropy_left: 1.21451 entropy_right : 1.04172 -> 29 150 -idx: 75 entropy_left: 1.27931 entropy_right : 1.04629 -> 29 150 -idx: 76 entropy_left: 1.27305 entropy_right : 0.956889 -> 29 150 -idx: 77 entropy_left: 1.27178 entropy_right : 0.950567 -> 29 150 -idx: 78 entropy_left: 1.32333 entropy_right : 0.954434 -> 29 150 -idx: 79 entropy_left: 1.32092 entropy_right : 0.947707 -> 29 150 -idx: 81 entropy_left: 1.39936 entropy_right : 0.955759 -> 29 150 -idx: 83 entropy_left: 1.39215 entropy_right : 0.941186 -> 29 150 -idx: 84 entropy_left: 1.42264 entropy_right : 0.94566 -> 29 150 -idx: 87 entropy_left: 1.40845 entropy_right : 0.918296 -> 29 150 -idx: 88 entropy_left: 1.43483 entropy_right : 0.923579 -> 29 150 -idx: 89 entropy_left: 1.42947 entropy_right : 0.912734 -> 29 150 -idx: 91 entropy_left: 1.47251 entropy_right : 0.923842 -> 29 150 -idx: 95 entropy_left: 1.44957 entropy_right : 0.869893 -> 29 150 -idx: 97 entropy_left: 1.48366 entropy_right : 0.883585 -> 29 150 -idx: 99 entropy_left: 1.47168 entropy_right : 0.847862 -> 29 150 -idx: 101 entropy_left: 1.49887 entropy_right : 0.863121 -> 29 150 -idx: 102 entropy_left: 1.49302 entropy_right : 0.842658 -> 29 150 -idx: 104 entropy_left: 1.51463 entropy_right : 0.858981 -> 29 150 -idx: 105 entropy_left: 1.50903 entropy_right : 0.836641 -> 29 150 -idx: 106 entropy_left: 1.51817 entropy_right : 0.845351 -> 29 150 -idx: 107 entropy_left: 1.51264 entropy_right : 0.820364 -> 29 150 -idx: 109 entropy_left: 1.52818 entropy_right : 0.839004 -> 29 150 -idx: 110 entropy_left: 1.52292 entropy_right : 0.811278 -> 29 150 -idx: 113 entropy_left: 1.54032 entropy_right : 0.841852 -> 29 150 -idx: 114 entropy_left: 1.53554 entropy_right : 0.811278 -> 29 150 -idx: 117 entropy_left: 1.54732 entropy_right : 0.845351 -> 29 150 -idx: 118 entropy_left: 1.54301 entropy_right : 0.811278 -> 29 150 -idx: 120 entropy_left: 1.54847 entropy_right : 0.836641 -> 29 150 -idx: 122 entropy_left: 1.54025 entropy_right : 0.749595 -> 29 150 -idx: 127 entropy_left: 1.54822 entropy_right : 0.828056 -> 29 150 -idx: 130 entropy_left: 1.53769 entropy_right : 0.60984 -> 29 150 -idx: 132 entropy_left: 1.53945 entropy_right : 0.650022 -> 29 150 -idx: 133 entropy_left: 1.53605 entropy_right : 0.522559 -> 29 150 -idx: 134 entropy_left: 1.53665 entropy_right : 0.543564 -> 29 150 -idx: 135 entropy_left: 1.5333 entropy_right : 0.353359 -> 29 150 -idx: 137 entropy_left: 1.53401 entropy_right : 0.391244 -> 29 150 -idx: 138 entropy_left: 1.53087 entropy_right : 0 -> 29 150 -cut: 5 index: 30 -start: 29 cut: 30 end: 150 -k=3 k1=1 k2=3 ent=1.5202 ent1=0 ent2=1.52168 -ig=0.0110997 delta=4.64828 N 121 term 0.0954973 -idx: 33 entropy_left: 0 entropy_right : 1.49921 -> 30 150 -idx: 34 entropy_left: 0.811278 entropy_right : 1.50071 -> 30 150 -idx: 44 entropy_left: 0.371232 entropy_right : 1.37643 -> 30 150 -idx: 45 entropy_left: 0.566509 entropy_right : 1.37798 -> 30 150 -idx: 51 entropy_left: 0.453716 entropy_right : 1.23679 -> 30 150 -idx: 52 entropy_left: 0.574636 entropy_right : 1.23772 -> 30 150 -idx: 53 entropy_left: 0.558629 entropy_right : 1.2047 -> 30 150 -idx: 58 entropy_left: 0.863121 entropy_right : 1.20561 -> 30 150 -idx: 59 entropy_left: 0.849751 entropy_right : 1.16707 -> 30 150 -idx: 61 entropy_left: 0.907166 entropy_right : 1.16534 -> 30 150 -idx: 62 entropy_left: 1.07944 entropy_right : 1.16872 -> 30 150 -idx: 68 entropy_left: 1.13638 entropy_right : 1.15739 -> 30 150 -idx: 69 entropy_left: 1.1288 entropy_right : 1.1095 -> 30 150 -idx: 70 entropy_left: 1.13207 entropy_right : 1.10587 -> 30 150 -idx: 71 entropy_left: 1.2211 entropy_right : 1.11046 -> 30 150 -idx: 72 entropy_left: 1.21306 entropy_right : 1.05114 -> 30 150 -idx: 74 entropy_left: 1.21506 entropy_right : 1.04172 -> 30 150 -idx: 75 entropy_left: 1.28058 entropy_right : 1.04629 -> 30 150 -idx: 76 entropy_left: 1.27346 entropy_right : 0.956889 -> 30 150 -idx: 77 entropy_left: 1.27305 entropy_right : 0.950567 -> 30 150 -idx: 78 entropy_left: 1.32501 entropy_right : 0.954434 -> 30 150 -idx: 79 entropy_left: 1.32333 entropy_right : 0.947707 -> 30 150 -idx: 81 entropy_left: 1.40208 entropy_right : 0.955759 -> 30 150 -idx: 83 entropy_left: 1.39602 entropy_right : 0.941186 -> 30 150 -idx: 84 entropy_left: 1.42651 entropy_right : 0.94566 -> 30 150 -idx: 87 entropy_left: 1.41356 entropy_right : 0.918296 -> 30 150 -idx: 88 entropy_left: 1.43987 entropy_right : 0.923579 -> 30 150 -idx: 89 entropy_left: 1.43483 entropy_right : 0.912734 -> 30 150 -idx: 91 entropy_left: 1.47762 entropy_right : 0.923842 -> 30 150 -idx: 95 entropy_left: 1.45562 entropy_right : 0.869893 -> 30 150 -idx: 97 entropy_left: 1.48939 entropy_right : 0.883585 -> 30 150 -idx: 99 entropy_left: 1.47775 entropy_right : 0.847862 -> 30 150 -idx: 101 entropy_left: 1.50458 entropy_right : 0.863121 -> 30 150 -idx: 102 entropy_left: 1.49887 entropy_right : 0.842658 -> 30 150 -idx: 104 entropy_left: 1.52009 entropy_right : 0.858981 -> 30 150 -idx: 105 entropy_left: 1.51463 entropy_right : 0.836641 -> 30 150 -idx: 106 entropy_left: 1.52357 entropy_right : 0.845351 -> 30 150 -idx: 107 entropy_left: 1.51817 entropy_right : 0.820364 -> 30 150 -idx: 109 entropy_left: 1.53331 entropy_right : 0.839004 -> 30 150 -idx: 110 entropy_left: 1.52818 entropy_right : 0.811278 -> 30 150 -idx: 113 entropy_left: 1.54496 entropy_right : 0.841852 -> 30 150 -idx: 114 entropy_left: 1.54032 entropy_right : 0.811278 -> 30 150 -idx: 117 entropy_left: 1.55149 entropy_right : 0.845351 -> 30 150 -idx: 118 entropy_left: 1.54732 entropy_right : 0.811278 -> 30 150 -idx: 120 entropy_left: 1.55239 entropy_right : 0.836641 -> 30 150 -idx: 122 entropy_left: 1.54442 entropy_right : 0.749595 -> 30 150 -idx: 127 entropy_left: 1.55147 entropy_right : 0.828056 -> 30 150 -idx: 130 entropy_left: 1.54132 entropy_right : 0.60984 -> 30 150 -idx: 132 entropy_left: 1.54274 entropy_right : 0.650022 -> 30 150 -idx: 133 entropy_left: 1.53945 entropy_right : 0.522559 -> 30 150 -idx: 134 entropy_left: 1.53989 entropy_right : 0.543564 -> 30 150 -idx: 135 entropy_left: 1.53665 entropy_right : 0.353359 -> 30 150 -idx: 137 entropy_left: 1.53705 entropy_right : 0.391244 -> 30 150 -idx: 138 entropy_left: 1.53401 entropy_right : 0 -> 30 150 -cut: 5.1 index: 33 -start: 30 cut: 33 end: 150 -k=3 k1=1 k2=3 ent=1.52168 ent1=0 ent2=1.49921 -ig=0.059948 delta=4.57645 N 120 term 0.0955939 -idx: 34 entropy_left: 0 entropy_right : 1.50071 -> 33 150 -idx: 44 entropy_left: 0.439497 entropy_right : 1.37643 -> 33 150 -idx: 45 entropy_left: 0.650022 entropy_right : 1.37798 -> 33 150 -idx: 51 entropy_left: 0.503258 entropy_right : 1.23679 -> 33 150 -idx: 52 entropy_left: 0.629249 entropy_right : 1.23772 -> 33 150 -idx: 53 entropy_left: 0.60984 entropy_right : 1.2047 -> 33 150 -idx: 58 entropy_left: 0.904381 entropy_right : 1.20561 -> 33 150 -idx: 59 entropy_left: 0.890492 entropy_right : 1.16707 -> 33 150 -idx: 61 entropy_left: 0.940286 entropy_right : 1.16534 -> 33 150 -idx: 62 entropy_left: 1.12426 entropy_right : 1.16872 -> 33 150 -idx: 68 entropy_left: 1.15618 entropy_right : 1.15739 -> 33 150 -idx: 69 entropy_left: 1.15019 entropy_right : 1.1095 -> 33 150 -idx: 70 entropy_left: 1.15006 entropy_right : 1.10587 -> 33 150 -idx: 71 entropy_left: 1.24273 entropy_right : 1.11046 -> 33 150 -idx: 72 entropy_left: 1.23603 entropy_right : 1.05114 -> 33 150 -idx: 74 entropy_left: 1.23196 entropy_right : 1.04172 -> 33 150 -idx: 75 entropy_left: 1.29936 entropy_right : 1.04629 -> 33 150 -idx: 76 entropy_left: 1.29361 entropy_right : 0.956889 -> 33 150 -idx: 77 entropy_left: 1.29052 entropy_right : 0.950567 -> 33 150 -idx: 78 entropy_left: 1.34347 entropy_right : 0.954434 -> 33 150 -idx: 79 entropy_left: 1.33927 entropy_right : 0.947707 -> 33 150 -idx: 81 entropy_left: 1.41856 entropy_right : 0.955759 -> 33 150 -idx: 83 entropy_left: 1.40805 entropy_right : 0.941186 -> 33 150 -idx: 84 entropy_left: 1.43846 entropy_right : 0.94566 -> 33 150 -idx: 87 entropy_left: 1.41967 entropy_right : 0.918296 -> 33 150 -idx: 88 entropy_left: 1.4459 entropy_right : 0.923579 -> 33 150 -idx: 89 entropy_left: 1.43913 entropy_right : 0.912734 -> 33 150 -idx: 91 entropy_left: 1.48143 entropy_right : 0.923842 -> 33 150 -idx: 95 entropy_left: 1.45358 entropy_right : 0.869893 -> 33 150 -idx: 97 entropy_left: 1.4869 entropy_right : 0.883585 -> 33 150 -idx: 99 entropy_left: 1.47283 entropy_right : 0.847862 -> 33 150 -idx: 101 entropy_left: 1.49913 entropy_right : 0.863121 -> 33 150 -idx: 102 entropy_left: 1.49236 entropy_right : 0.842658 -> 33 150 -idx: 104 entropy_left: 1.51295 entropy_right : 0.858981 -> 33 150 -idx: 105 entropy_left: 1.50654 entropy_right : 0.836641 -> 33 150 -idx: 106 entropy_left: 1.51516 entropy_right : 0.845351 -> 33 150 -idx: 107 entropy_left: 1.50887 entropy_right : 0.820364 -> 33 150 -idx: 109 entropy_left: 1.52337 entropy_right : 0.839004 -> 33 150 -idx: 110 entropy_left: 1.51745 entropy_right : 0.811278 -> 33 150 -idx: 113 entropy_left: 1.53323 entropy_right : 0.841852 -> 33 150 -idx: 114 entropy_left: 1.52791 entropy_right : 0.811278 -> 33 150 -idx: 117 entropy_left: 1.53808 entropy_right : 0.845351 -> 33 150 -idx: 118 entropy_left: 1.53332 entropy_right : 0.811278 -> 33 150 -idx: 120 entropy_left: 1.53776 entropy_right : 0.836641 -> 33 150 -idx: 122 entropy_left: 1.52876 entropy_right : 0.749595 -> 33 150 -idx: 127 entropy_left: 1.53439 entropy_right : 0.828056 -> 33 150 -idx: 130 entropy_left: 1.52307 entropy_right : 0.60984 -> 33 150 -idx: 132 entropy_left: 1.52403 entropy_right : 0.650022 -> 33 150 -idx: 133 entropy_left: 1.5204 entropy_right : 0.522559 -> 33 150 -idx: 134 entropy_left: 1.52062 entropy_right : 0.543564 -> 33 150 -idx: 135 entropy_left: 1.51706 entropy_right : 0.353359 -> 33 150 -idx: 137 entropy_left: 1.51705 entropy_right : 0.391244 -> 33 150 -idx: 138 entropy_left: 1.51373 entropy_right : 0 -> 33 150 -cut: 5.1 index: 34 -start: 33 cut: 34 end: 150 -k=3 k1=1 k2=3 ent=1.49921 ent1=0 ent2=1.50071 -ig=0.0113252 delta=4.64836 N 117 term 0.0983448 -idx: 44 entropy_left: 0 entropy_right : 1.37643 -> 34 150 -idx: 45 entropy_left: 0.439497 entropy_right : 1.37798 -> 34 150 -idx: 51 entropy_left: 0.322757 entropy_right : 1.23679 -> 34 150 -idx: 52 entropy_left: 0.503258 entropy_right : 1.23772 -> 34 150 -idx: 53 entropy_left: 0.485461 entropy_right : 1.2047 -> 34 150 -idx: 58 entropy_left: 0.870865 entropy_right : 1.20561 -> 34 150 -idx: 59 entropy_left: 0.855451 entropy_right : 1.16707 -> 34 150 -idx: 61 entropy_left: 0.918296 entropy_right : 1.16534 -> 34 150 -idx: 62 entropy_left: 1.10778 entropy_right : 1.16872 -> 34 150 -idx: 68 entropy_left: 1.15623 entropy_right : 1.15739 -> 34 150 -idx: 69 entropy_left: 1.14888 entropy_right : 1.1095 -> 34 150 -idx: 70 entropy_left: 1.15019 entropy_right : 1.10587 -> 34 150 -idx: 71 entropy_left: 1.2443 entropy_right : 1.11046 -> 34 150 -idx: 72 entropy_left: 1.23639 entropy_right : 1.05114 -> 34 150 -idx: 74 entropy_left: 1.2345 entropy_right : 1.04172 -> 34 150 -idx: 75 entropy_left: 1.30262 entropy_right : 1.04629 -> 34 150 -idx: 76 entropy_left: 1.29584 entropy_right : 0.956889 -> 34 150 -idx: 77 entropy_left: 1.29361 entropy_right : 0.950567 -> 34 150 -idx: 78 entropy_left: 1.34695 entropy_right : 0.954434 -> 34 150 -idx: 79 entropy_left: 1.34347 entropy_right : 0.947707 -> 34 150 -idx: 81 entropy_left: 1.42295 entropy_right : 0.955759 -> 34 150 -idx: 83 entropy_left: 1.41357 entropy_right : 0.941186 -> 34 150 -idx: 84 entropy_left: 1.4439 entropy_right : 0.94566 -> 34 150 -idx: 87 entropy_left: 1.42629 entropy_right : 0.918296 -> 34 150 -idx: 88 entropy_left: 1.45239 entropy_right : 0.923579 -> 34 150 -idx: 89 entropy_left: 1.4459 entropy_right : 0.912734 -> 34 150 -idx: 91 entropy_left: 1.48781 entropy_right : 0.923842 -> 34 150 -idx: 95 entropy_left: 1.46082 entropy_right : 0.869893 -> 34 150 -idx: 97 entropy_left: 1.49371 entropy_right : 0.883585 -> 34 150 -idx: 99 entropy_left: 1.47993 entropy_right : 0.847862 -> 34 150 -idx: 101 entropy_left: 1.50577 entropy_right : 0.863121 -> 34 150 -idx: 102 entropy_left: 1.49913 entropy_right : 0.842658 -> 34 150 -idx: 104 entropy_left: 1.51923 entropy_right : 0.858981 -> 34 150 -idx: 105 entropy_left: 1.51295 entropy_right : 0.836641 -> 34 150 -idx: 106 entropy_left: 1.52132 entropy_right : 0.845351 -> 34 150 -idx: 107 entropy_left: 1.51516 entropy_right : 0.820364 -> 34 150 -idx: 109 entropy_left: 1.52916 entropy_right : 0.839004 -> 34 150 -idx: 110 entropy_left: 1.52337 entropy_right : 0.811278 -> 34 150 -idx: 113 entropy_left: 1.53842 entropy_right : 0.841852 -> 34 150 -idx: 114 entropy_left: 1.53323 entropy_right : 0.811278 -> 34 150 -idx: 117 entropy_left: 1.54269 entropy_right : 0.845351 -> 34 150 -idx: 118 entropy_left: 1.53808 entropy_right : 0.811278 -> 34 150 -idx: 120 entropy_left: 1.54206 entropy_right : 0.836641 -> 34 150 -idx: 122 entropy_left: 1.53332 entropy_right : 0.749595 -> 34 150 -idx: 127 entropy_left: 1.53791 entropy_right : 0.828056 -> 34 150 -idx: 130 entropy_left: 1.52696 entropy_right : 0.60984 -> 34 150 -idx: 132 entropy_left: 1.52755 entropy_right : 0.650022 -> 34 150 -idx: 133 entropy_left: 1.52403 entropy_right : 0.522559 -> 34 150 -idx: 134 entropy_left: 1.52407 entropy_right : 0.543564 -> 34 150 -idx: 135 entropy_left: 1.52062 entropy_right : 0.353359 -> 34 150 -idx: 137 entropy_left: 1.52027 entropy_right : 0.391244 -> 34 150 -idx: 138 entropy_left: 1.51705 entropy_right : 0 -> 34 150 -cut: 5.2 index: 44 -start: 34 cut: 44 end: 150 -k=3 k1=1 k2=3 ent=1.50071 ent1=0 ent2=1.37643 -ig=0.242942 delta=4.271 N 116 term 0.0958318 -¡Ding! 5.2 44 -idx: 45 entropy_left: 0 entropy_right : 1.37798 -> 44 150 -idx: 51 entropy_left: 0.591673 entropy_right : 1.23679 -> 44 150 -idx: 52 entropy_left: 0.811278 entropy_right : 1.23772 -> 44 150 -idx: 53 entropy_left: 0.764205 entropy_right : 1.2047 -> 44 150 -idx: 58 entropy_left: 1 entropy_right : 1.20561 -> 44 150 -idx: 59 entropy_left: 0.996792 entropy_right : 1.16707 -> 44 150 -idx: 61 entropy_left: 0.997502 entropy_right : 1.16534 -> 44 150 -idx: 62 entropy_left: 1.25163 entropy_right : 1.16872 -> 44 150 -idx: 68 entropy_left: 1.14316 entropy_right : 1.15739 -> 44 150 -idx: 69 entropy_left: 1.15855 entropy_right : 1.1095 -> 44 150 -idx: 70 entropy_left: 1.14162 entropy_right : 1.10587 -> 44 150 -idx: 71 entropy_left: 1.2538 entropy_right : 1.11046 -> 44 150 -idx: 72 entropy_left: 1.26381 entropy_right : 1.05114 -> 44 150 -idx: 74 entropy_left: 1.23096 entropy_right : 1.04172 -> 44 150 -idx: 75 entropy_left: 1.30798 entropy_right : 1.04629 -> 44 150 -idx: 76 entropy_left: 1.31665 entropy_right : 0.956889 -> 44 150 -idx: 77 entropy_left: 1.30139 entropy_right : 0.950567 -> 44 150 -idx: 78 entropy_left: 1.3591 entropy_right : 0.954434 -> 44 150 -idx: 79 entropy_left: 1.34379 entropy_right : 0.947707 -> 44 150 -idx: 81 entropy_left: 1.42561 entropy_right : 0.955759 -> 44 150 -idx: 83 entropy_left: 1.3964 entropy_right : 0.941186 -> 44 150 -idx: 84 entropy_left: 1.42661 entropy_right : 0.94566 -> 44 150 -idx: 87 entropy_left: 1.38437 entropy_right : 0.918296 -> 44 150 -idx: 88 entropy_left: 1.41056 entropy_right : 0.923579 -> 44 150 -idx: 89 entropy_left: 1.39707 entropy_right : 0.912734 -> 44 150 -idx: 91 entropy_left: 1.4379 entropy_right : 0.923842 -> 44 150 -idx: 95 entropy_left: 1.38851 entropy_right : 0.869893 -> 44 150 -idx: 97 entropy_left: 1.42075 entropy_right : 0.883585 -> 44 150 -idx: 99 entropy_left: 1.39821 entropy_right : 0.847862 -> 44 150 -idx: 101 entropy_left: 1.42312 entropy_right : 0.863121 -> 44 150 -idx: 102 entropy_left: 1.41278 entropy_right : 0.842658 -> 44 150 -idx: 104 entropy_left: 1.43158 entropy_right : 0.858981 -> 44 150 -idx: 105 entropy_left: 1.42209 entropy_right : 0.836641 -> 44 150 -idx: 106 entropy_left: 1.42977 entropy_right : 0.845351 -> 44 150 -idx: 107 entropy_left: 1.42068 entropy_right : 0.820364 -> 44 150 -idx: 109 entropy_left: 1.4333 entropy_right : 0.839004 -> 44 150 -idx: 110 entropy_left: 1.42497 entropy_right : 0.811278 -> 44 150 -idx: 113 entropy_left: 1.43782 entropy_right : 0.841852 -> 44 150 -idx: 114 entropy_left: 1.43055 entropy_right : 0.811278 -> 44 150 -idx: 117 entropy_left: 1.43777 entropy_right : 0.845351 -> 44 150 -idx: 118 entropy_left: 1.43146 entropy_right : 0.811278 -> 44 150 -idx: 120 entropy_left: 1.43402 entropy_right : 0.836641 -> 44 150 -idx: 122 entropy_left: 1.42242 entropy_right : 0.749595 -> 44 150 -idx: 127 entropy_left: 1.42407 entropy_right : 0.828056 -> 44 150 -idx: 130 entropy_left: 1.41018 entropy_right : 0.60984 -> 44 150 -idx: 132 entropy_left: 1.40992 entropy_right : 0.650022 -> 44 150 -idx: 133 entropy_left: 1.40559 entropy_right : 0.522559 -> 44 150 -idx: 134 entropy_left: 1.40526 entropy_right : 0.543564 -> 44 150 -idx: 135 entropy_left: 1.40107 entropy_right : 0.353359 -> 44 150 -idx: 137 entropy_left: 1.40005 entropy_right : 0.391244 -> 44 150 -idx: 138 entropy_left: 1.39621 entropy_right : 0 -> 44 150 -cut: 5.25 index: 45 -start: 44 cut: 45 end: 150 -k=3 k1=1 k2=3 ent=1.37643 ent1=0 ent2=1.37798 -ig=0.0114465 delta=4.64852 N 106 term 0.107196 -idx: 51 entropy_left: 0 entropy_right : 1.23679 -> 45 150 -idx: 52 entropy_left: 0.591673 entropy_right : 1.23772 -> 45 150 -idx: 53 entropy_left: 0.543564 entropy_right : 1.2047 -> 45 150 -idx: 58 entropy_left: 0.995727 entropy_right : 1.20561 -> 45 150 -idx: 59 entropy_left: 0.985228 entropy_right : 1.16707 -> 45 150 -idx: 61 entropy_left: 1 entropy_right : 1.16534 -> 45 150 -idx: 62 entropy_left: 1.26393 entropy_right : 1.16872 -> 45 150 -idx: 68 entropy_left: 1.16256 entropy_right : 1.15739 -> 45 150 -idx: 69 entropy_left: 1.17528 entropy_right : 1.1095 -> 45 150 -idx: 70 entropy_left: 1.15855 entropy_right : 1.10587 -> 45 150 -idx: 71 entropy_left: 1.27226 entropy_right : 1.11046 -> 45 150 -idx: 72 entropy_left: 1.27997 entropy_right : 1.05114 -> 45 150 -idx: 74 entropy_left: 1.24742 entropy_right : 1.04172 -> 45 150 -idx: 75 entropy_left: 1.32486 entropy_right : 1.04629 -> 45 150 -idx: 76 entropy_left: 1.33176 entropy_right : 0.956889 -> 45 150 -idx: 77 entropy_left: 1.31665 entropy_right : 0.950567 -> 45 150 -idx: 78 entropy_left: 1.37432 entropy_right : 0.954434 -> 45 150 -idx: 79 entropy_left: 1.3591 entropy_right : 0.947707 -> 45 150 -idx: 81 entropy_left: 1.44009 entropy_right : 0.955759 -> 45 150 -idx: 83 entropy_left: 1.41103 entropy_right : 0.941186 -> 45 150 -idx: 84 entropy_left: 1.44069 entropy_right : 0.94566 -> 45 150 -idx: 87 entropy_left: 1.3984 entropy_right : 0.918296 -> 45 150 -idx: 88 entropy_left: 1.42411 entropy_right : 0.923579 -> 45 150 -idx: 89 entropy_left: 1.41056 entropy_right : 0.912734 -> 45 150 -idx: 91 entropy_left: 1.45031 entropy_right : 0.923842 -> 45 150 -idx: 95 entropy_left: 1.40077 entropy_right : 0.869893 -> 45 150 -idx: 97 entropy_left: 1.43208 entropy_right : 0.883585 -> 45 150 -idx: 99 entropy_left: 1.40945 entropy_right : 0.847862 -> 45 150 -idx: 101 entropy_left: 1.43348 entropy_right : 0.863121 -> 45 150 -idx: 102 entropy_left: 1.42312 entropy_right : 0.842658 -> 45 150 -idx: 104 entropy_left: 1.44105 entropy_right : 0.858981 -> 45 150 -idx: 105 entropy_left: 1.43158 entropy_right : 0.836641 -> 45 150 -idx: 106 entropy_left: 1.43884 entropy_right : 0.845351 -> 45 150 -idx: 107 entropy_left: 1.42977 entropy_right : 0.820364 -> 45 150 -idx: 109 entropy_left: 1.44159 entropy_right : 0.839004 -> 45 150 -idx: 110 entropy_left: 1.4333 entropy_right : 0.811278 -> 45 150 -idx: 113 entropy_left: 1.44502 entropy_right : 0.841852 -> 45 150 -idx: 114 entropy_left: 1.43782 entropy_right : 0.811278 -> 45 150 -idx: 117 entropy_left: 1.44399 entropy_right : 0.845351 -> 45 150 -idx: 118 entropy_left: 1.43777 entropy_right : 0.811278 -> 45 150 -idx: 120 entropy_left: 1.43968 entropy_right : 0.836641 -> 45 150 -idx: 122 entropy_left: 1.42826 entropy_right : 0.749595 -> 45 150 -idx: 127 entropy_left: 1.42847 entropy_right : 0.828056 -> 45 150 -idx: 130 entropy_left: 1.41491 entropy_right : 0.60984 -> 45 150 -idx: 132 entropy_left: 1.41415 entropy_right : 0.650022 -> 45 150 -idx: 133 entropy_left: 1.40992 entropy_right : 0.522559 -> 45 150 -idx: 134 entropy_left: 1.40935 entropy_right : 0.543564 -> 45 150 -idx: 135 entropy_left: 1.40526 entropy_right : 0.353359 -> 45 150 -idx: 137 entropy_left: 1.4038 entropy_right : 0.391244 -> 45 150 -idx: 138 entropy_left: 1.40005 entropy_right : 0 -> 45 150 -cut: 5.4 index: 51 -start: 45 cut: 51 end: 150 -k=3 k1=1 k2=3 ent=1.37798 ent1=0 ent2=1.23679 -ig=0.211861 delta=4.2203 N 105 term 0.104007 -¡Ding! 5.4 51 -idx: 52 entropy_left: 0 entropy_right : 1.23772 -> 51 150 -idx: 53 entropy_left: 1 entropy_right : 1.2047 -> 51 150 -idx: 58 entropy_left: 0.591673 entropy_right : 1.20561 -> 51 150 -idx: 59 entropy_left: 0.811278 entropy_right : 1.16707 -> 51 150 -idx: 61 entropy_left: 0.721928 entropy_right : 1.16534 -> 51 150 -idx: 62 entropy_left: 1.0958 entropy_right : 1.16872 -> 51 150 -idx: 68 entropy_left: 0.834347 entropy_right : 1.15739 -> 51 150 -idx: 69 entropy_left: 0.944489 entropy_right : 1.1095 -> 51 150 -idx: 70 entropy_left: 0.913283 entropy_right : 1.10587 -> 51 150 -idx: 71 entropy_left: 1.05402 entropy_right : 1.11046 -> 51 150 -idx: 72 entropy_left: 1.12549 entropy_right : 1.05114 -> 51 150 -idx: 74 entropy_left: 1.06761 entropy_right : 1.04172 -> 51 150 -idx: 75 entropy_left: 1.15822 entropy_right : 1.04629 -> 51 150 -idx: 76 entropy_left: 1.2098 entropy_right : 0.956889 -> 51 150 -idx: 77 entropy_left: 1.18416 entropy_right : 0.950567 -> 51 150 -idx: 78 entropy_left: 1.24865 entropy_right : 0.954434 -> 51 150 -idx: 79 entropy_left: 1.22449 entropy_right : 0.947707 -> 51 150 -idx: 81 entropy_left: 1.31256 entropy_right : 0.955759 -> 51 150 -idx: 83 entropy_left: 1.27006 entropy_right : 0.941186 -> 51 150 -idx: 84 entropy_left: 1.30198 entropy_right : 0.94566 -> 51 150 -idx: 87 entropy_left: 1.24492 entropy_right : 0.918296 -> 51 150 -idx: 88 entropy_left: 1.273 entropy_right : 0.923579 -> 51 150 -idx: 89 entropy_left: 1.25566 entropy_right : 0.912734 -> 51 150 -idx: 91 entropy_left: 1.29879 entropy_right : 0.923842 -> 51 150 -idx: 95 entropy_left: 1.23874 entropy_right : 0.869893 -> 51 150 -idx: 97 entropy_left: 1.27333 entropy_right : 0.883585 -> 51 150 -idx: 99 entropy_left: 1.24727 entropy_right : 0.847862 -> 51 150 -idx: 101 entropy_left: 1.274 entropy_right : 0.863121 -> 51 150 -idx: 102 entropy_left: 1.26237 entropy_right : 0.842658 -> 51 150 -idx: 104 entropy_left: 1.28246 entropy_right : 0.858981 -> 51 150 -idx: 105 entropy_left: 1.27202 entropy_right : 0.836641 -> 51 150 -idx: 106 entropy_left: 1.28024 entropy_right : 0.845351 -> 51 150 -idx: 107 entropy_left: 1.27039 entropy_right : 0.820364 -> 51 150 -idx: 109 entropy_left: 1.28395 entropy_right : 0.839004 -> 51 150 -idx: 110 entropy_left: 1.2751 entropy_right : 0.811278 -> 51 150 -idx: 113 entropy_left: 1.289 entropy_right : 0.841852 -> 51 150 -idx: 114 entropy_left: 1.2815 entropy_right : 0.811278 -> 51 150 -idx: 117 entropy_left: 1.28949 entropy_right : 0.845351 -> 51 150 -idx: 118 entropy_left: 1.28317 entropy_right : 0.811278 -> 51 150 -idx: 120 entropy_left: 1.28619 entropy_right : 0.836641 -> 51 150 -idx: 122 entropy_left: 1.27479 entropy_right : 0.749595 -> 51 150 -idx: 127 entropy_left: 1.27766 entropy_right : 0.828056 -> 51 150 -idx: 130 entropy_left: 1.26471 entropy_right : 0.60984 -> 51 150 -idx: 132 entropy_left: 1.26503 entropy_right : 0.650022 -> 51 150 -idx: 133 entropy_left: 1.26105 entropy_right : 0.522559 -> 51 150 -idx: 134 entropy_left: 1.26102 entropy_right : 0.543564 -> 51 150 -idx: 135 entropy_left: 1.2572 entropy_right : 0.353359 -> 51 150 -idx: 137 entropy_left: 1.25679 entropy_right : 0.391244 -> 51 150 -idx: 138 entropy_left: 1.25337 entropy_right : 0 -> 51 150 -cut: 5.45 index: 52 -start: 51 cut: 52 end: 150 -k=3 k1=1 k2=3 ent=1.23679 ent1=0 ent2=1.23772 -ig=0.0115793 delta=4.64663 N 99 term 0.113751 -idx: 53 entropy_left: 0 entropy_right : 1.2047 -> 52 150 -idx: 58 entropy_left: 0.650022 entropy_right : 1.20561 -> 52 150 -idx: 59 entropy_left: 0.863121 entropy_right : 1.16707 -> 52 150 -idx: 61 entropy_left: 0.764205 entropy_right : 1.16534 -> 52 150 -idx: 62 entropy_left: 1.15678 entropy_right : 1.16872 -> 52 150 -idx: 68 entropy_left: 0.868393 entropy_right : 1.15739 -> 52 150 -idx: 69 entropy_left: 0.978016 entropy_right : 1.1095 -> 52 150 -idx: 70 entropy_left: 0.944489 entropy_right : 1.10587 -> 52 150 -idx: 71 entropy_left: 1.08699 entropy_right : 1.11046 -> 52 150 -idx: 72 entropy_left: 1.15678 entropy_right : 1.05114 -> 52 150 -idx: 74 entropy_left: 1.0958 entropy_right : 1.04172 -> 52 150 -idx: 75 entropy_left: 1.18639 entropy_right : 1.04629 -> 52 150 -idx: 76 entropy_left: 1.23644 entropy_right : 0.956889 -> 52 150 -idx: 77 entropy_left: 1.2098 entropy_right : 0.950567 -> 52 150 -idx: 78 entropy_left: 1.27365 entropy_right : 0.954434 -> 52 150 -idx: 79 entropy_left: 1.24865 entropy_right : 0.947707 -> 52 150 -idx: 81 entropy_left: 1.3346 entropy_right : 0.955759 -> 52 150 -idx: 83 entropy_left: 1.29104 entropy_right : 0.941186 -> 52 150 -idx: 84 entropy_left: 1.32188 entropy_right : 0.94566 -> 52 150 -idx: 87 entropy_left: 1.26348 entropy_right : 0.918296 -> 52 150 -idx: 88 entropy_left: 1.29071 entropy_right : 0.923579 -> 52 150 -idx: 89 entropy_left: 1.273 entropy_right : 0.912734 -> 52 150 -idx: 91 entropy_left: 1.31443 entropy_right : 0.923842 -> 52 150 -idx: 95 entropy_left: 1.25336 entropy_right : 0.869893 -> 52 150 -idx: 97 entropy_left: 1.28663 entropy_right : 0.883585 -> 52 150 -idx: 99 entropy_left: 1.26021 entropy_right : 0.847862 -> 52 150 -idx: 101 entropy_left: 1.28574 entropy_right : 0.863121 -> 52 150 -idx: 102 entropy_left: 1.274 entropy_right : 0.842658 -> 52 150 -idx: 104 entropy_left: 1.29295 entropy_right : 0.858981 -> 52 150 -idx: 105 entropy_left: 1.28246 entropy_right : 0.836641 -> 52 150 -idx: 106 entropy_left: 1.29014 entropy_right : 0.845351 -> 52 150 -idx: 107 entropy_left: 1.28024 entropy_right : 0.820364 -> 52 150 -idx: 109 entropy_left: 1.2928 entropy_right : 0.839004 -> 52 150 -idx: 110 entropy_left: 1.28395 entropy_right : 0.811278 -> 52 150 -idx: 113 entropy_left: 1.29646 entropy_right : 0.841852 -> 52 150 -idx: 114 entropy_left: 1.289 entropy_right : 0.811278 -> 52 150 -idx: 117 entropy_left: 1.29574 entropy_right : 0.845351 -> 52 150 -idx: 118 entropy_left: 1.28949 entropy_right : 0.811278 -> 52 150 -idx: 120 entropy_left: 1.29174 entropy_right : 0.836641 -> 52 150 -idx: 122 entropy_left: 1.28053 entropy_right : 0.749595 -> 52 150 -idx: 127 entropy_left: 1.28174 entropy_right : 0.828056 -> 52 150 -idx: 130 entropy_left: 1.26913 entropy_right : 0.60984 -> 52 150 -idx: 132 entropy_left: 1.26889 entropy_right : 0.650022 -> 52 150 -idx: 133 entropy_left: 1.26503 entropy_right : 0.522559 -> 52 150 -idx: 134 entropy_left: 1.26472 entropy_right : 0.543564 -> 52 150 -idx: 135 entropy_left: 1.26102 entropy_right : 0.353359 -> 52 150 -idx: 137 entropy_left: 1.26011 entropy_right : 0.391244 -> 52 150 -idx: 138 entropy_left: 1.25679 entropy_right : 0 -> 52 150 -cut: 5.5 index: 53 -start: 52 cut: 53 end: 150 -k=3 k1=1 k2=3 ent=1.23772 ent1=0 ent2=1.2047 -ig=0.0453098 delta=4.54481 N 98 term 0.113722 -idx: 58 entropy_left: 0 entropy_right : 1.20561 -> 53 150 -idx: 59 entropy_left: 0.650022 entropy_right : 1.16707 -> 53 150 -idx: 61 entropy_left: 0.543564 entropy_right : 1.16534 -> 53 150 -idx: 62 entropy_left: 0.986427 entropy_right : 1.16872 -> 53 150 -idx: 68 entropy_left: 0.699843 entropy_right : 1.15739 -> 53 150 -idx: 69 entropy_left: 0.868393 entropy_right : 1.1095 -> 53 150 -idx: 70 entropy_left: 0.834347 entropy_right : 1.10587 -> 53 150 -idx: 71 entropy_left: 0.986427 entropy_right : 1.11046 -> 53 150 -idx: 72 entropy_left: 1.08699 entropy_right : 1.05114 -> 53 150 -idx: 74 entropy_left: 1.02304 entropy_right : 1.04172 -> 53 150 -idx: 75 entropy_left: 1.11808 entropy_right : 1.04629 -> 53 150 -idx: 76 entropy_left: 1.18639 entropy_right : 0.956889 -> 53 150 -idx: 77 entropy_left: 1.15822 entropy_right : 0.950567 -> 53 150 -idx: 78 entropy_left: 1.22438 entropy_right : 0.954434 -> 53 150 -idx: 79 entropy_left: 1.19818 entropy_right : 0.947707 -> 53 150 -idx: 81 entropy_left: 1.28705 entropy_right : 0.955759 -> 53 150 -idx: 83 entropy_left: 1.24195 entropy_right : 0.941186 -> 53 150 -idx: 84 entropy_left: 1.27387 entropy_right : 0.94566 -> 53 150 -idx: 87 entropy_left: 1.21413 entropy_right : 0.918296 -> 53 150 -idx: 88 entropy_left: 1.24237 entropy_right : 0.923579 -> 53 150 -idx: 89 entropy_left: 1.22439 entropy_right : 0.912734 -> 53 150 -idx: 91 entropy_left: 1.26744 entropy_right : 0.923842 -> 53 150 -idx: 95 entropy_left: 1.206 entropy_right : 0.869893 -> 53 150 -idx: 97 entropy_left: 1.24067 entropy_right : 0.883585 -> 53 150 -idx: 99 entropy_left: 1.2143 entropy_right : 0.847862 -> 53 150 -idx: 101 entropy_left: 1.24101 entropy_right : 0.863121 -> 53 150 -idx: 102 entropy_left: 1.22934 entropy_right : 0.842658 -> 53 150 -idx: 104 entropy_left: 1.24929 entropy_right : 0.858981 -> 53 150 -idx: 105 entropy_left: 1.2389 entropy_right : 0.836641 -> 53 150 -idx: 106 entropy_left: 1.24704 entropy_right : 0.845351 -> 53 150 -idx: 107 entropy_left: 1.23726 entropy_right : 0.820364 -> 53 150 -idx: 109 entropy_left: 1.25065 entropy_right : 0.839004 -> 53 150 -idx: 110 entropy_left: 1.24194 entropy_right : 0.811278 -> 53 150 -idx: 113 entropy_left: 1.25554 entropy_right : 0.841852 -> 53 150 -idx: 114 entropy_left: 1.24824 entropy_right : 0.811278 -> 53 150 -idx: 117 entropy_left: 1.25592 entropy_right : 0.845351 -> 53 150 -idx: 118 entropy_left: 1.24985 entropy_right : 0.811278 -> 53 150 -idx: 120 entropy_left: 1.25267 entropy_right : 0.836641 -> 53 150 -idx: 122 entropy_left: 1.24181 entropy_right : 0.749595 -> 53 150 -idx: 127 entropy_left: 1.2443 entropy_right : 0.828056 -> 53 150 -idx: 130 entropy_left: 1.23225 entropy_right : 0.60984 -> 53 150 -idx: 132 entropy_left: 1.23247 entropy_right : 0.650022 -> 53 150 -idx: 133 entropy_left: 1.22879 entropy_right : 0.522559 -> 53 150 -idx: 134 entropy_left: 1.22871 entropy_right : 0.543564 -> 53 150 -idx: 135 entropy_left: 1.22518 entropy_right : 0.353359 -> 53 150 -idx: 137 entropy_left: 1.22471 entropy_right : 0.391244 -> 53 150 -idx: 138 entropy_left: 1.22157 entropy_right : 0 -> 53 150 -cut: 5.5 index: 58 -start: 53 cut: 58 end: 150 -k=3 k1=1 k2=3 ent=1.2047 ent1=0 ent2=1.20561 -ig=0.0612326 delta=4.64659 N 97 term 0.115789 -idx: 59 entropy_left: 0 entropy_right : 1.16707 -> 58 150 -idx: 61 entropy_left: 0.918296 entropy_right : 1.16534 -> 58 150 -idx: 62 entropy_left: 1.5 entropy_right : 1.16872 -> 58 150 -idx: 68 entropy_left: 0.921928 entropy_right : 1.15739 -> 58 150 -idx: 69 entropy_left: 1.0958 entropy_right : 1.1095 -> 58 150 -idx: 70 entropy_left: 1.04085 entropy_right : 1.10587 -> 58 150 -idx: 71 entropy_left: 1.19818 entropy_right : 1.11046 -> 58 150 -idx: 72 entropy_left: 1.28705 entropy_right : 1.05114 -> 58 150 -idx: 74 entropy_left: 1.19946 entropy_right : 1.04172 -> 58 150 -idx: 75 entropy_left: 1.28961 entropy_right : 1.04629 -> 58 150 -idx: 76 entropy_left: 1.34722 entropy_right : 0.956889 -> 58 150 -idx: 77 entropy_left: 1.31243 entropy_right : 0.950567 -> 58 150 -idx: 78 entropy_left: 1.37095 entropy_right : 0.954434 -> 58 150 -idx: 79 entropy_left: 1.33966 entropy_right : 0.947707 -> 58 150 -idx: 81 entropy_left: 1.40984 entropy_right : 0.955759 -> 58 150 -idx: 83 entropy_left: 1.35933 entropy_right : 0.941186 -> 58 150 -idx: 84 entropy_left: 1.38295 entropy_right : 0.94566 -> 58 150 -idx: 87 entropy_left: 1.31625 entropy_right : 0.918296 -> 58 150 -idx: 88 entropy_left: 1.33827 entropy_right : 0.923579 -> 58 150 -idx: 89 entropy_left: 1.31837 entropy_right : 0.912734 -> 58 150 -idx: 91 entropy_left: 1.34955 entropy_right : 0.923842 -> 58 150 -idx: 95 entropy_left: 1.28347 entropy_right : 0.869893 -> 58 150 -idx: 97 entropy_left: 1.30947 entropy_right : 0.883585 -> 58 150 -idx: 99 entropy_left: 1.28155 entropy_right : 0.847862 -> 58 150 -idx: 101 entropy_left: 1.3007 entropy_right : 0.863121 -> 58 150 -idx: 102 entropy_left: 1.28865 entropy_right : 0.842658 -> 58 150 -idx: 104 entropy_left: 1.30157 entropy_right : 0.858981 -> 58 150 -idx: 105 entropy_left: 1.29114 entropy_right : 0.836641 -> 58 150 -idx: 106 entropy_left: 1.29603 entropy_right : 0.845351 -> 58 150 -idx: 107 entropy_left: 1.28629 entropy_right : 0.820364 -> 58 150 -idx: 109 entropy_left: 1.29367 entropy_right : 0.839004 -> 58 150 -idx: 110 entropy_left: 1.28521 entropy_right : 0.811278 -> 58 150 -idx: 113 entropy_left: 1.29065 entropy_right : 0.841852 -> 58 150 -idx: 114 entropy_left: 1.28389 entropy_right : 0.811278 -> 58 150 -idx: 117 entropy_left: 1.28429 entropy_right : 0.845351 -> 58 150 -idx: 118 entropy_left: 1.27895 entropy_right : 0.811278 -> 58 150 -idx: 120 entropy_left: 1.27739 entropy_right : 0.836641 -> 58 150 -idx: 122 entropy_left: 1.26802 entropy_right : 0.749595 -> 58 150 -idx: 127 entropy_left: 1.26121 entropy_right : 0.828056 -> 58 150 -idx: 130 entropy_left: 1.25163 entropy_right : 0.60984 -> 58 150 -idx: 132 entropy_left: 1.24876 entropy_right : 0.650022 -> 58 150 -idx: 133 entropy_left: 1.24584 entropy_right : 0.522559 -> 58 150 -idx: 134 entropy_left: 1.24431 entropy_right : 0.543564 -> 58 150 -idx: 135 entropy_left: 1.24151 entropy_right : 0.353359 -> 58 150 -idx: 137 entropy_left: 1.23832 entropy_right : 0.391244 -> 58 150 -idx: 138 entropy_left: 1.23592 entropy_right : 0 -> 58 150 -cut: 5.55 index: 59 -start: 58 cut: 59 end: 150 -k=3 k1=1 k2=3 ent=1.20561 ent1=0 ent2=1.16707 -ig=0.0512313 delta=4.52822 N 92 term 0.119957 -idx: 61 entropy_left: 0 entropy_right : 1.16534 -> 59 150 -idx: 62 entropy_left: 0.918296 entropy_right : 1.16872 -> 59 150 -idx: 68 entropy_left: 0.503258 entropy_right : 1.15739 -> 59 150 -idx: 69 entropy_left: 0.921928 entropy_right : 1.1095 -> 59 150 -idx: 70 entropy_left: 0.865857 entropy_right : 1.10587 -> 59 150 -idx: 71 entropy_left: 1.04085 entropy_right : 1.11046 -> 59 150 -idx: 72 entropy_left: 1.19818 entropy_right : 1.05114 -> 59 150 -idx: 74 entropy_left: 1.10331 entropy_right : 1.04172 -> 59 150 -idx: 75 entropy_left: 1.19946 entropy_right : 1.04629 -> 59 150 -idx: 76 entropy_left: 1.28961 entropy_right : 0.956889 -> 59 150 -idx: 77 entropy_left: 1.25163 entropy_right : 0.950567 -> 59 150 -idx: 78 entropy_left: 1.31243 entropy_right : 0.954434 -> 59 150 -idx: 79 entropy_left: 1.2789 entropy_right : 0.947707 -> 59 150 -idx: 81 entropy_left: 1.35169 entropy_right : 0.955759 -> 59 150 -idx: 83 entropy_left: 1.29879 entropy_right : 0.941186 -> 59 150 -idx: 84 entropy_left: 1.32347 entropy_right : 0.94566 -> 59 150 -idx: 87 entropy_left: 1.25503 entropy_right : 0.918296 -> 59 150 -idx: 88 entropy_left: 1.2782 entropy_right : 0.923579 -> 59 150 -idx: 89 entropy_left: 1.25804 entropy_right : 0.912734 -> 59 150 -idx: 91 entropy_left: 1.2911 entropy_right : 0.923842 -> 59 150 -idx: 95 entropy_left: 1.22503 entropy_right : 0.869893 -> 59 150 -idx: 97 entropy_left: 1.25276 entropy_right : 0.883585 -> 59 150 -idx: 99 entropy_left: 1.22516 entropy_right : 0.847862 -> 59 150 -idx: 101 entropy_left: 1.24579 entropy_right : 0.863121 -> 59 150 -idx: 102 entropy_left: 1.23396 entropy_right : 0.842658 -> 59 150 -idx: 104 entropy_left: 1.24816 entropy_right : 0.858981 -> 59 150 -idx: 105 entropy_left: 1.23798 entropy_right : 0.836641 -> 59 150 -idx: 106 entropy_left: 1.24345 entropy_right : 0.845351 -> 59 150 -idx: 107 entropy_left: 1.23397 entropy_right : 0.820364 -> 59 150 -idx: 109 entropy_left: 1.24243 entropy_right : 0.839004 -> 59 150 -idx: 110 entropy_left: 1.23425 entropy_right : 0.811278 -> 59 150 -idx: 113 entropy_left: 1.24111 entropy_right : 0.841852 -> 59 150 -idx: 114 entropy_left: 1.23465 entropy_right : 0.811278 -> 59 150 -idx: 117 entropy_left: 1.23629 entropy_right : 0.845351 -> 59 150 -idx: 118 entropy_left: 1.23126 entropy_right : 0.811278 -> 59 150 -idx: 120 entropy_left: 1.23046 entropy_right : 0.836641 -> 59 150 -idx: 122 entropy_left: 1.22169 entropy_right : 0.749595 -> 59 150 -idx: 127 entropy_left: 1.21658 entropy_right : 0.828056 -> 59 150 -idx: 130 entropy_left: 1.20789 entropy_right : 0.60984 -> 59 150 -idx: 132 entropy_left: 1.20563 entropy_right : 0.650022 -> 59 150 -idx: 133 entropy_left: 1.20299 entropy_right : 0.522559 -> 59 150 -idx: 134 entropy_left: 1.20176 entropy_right : 0.543564 -> 59 150 -idx: 135 entropy_left: 1.19923 entropy_right : 0.353359 -> 59 150 -idx: 137 entropy_left: 1.19661 entropy_right : 0.391244 -> 59 150 -idx: 138 entropy_left: 1.19447 entropy_right : 0 -> 59 150 -cut: 5.6 index: 61 -start: 59 cut: 61 end: 150 -k=3 k1=1 k2=3 ent=1.16707 ent1=0 ent2=1.16534 -ig=0.0273421 delta=4.63867 N 91 term 0.122313 -idx: 62 entropy_left: 0 entropy_right : 1.16872 -> 61 150 -idx: 68 entropy_left: 0.591673 entropy_right : 1.15739 -> 61 150 -idx: 69 entropy_left: 1.06128 entropy_right : 1.1095 -> 61 150 -idx: 70 entropy_left: 0.986427 entropy_right : 1.10587 -> 61 150 -idx: 71 entropy_left: 1.15678 entropy_right : 1.11046 -> 61 150 -idx: 72 entropy_left: 1.3093 entropy_right : 1.05114 -> 61 150 -idx: 74 entropy_left: 1.19818 entropy_right : 1.04172 -> 61 150 -idx: 75 entropy_left: 1.28705 entropy_right : 1.04629 -> 61 150 -idx: 76 entropy_left: 1.37095 entropy_right : 0.956889 -> 61 150 -idx: 77 entropy_left: 1.32943 entropy_right : 0.950567 -> 61 150 -idx: 78 entropy_left: 1.3831 entropy_right : 0.954434 -> 61 150 -idx: 79 entropy_left: 1.34722 entropy_right : 0.947707 -> 61 150 -idx: 81 entropy_left: 1.40601 entropy_right : 0.955759 -> 61 150 -idx: 83 entropy_left: 1.35169 entropy_right : 0.941186 -> 61 150 -idx: 84 entropy_left: 1.37086 entropy_right : 0.94566 -> 61 150 -idx: 87 entropy_left: 1.30019 entropy_right : 0.918296 -> 61 150 -idx: 88 entropy_left: 1.31952 entropy_right : 0.923579 -> 61 150 -idx: 89 entropy_left: 1.29872 entropy_right : 0.912734 -> 61 150 -idx: 91 entropy_left: 1.32486 entropy_right : 0.923842 -> 61 150 -idx: 95 entropy_left: 1.25767 entropy_right : 0.869893 -> 61 150 -idx: 97 entropy_left: 1.28067 entropy_right : 0.883585 -> 61 150 -idx: 99 entropy_left: 1.25276 entropy_right : 0.847862 -> 61 150 -idx: 101 entropy_left: 1.26943 entropy_right : 0.863121 -> 61 150 -idx: 102 entropy_left: 1.25763 entropy_right : 0.842658 -> 61 150 -idx: 104 entropy_left: 1.26827 entropy_right : 0.858981 -> 61 150 -idx: 105 entropy_left: 1.25827 entropy_right : 0.836641 -> 61 150 -idx: 106 entropy_left: 1.26212 entropy_right : 0.845351 -> 61 150 -idx: 107 entropy_left: 1.25284 entropy_right : 0.820364 -> 61 150 -idx: 109 entropy_left: 1.25836 entropy_right : 0.839004 -> 61 150 -idx: 110 entropy_left: 1.25048 entropy_right : 0.811278 -> 61 150 -idx: 113 entropy_left: 1.25343 entropy_right : 0.841852 -> 61 150 -idx: 114 entropy_left: 1.24739 entropy_right : 0.811278 -> 61 150 -idx: 117 entropy_left: 1.24562 entropy_right : 0.845351 -> 61 150 -idx: 118 entropy_left: 1.24109 entropy_right : 0.811278 -> 61 150 -idx: 120 entropy_left: 1.23827 entropy_right : 0.836641 -> 61 150 -idx: 122 entropy_left: 1.23046 entropy_right : 0.749595 -> 61 150 -idx: 127 entropy_left: 1.22114 entropy_right : 0.828056 -> 61 150 -idx: 130 entropy_left: 1.21391 entropy_right : 0.60984 -> 61 150 -idx: 132 entropy_left: 1.21028 entropy_right : 0.650022 -> 61 150 -idx: 133 entropy_left: 1.20807 entropy_right : 0.522559 -> 61 150 -idx: 134 entropy_left: 1.2062 entropy_right : 0.543564 -> 61 150 -idx: 135 entropy_left: 1.20409 entropy_right : 0.353359 -> 61 150 -idx: 137 entropy_left: 1.20027 entropy_right : 0.391244 -> 61 150 -idx: 138 entropy_left: 1.19855 entropy_right : 0 -> 61 150 -cut: 5.6 index: 62 -start: 61 cut: 62 end: 150 -k=3 k1=1 k2=3 ent=1.16534 ent1=0 ent2=1.16872 -ig=0.00974941 delta=4.654 N 89 term 0.12487 -idx: 68 entropy_left: 0 entropy_right : 1.15739 -> 62 150 -idx: 69 entropy_left: 0.591673 entropy_right : 1.1095 -> 62 150 -idx: 70 entropy_left: 0.543564 entropy_right : 1.10587 -> 62 150 -idx: 71 entropy_left: 0.986427 entropy_right : 1.11046 -> 62 150 -idx: 72 entropy_left: 1.15678 entropy_right : 1.05114 -> 62 150 -idx: 74 entropy_left: 1.04085 entropy_right : 1.04172 -> 62 150 -idx: 75 entropy_left: 1.19818 entropy_right : 1.04629 -> 62 150 -idx: 76 entropy_left: 1.28705 entropy_right : 0.956889 -> 62 150 -idx: 77 entropy_left: 1.24195 entropy_right : 0.950567 -> 62 150 -idx: 78 entropy_left: 1.32943 entropy_right : 0.954434 -> 62 150 -idx: 79 entropy_left: 1.28961 entropy_right : 0.947707 -> 62 150 -idx: 81 entropy_left: 1.38381 entropy_right : 0.955759 -> 62 150 -idx: 83 entropy_left: 1.32231 entropy_right : 0.941186 -> 62 150 -idx: 84 entropy_left: 1.35169 entropy_right : 0.94566 -> 62 150 -idx: 87 entropy_left: 1.27327 entropy_right : 0.918296 -> 62 150 -idx: 88 entropy_left: 1.30019 entropy_right : 0.923579 -> 62 150 -idx: 89 entropy_left: 1.27736 entropy_right : 0.912734 -> 62 150 -idx: 91 entropy_left: 1.31415 entropy_right : 0.923842 -> 62 150 -idx: 95 entropy_left: 1.24067 entropy_right : 0.869893 -> 62 150 -idx: 97 entropy_left: 1.27079 entropy_right : 0.883585 -> 62 150 -idx: 99 entropy_left: 1.24052 entropy_right : 0.847862 -> 62 150 -idx: 101 entropy_left: 1.26226 entropy_right : 0.863121 -> 62 150 -idx: 102 entropy_left: 1.24944 entropy_right : 0.842658 -> 62 150 -idx: 104 entropy_left: 1.26381 entropy_right : 0.858981 -> 62 150 -idx: 105 entropy_left: 1.2529 entropy_right : 0.836641 -> 62 150 -idx: 106 entropy_left: 1.25827 entropy_right : 0.845351 -> 62 150 -idx: 107 entropy_left: 1.24816 entropy_right : 0.820364 -> 62 150 -idx: 109 entropy_left: 1.25619 entropy_right : 0.839004 -> 62 150 -idx: 110 entropy_left: 1.24756 entropy_right : 0.811278 -> 62 150 -idx: 113 entropy_left: 1.2533 entropy_right : 0.841852 -> 62 150 -idx: 114 entropy_left: 1.2466 entropy_right : 0.811278 -> 62 150 -idx: 117 entropy_left: 1.24682 entropy_right : 0.845351 -> 62 150 -idx: 118 entropy_left: 1.24172 entropy_right : 0.811278 -> 62 150 -idx: 120 entropy_left: 1.23992 entropy_right : 0.836641 -> 62 150 -idx: 122 entropy_left: 1.23112 entropy_right : 0.749595 -> 62 150 -idx: 127 entropy_left: 1.22367 entropy_right : 0.828056 -> 62 150 -idx: 130 entropy_left: 1.21528 entropy_right : 0.60984 -> 62 150 -idx: 132 entropy_left: 1.21223 entropy_right : 0.650022 -> 62 150 -idx: 133 entropy_left: 1.20968 entropy_right : 0.522559 -> 62 150 -idx: 134 entropy_left: 1.20807 entropy_right : 0.543564 -> 62 150 -idx: 135 entropy_left: 1.20563 entropy_right : 0.353359 -> 62 150 -idx: 137 entropy_left: 1.20229 entropy_right : 0.391244 -> 62 150 -idx: 138 entropy_left: 1.20027 entropy_right : 0 -> 62 150 -cut: 5.7 index: 68 -start: 62 cut: 68 end: 150 -k=3 k1=1 k2=3 ent=1.16872 ent1=0 ent2=1.15739 -ig=0.090239 delta=4.60988 N 88 term 0.1256 -idx: 69 entropy_left: 0 entropy_right : 1.1095 -> 68 150 -idx: 70 entropy_left: 1 entropy_right : 1.10587 -> 68 150 -idx: 71 entropy_left: 1.58496 entropy_right : 1.11046 -> 68 150 -idx: 72 entropy_left: 1.5 entropy_right : 1.05114 -> 68 150 -idx: 74 entropy_left: 1.45915 entropy_right : 1.04172 -> 68 150 -idx: 75 entropy_left: 1.55666 entropy_right : 1.04629 -> 68 150 -idx: 76 entropy_left: 1.56128 entropy_right : 0.956889 -> 68 150 -idx: 77 entropy_left: 1.53049 entropy_right : 0.950567 -> 68 150 -idx: 78 entropy_left: 1.57095 entropy_right : 0.954434 -> 68 150 -idx: 79 entropy_left: 1.53948 entropy_right : 0.947707 -> 68 150 -idx: 81 entropy_left: 1.54858 entropy_right : 0.955759 -> 68 150 -idx: 83 entropy_left: 1.50582 entropy_right : 0.941186 -> 68 150 -idx: 84 entropy_left: 1.50524 entropy_right : 0.94566 -> 68 150 -idx: 87 entropy_left: 1.43298 entropy_right : 0.918296 -> 68 150 -idx: 88 entropy_left: 1.44065 entropy_right : 0.923579 -> 68 150 -idx: 89 entropy_left: 1.41803 entropy_right : 0.912734 -> 68 150 -idx: 91 entropy_left: 1.42191 entropy_right : 0.923842 -> 68 150 -idx: 95 entropy_left: 1.35164 entropy_right : 0.869893 -> 68 150 -idx: 97 entropy_left: 1.36102 entropy_right : 0.883585 -> 68 150 -idx: 99 entropy_left: 1.33176 entropy_right : 0.847862 -> 68 150 -idx: 101 entropy_left: 1.33689 entropy_right : 0.863121 -> 68 150 -idx: 102 entropy_left: 1.32513 entropy_right : 0.842658 -> 68 150 -idx: 104 entropy_left: 1.32501 entropy_right : 0.858981 -> 68 150 -idx: 105 entropy_left: 1.3157 entropy_right : 0.836641 -> 68 150 -idx: 106 entropy_left: 1.31462 entropy_right : 0.845351 -> 68 150 -idx: 107 entropy_left: 1.30608 entropy_right : 0.820364 -> 68 150 -idx: 109 entropy_left: 1.30262 entropy_right : 0.839004 -> 68 150 -idx: 110 entropy_left: 1.29584 entropy_right : 0.811278 -> 68 150 -idx: 113 entropy_left: 1.28669 entropy_right : 0.841852 -> 68 150 -idx: 114 entropy_left: 1.28223 entropy_right : 0.811278 -> 68 150 -idx: 117 entropy_left: 1.26978 entropy_right : 0.845351 -> 68 150 -idx: 118 entropy_left: 1.26714 entropy_right : 0.811278 -> 68 150 -idx: 120 entropy_left: 1.25797 entropy_right : 0.836641 -> 68 150 -idx: 122 entropy_left: 1.25373 entropy_right : 0.749595 -> 68 150 -idx: 127 entropy_left: 1.23126 entropy_right : 0.828056 -> 68 150 -idx: 130 entropy_left: 1.22934 entropy_right : 0.60984 -> 68 150 -idx: 132 entropy_left: 1.22147 entropy_right : 0.650022 -> 68 150 -idx: 133 entropy_left: 1.22081 entropy_right : 0.522559 -> 68 150 -idx: 134 entropy_left: 1.21697 entropy_right : 0.543564 -> 68 150 -idx: 135 entropy_left: 1.21631 entropy_right : 0.353359 -> 68 150 -idx: 137 entropy_left: 1.20883 entropy_right : 0.391244 -> 68 150 -idx: 138 entropy_left: 1.20854 entropy_right : 0 -> 68 150 -cut: 5.7 index: 69 -start: 68 cut: 69 end: 150 -k=3 k1=1 k2=3 ent=1.15739 ent1=0 ent2=1.1095 -ig=0.061421 delta=4.50018 N 82 term 0.132196 -idx: 70 entropy_left: 0 entropy_right : 1.10587 -> 69 150 -idx: 71 entropy_left: 1 entropy_right : 1.11046 -> 69 150 -idx: 72 entropy_left: 1.58496 entropy_right : 1.05114 -> 69 150 -idx: 74 entropy_left: 1.37095 entropy_right : 1.04172 -> 69 150 -idx: 75 entropy_left: 1.45915 entropy_right : 1.04629 -> 69 150 -idx: 76 entropy_left: 1.55666 entropy_right : 0.956889 -> 69 150 -idx: 77 entropy_left: 1.5 entropy_right : 0.950567 -> 69 150 -idx: 78 entropy_left: 1.53049 entropy_right : 0.954434 -> 69 150 -idx: 79 entropy_left: 1.48548 entropy_right : 0.947707 -> 69 150 -idx: 81 entropy_left: 1.48336 entropy_right : 0.955759 -> 69 150 -idx: 83 entropy_left: 1.43156 entropy_right : 0.941186 -> 69 150 -idx: 84 entropy_left: 1.42947 entropy_right : 0.94566 -> 69 150 -idx: 87 entropy_left: 1.35164 entropy_right : 0.918296 -> 69 150 -idx: 88 entropy_left: 1.35999 entropy_right : 0.923579 -> 69 150 -idx: 89 entropy_left: 1.33667 entropy_right : 0.912734 -> 69 150 -idx: 91 entropy_left: 1.34202 entropy_right : 0.923842 -> 69 150 -idx: 95 entropy_left: 1.27226 entropy_right : 0.869893 -> 69 150 -idx: 97 entropy_left: 1.28389 entropy_right : 0.883585 -> 69 150 -idx: 99 entropy_left: 1.25554 entropy_right : 0.847862 -> 69 150 -idx: 101 entropy_left: 1.26273 entropy_right : 0.863121 -> 69 150 -idx: 102 entropy_left: 1.25153 entropy_right : 0.842658 -> 69 150 -idx: 104 entropy_left: 1.25323 entropy_right : 0.858981 -> 69 150 -idx: 105 entropy_left: 1.24454 entropy_right : 0.836641 -> 69 150 -idx: 106 entropy_left: 1.2443 entropy_right : 0.845351 -> 69 150 -idx: 107 entropy_left: 1.23639 entropy_right : 0.820364 -> 69 150 -idx: 109 entropy_left: 1.2345 entropy_right : 0.839004 -> 69 150 -idx: 110 entropy_left: 1.22835 entropy_right : 0.811278 -> 69 150 -idx: 113 entropy_left: 1.22131 entropy_right : 0.841852 -> 69 150 -idx: 114 entropy_left: 1.21749 entropy_right : 0.811278 -> 69 150 -idx: 117 entropy_left: 1.20691 entropy_right : 0.845351 -> 69 150 -idx: 118 entropy_left: 1.20489 entropy_right : 0.811278 -> 69 150 -idx: 120 entropy_left: 1.19687 entropy_right : 0.836641 -> 69 150 -idx: 122 entropy_left: 1.19381 entropy_right : 0.749595 -> 69 150 -idx: 127 entropy_left: 1.1739 entropy_right : 0.828056 -> 69 150 -idx: 130 entropy_left: 1.17359 entropy_right : 0.60984 -> 69 150 -idx: 132 entropy_left: 1.16663 entropy_right : 0.650022 -> 69 150 -idx: 133 entropy_left: 1.16646 entropy_right : 0.522559 -> 69 150 -idx: 134 entropy_left: 1.16306 entropy_right : 0.543564 -> 69 150 -idx: 135 entropy_left: 1.16287 entropy_right : 0.353359 -> 69 150 -idx: 137 entropy_left: 1.15623 entropy_right : 0.391244 -> 69 150 -idx: 138 entropy_left: 1.15639 entropy_right : 0 -> 69 150 -cut: 5.7 index: 70 -start: 69 cut: 70 end: 150 -k=3 k1=1 k2=3 ent=1.1095 ent1=0 ent2=1.10587 -ig=0.0172869 delta=4.63295 N 81 term 0.135245 -idx: 71 entropy_left: 0 entropy_right : 1.11046 -> 70 150 -idx: 72 entropy_left: 1 entropy_right : 1.05114 -> 70 150 -idx: 74 entropy_left: 1.5 entropy_right : 1.04172 -> 70 150 -idx: 75 entropy_left: 1.52193 entropy_right : 1.04629 -> 70 150 -idx: 76 entropy_left: 1.58496 entropy_right : 0.956889 -> 70 150 -idx: 77 entropy_left: 1.55666 entropy_right : 0.950567 -> 70 150 -idx: 78 entropy_left: 1.56128 entropy_right : 0.954434 -> 70 150 -idx: 79 entropy_left: 1.53049 entropy_right : 0.947707 -> 70 150 -idx: 81 entropy_left: 1.49492 entropy_right : 0.955759 -> 70 150 -idx: 83 entropy_left: 1.46048 entropy_right : 0.941186 -> 70 150 -idx: 84 entropy_left: 1.44882 entropy_right : 0.94566 -> 70 150 -idx: 87 entropy_left: 1.37928 entropy_right : 0.918296 -> 70 150 -idx: 88 entropy_left: 1.3821 entropy_right : 0.923579 -> 70 150 -idx: 89 entropy_left: 1.35999 entropy_right : 0.912734 -> 70 150 -idx: 91 entropy_left: 1.35667 entropy_right : 0.923842 -> 70 150 -idx: 95 entropy_left: 1.29056 entropy_right : 0.869893 -> 70 150 -idx: 97 entropy_left: 1.29723 entropy_right : 0.883585 -> 70 150 -idx: 99 entropy_left: 1.26992 entropy_right : 0.847862 -> 70 150 -idx: 101 entropy_left: 1.27337 entropy_right : 0.863121 -> 70 150 -idx: 102 entropy_left: 1.26273 entropy_right : 0.842658 -> 70 150 -idx: 104 entropy_left: 1.26128 entropy_right : 0.858981 -> 70 150 -idx: 105 entropy_left: 1.25323 entropy_right : 0.836641 -> 70 150 -idx: 106 entropy_left: 1.25163 entropy_right : 0.845351 -> 70 150 -idx: 107 entropy_left: 1.2443 entropy_right : 0.820364 -> 70 150 -idx: 109 entropy_left: 1.24004 entropy_right : 0.839004 -> 70 150 -idx: 110 entropy_left: 1.2345 entropy_right : 0.811278 -> 70 150 -idx: 113 entropy_left: 1.22447 entropy_right : 0.841852 -> 70 150 -idx: 114 entropy_left: 1.22131 entropy_right : 0.811278 -> 70 150 -idx: 117 entropy_left: 1.20825 entropy_right : 0.845351 -> 70 150 -idx: 118 entropy_left: 1.20691 entropy_right : 0.811278 -> 70 150 -idx: 120 entropy_left: 1.19748 entropy_right : 0.836641 -> 70 150 -idx: 122 entropy_left: 1.19562 entropy_right : 0.749595 -> 70 150 -idx: 127 entropy_left: 1.1729 entropy_right : 0.828056 -> 70 150 -idx: 130 entropy_left: 1.17419 entropy_right : 0.60984 -> 70 150 -idx: 132 entropy_left: 1.16634 entropy_right : 0.650022 -> 70 150 -idx: 133 entropy_left: 1.16663 entropy_right : 0.522559 -> 70 150 -idx: 134 entropy_left: 1.16282 entropy_right : 0.543564 -> 70 150 -idx: 135 entropy_left: 1.16306 entropy_right : 0.353359 -> 70 150 -idx: 137 entropy_left: 1.15566 entropy_right : 0.391244 -> 70 150 -idx: 138 entropy_left: 1.15623 entropy_right : 0 -> 70 150 -cut: 5.7 index: 71 -start: 70 cut: 71 end: 150 -k=3 k1=1 k2=3 ent=1.10587 ent1=0 ent2=1.11046 -ig=0.00928795 delta=4.65763 N 80 term 0.137018 -idx: 72 entropy_left: 0 entropy_right : 1.05114 -> 71 150 -idx: 74 entropy_left: 0.918296 entropy_right : 1.04172 -> 71 150 -idx: 75 entropy_left: 1.5 entropy_right : 1.04629 -> 71 150 -idx: 76 entropy_left: 1.52193 entropy_right : 0.956889 -> 71 150 -idx: 77 entropy_left: 1.45915 entropy_right : 0.950567 -> 71 150 -idx: 78 entropy_left: 1.55666 entropy_right : 0.954434 -> 71 150 -idx: 79 entropy_left: 1.5 entropy_right : 0.947707 -> 71 150 -idx: 81 entropy_left: 1.52193 entropy_right : 0.955759 -> 71 150 -idx: 83 entropy_left: 1.45915 entropy_right : 0.941186 -> 71 150 -idx: 84 entropy_left: 1.46048 entropy_right : 0.94566 -> 71 150 -idx: 87 entropy_left: 1.36631 entropy_right : 0.918296 -> 71 150 -idx: 88 entropy_left: 1.37928 entropy_right : 0.923579 -> 71 150 -idx: 89 entropy_left: 1.35164 entropy_right : 0.912734 -> 71 150 -idx: 91 entropy_left: 1.36096 entropy_right : 0.923842 -> 71 150 -idx: 95 entropy_left: 1.28067 entropy_right : 0.869893 -> 71 150 -idx: 97 entropy_left: 1.29574 entropy_right : 0.883585 -> 71 150 -idx: 99 entropy_left: 1.26381 entropy_right : 0.847862 -> 71 150 -idx: 101 entropy_left: 1.27291 entropy_right : 0.863121 -> 71 150 -idx: 102 entropy_left: 1.26044 entropy_right : 0.842658 -> 71 150 -idx: 104 entropy_left: 1.26288 entropy_right : 0.858981 -> 71 150 -idx: 105 entropy_left: 1.2533 entropy_right : 0.836641 -> 71 150 -idx: 106 entropy_left: 1.25323 entropy_right : 0.845351 -> 71 150 -idx: 107 entropy_left: 1.24454 entropy_right : 0.820364 -> 71 150 -idx: 109 entropy_left: 1.24273 entropy_right : 0.839004 -> 71 150 -idx: 110 entropy_left: 1.23603 entropy_right : 0.811278 -> 71 150 -idx: 113 entropy_left: 1.22858 entropy_right : 0.841852 -> 71 150 -idx: 114 entropy_left: 1.22447 entropy_right : 0.811278 -> 71 150 -idx: 117 entropy_left: 1.21311 entropy_right : 0.845351 -> 71 150 -idx: 118 entropy_left: 1.21098 entropy_right : 0.811278 -> 71 150 -idx: 120 entropy_left: 1.20239 entropy_right : 0.836641 -> 71 150 -idx: 122 entropy_left: 1.19918 entropy_right : 0.749595 -> 71 150 -idx: 127 entropy_left: 1.17797 entropy_right : 0.828056 -> 71 150 -idx: 130 entropy_left: 1.17775 entropy_right : 0.60984 -> 71 150 -idx: 132 entropy_left: 1.17038 entropy_right : 0.650022 -> 71 150 -idx: 133 entropy_left: 1.17023 entropy_right : 0.522559 -> 71 150 -idx: 134 entropy_left: 1.16663 entropy_right : 0.543564 -> 71 150 -idx: 135 entropy_left: 1.16646 entropy_right : 0.353359 -> 71 150 -idx: 137 entropy_left: 1.15945 entropy_right : 0.391244 -> 71 150 -idx: 138 entropy_left: 1.15965 entropy_right : 0 -> 71 150 -cut: 5.7 index: 72 -start: 71 cut: 72 end: 150 -k=3 k1=1 k2=3 ent=1.11046 ent1=0 ent2=1.05114 -ig=0.0726241 delta=4.4659 N 79 term 0.136092 -idx: 74 entropy_left: 0 entropy_right : 1.04172 -> 72 150 -idx: 75 entropy_left: 0.918296 entropy_right : 1.04629 -> 72 150 -idx: 76 entropy_left: 1.5 entropy_right : 0.956889 -> 72 150 -idx: 77 entropy_left: 1.37095 entropy_right : 0.950567 -> 72 150 -idx: 78 entropy_left: 1.45915 entropy_right : 0.954434 -> 72 150 -idx: 79 entropy_left: 1.37878 entropy_right : 0.947707 -> 72 150 -idx: 81 entropy_left: 1.39215 entropy_right : 0.955759 -> 72 150 -idx: 83 entropy_left: 1.32218 entropy_right : 0.941186 -> 72 150 -idx: 84 entropy_left: 1.32501 entropy_right : 0.94566 -> 72 150 -idx: 87 entropy_left: 1.23096 entropy_right : 0.918296 -> 72 150 -idx: 88 entropy_left: 1.24756 entropy_right : 0.923579 -> 72 150 -idx: 89 entropy_left: 1.22105 entropy_right : 0.912734 -> 72 150 -idx: 91 entropy_left: 1.23639 entropy_right : 0.923842 -> 72 150 -idx: 95 entropy_left: 1.16256 entropy_right : 0.869893 -> 72 150 -idx: 97 entropy_left: 1.18297 entropy_right : 0.883585 -> 72 150 -idx: 99 entropy_left: 1.15417 entropy_right : 0.847862 -> 72 150 -idx: 101 entropy_left: 1.16765 entropy_right : 0.863121 -> 72 150 -idx: 102 entropy_left: 1.15668 entropy_right : 0.842658 -> 72 150 -idx: 104 entropy_left: 1.16282 entropy_right : 0.858981 -> 72 150 -idx: 105 entropy_left: 1.15465 entropy_right : 0.836641 -> 72 150 -idx: 106 entropy_left: 1.15623 entropy_right : 0.845351 -> 72 150 -idx: 107 entropy_left: 1.14888 entropy_right : 0.820364 -> 72 150 -idx: 109 entropy_left: 1.15006 entropy_right : 0.839004 -> 72 150 -idx: 110 entropy_left: 1.14463 entropy_right : 0.811278 -> 72 150 -idx: 113 entropy_left: 1.14104 entropy_right : 0.841852 -> 72 150 -idx: 114 entropy_left: 1.1381 entropy_right : 0.811278 -> 72 150 -idx: 117 entropy_left: 1.13006 entropy_right : 0.845351 -> 72 150 -idx: 118 entropy_left: 1.12901 entropy_right : 0.811278 -> 72 150 -idx: 120 entropy_left: 1.12238 entropy_right : 0.836641 -> 72 150 -idx: 122 entropy_left: 1.12115 entropy_right : 0.749595 -> 72 150 -idx: 127 entropy_left: 1.10416 entropy_right : 0.828056 -> 72 150 -idx: 130 entropy_left: 1.10645 entropy_right : 0.60984 -> 72 150 -idx: 132 entropy_left: 1.10052 entropy_right : 0.650022 -> 72 150 -idx: 133 entropy_left: 1.10113 entropy_right : 0.522559 -> 72 150 -idx: 134 entropy_left: 1.09821 entropy_right : 0.543564 -> 72 150 -idx: 135 entropy_left: 1.09876 entropy_right : 0.353359 -> 72 150 -idx: 137 entropy_left: 1.09304 entropy_right : 0.391244 -> 72 150 -idx: 138 entropy_left: 1.09391 entropy_right : 0 -> 72 150 -cut: 5.8 index: 74 -start: 72 cut: 74 end: 150 -k=3 k1=1 k2=3 ent=1.05114 ent1=0 ent2=1.04172 -ig=0.0361296 delta=4.6156 N 78 term 0.139518 -idx: 75 entropy_left: 0 entropy_right : 1.04629 -> 74 150 -idx: 76 entropy_left: 1 entropy_right : 0.956889 -> 74 150 -idx: 77 entropy_left: 1.58496 entropy_right : 0.950567 -> 74 150 -idx: 78 entropy_left: 1.5 entropy_right : 0.954434 -> 74 150 -idx: 79 entropy_left: 1.52193 entropy_right : 0.947707 -> 74 150 -idx: 81 entropy_left: 1.37878 entropy_right : 0.955759 -> 74 150 -idx: 83 entropy_left: 1.39215 entropy_right : 0.941186 -> 74 150 -idx: 84 entropy_left: 1.36096 entropy_right : 0.94566 -> 74 150 -idx: 87 entropy_left: 1.29574 entropy_right : 0.918296 -> 74 150 -idx: 88 entropy_left: 1.29584 entropy_right : 0.923579 -> 74 150 -idx: 89 entropy_left: 1.27291 entropy_right : 0.912734 -> 74 150 -idx: 91 entropy_left: 1.26393 entropy_right : 0.923842 -> 74 150 -idx: 95 entropy_left: 1.20091 entropy_right : 0.869893 -> 74 150 -idx: 97 entropy_left: 1.20883 entropy_right : 0.883585 -> 74 150 -idx: 99 entropy_left: 1.18297 entropy_right : 0.847862 -> 74 150 -idx: 101 entropy_left: 1.18739 entropy_right : 0.863121 -> 74 150 -idx: 102 entropy_left: 1.17797 entropy_right : 0.842658 -> 74 150 -idx: 104 entropy_left: 1.17668 entropy_right : 0.858981 -> 74 150 -idx: 105 entropy_left: 1.17023 entropy_right : 0.836641 -> 74 150 -idx: 106 entropy_left: 1.16865 entropy_right : 0.845351 -> 74 150 -idx: 107 entropy_left: 1.16287 entropy_right : 0.820364 -> 74 150 -idx: 109 entropy_left: 1.1586 entropy_right : 0.839004 -> 74 150 -idx: 110 entropy_left: 1.15477 entropy_right : 0.811278 -> 74 150 -idx: 113 entropy_left: 1.14445 entropy_right : 0.841852 -> 74 150 -idx: 114 entropy_left: 1.1432 entropy_right : 0.811278 -> 74 150 -idx: 117 entropy_left: 1.12969 entropy_right : 0.845351 -> 74 150 -idx: 118 entropy_left: 1.13033 entropy_right : 0.811278 -> 74 150 -idx: 120 entropy_left: 1.12063 entropy_right : 0.836641 -> 74 150 -idx: 122 entropy_left: 1.12238 entropy_right : 0.749595 -> 74 150 -idx: 127 entropy_left: 1.09935 entropy_right : 0.828056 -> 74 150 -idx: 130 entropy_left: 1.10551 entropy_right : 0.60984 -> 74 150 -idx: 132 entropy_left: 1.0977 entropy_right : 0.650022 -> 74 150 -idx: 133 entropy_left: 1.0994 entropy_right : 0.522559 -> 74 150 -idx: 134 entropy_left: 1.09562 entropy_right : 0.543564 -> 74 150 -idx: 135 entropy_left: 1.09718 entropy_right : 0.353359 -> 74 150 -idx: 137 entropy_left: 1.08987 entropy_right : 0.391244 -> 74 150 -idx: 138 entropy_left: 1.09171 entropy_right : 0 -> 74 150 -cut: 5.8 index: 75 -start: 74 cut: 75 end: 150 -k=3 k1=1 k2=3 ent=1.04172 ent1=0 ent2=1.04629 -ig=0.00920081 delta=4.65755 N 76 term 0.143242 -idx: 76 entropy_left: 0 entropy_right : 0.956889 -> 75 150 -idx: 77 entropy_left: 1 entropy_right : 0.950567 -> 75 150 -idx: 78 entropy_left: 1.58496 entropy_right : 0.954434 -> 75 150 -idx: 79 entropy_left: 1.5 entropy_right : 0.947707 -> 75 150 -idx: 81 entropy_left: 1.45915 entropy_right : 0.955759 -> 75 150 -idx: 83 entropy_left: 1.40564 entropy_right : 0.941186 -> 75 150 -idx: 84 entropy_left: 1.39215 entropy_right : 0.94566 -> 75 150 -idx: 87 entropy_left: 1.28067 entropy_right : 0.918296 -> 75 150 -idx: 88 entropy_left: 1.29574 entropy_right : 0.923579 -> 75 150 -idx: 89 entropy_left: 1.26381 entropy_right : 0.912734 -> 75 150 -idx: 91 entropy_left: 1.27178 entropy_right : 0.923842 -> 75 150 -idx: 95 entropy_left: 1.18838 entropy_right : 0.869893 -> 75 150 -idx: 97 entropy_left: 1.20721 entropy_right : 0.883585 -> 75 150 -idx: 99 entropy_left: 1.17528 entropy_right : 0.847862 -> 75 150 -idx: 101 entropy_left: 1.18672 entropy_right : 0.863121 -> 75 150 -idx: 102 entropy_left: 1.17499 entropy_right : 0.842658 -> 75 150 -idx: 104 entropy_left: 1.17836 entropy_right : 0.858981 -> 75 150 -idx: 105 entropy_left: 1.17003 entropy_right : 0.836641 -> 75 150 -idx: 106 entropy_left: 1.17023 entropy_right : 0.845351 -> 75 150 -idx: 107 entropy_left: 1.16282 entropy_right : 0.820364 -> 75 150 -idx: 109 entropy_left: 1.16138 entropy_right : 0.839004 -> 75 150 -idx: 110 entropy_left: 1.15618 entropy_right : 0.811278 -> 75 150 -idx: 113 entropy_left: 1.14874 entropy_right : 0.841852 -> 75 150 -idx: 114 entropy_left: 1.1464 entropy_right : 0.811278 -> 75 150 -idx: 117 entropy_left: 1.13474 entropy_right : 0.845351 -> 75 150 -idx: 118 entropy_left: 1.1345 entropy_right : 0.811278 -> 75 150 -idx: 120 entropy_left: 1.12568 entropy_right : 0.836641 -> 75 150 -idx: 122 entropy_left: 1.12594 entropy_right : 0.749595 -> 75 150 -idx: 127 entropy_left: 1.1045 entropy_right : 0.828056 -> 75 150 -idx: 130 entropy_left: 1.10904 entropy_right : 0.60984 -> 75 150 -idx: 132 entropy_left: 1.10172 entropy_right : 0.650022 -> 75 150 -idx: 133 entropy_left: 1.10295 entropy_right : 0.522559 -> 75 150 -idx: 134 entropy_left: 1.0994 entropy_right : 0.543564 -> 75 150 -idx: 135 entropy_left: 1.10052 entropy_right : 0.353359 -> 75 150 -idx: 137 entropy_left: 1.09362 entropy_right : 0.391244 -> 75 150 -idx: 138 entropy_left: 1.09506 entropy_right : 0 -> 75 150 -cut: 5.8 index: 76 -start: 75 cut: 76 end: 150 -k=3 k1=1 k2=2 ent=1.04629 ent1=0 ent2=0.956889 -ig=0.102158 delta=3.41877 N 75 term 0.128376 -idx: 77 entropy_left: 0 entropy_right : 0.950567 -> 76 150 -idx: 78 entropy_left: 1 entropy_right : 0.954434 -> 76 150 -idx: 79 entropy_left: 0.918296 entropy_right : 0.947707 -> 76 150 -idx: 81 entropy_left: 0.970951 entropy_right : 0.955759 -> 76 150 -idx: 83 entropy_left: 0.985228 entropy_right : 0.941186 -> 76 150 -idx: 84 entropy_left: 1 entropy_right : 0.94566 -> 76 150 -idx: 87 entropy_left: 0.94566 entropy_right : 0.918296 -> 76 150 -idx: 88 entropy_left: 0.979869 entropy_right : 0.923579 -> 76 150 -idx: 89 entropy_left: 0.961237 entropy_right : 0.912734 -> 76 150 -idx: 91 entropy_left: 0.996792 entropy_right : 0.923842 -> 76 150 -idx: 95 entropy_left: 0.949452 entropy_right : 0.869893 -> 76 150 -idx: 97 entropy_left: 0.985228 entropy_right : 0.883585 -> 76 150 -idx: 99 entropy_left: 0.965636 entropy_right : 0.847862 -> 76 150 -idx: 101 entropy_left: 0.989587 entropy_right : 0.863121 -> 76 150 -idx: 102 entropy_left: 0.982859 entropy_right : 0.842658 -> 76 150 -idx: 104 entropy_left: 0.996316 entropy_right : 0.858981 -> 76 150 -idx: 105 entropy_left: 0.992267 entropy_right : 0.836641 -> 76 150 -idx: 106 entropy_left: 0.996792 entropy_right : 0.845351 -> 76 150 -idx: 107 entropy_left: 0.993234 entropy_right : 0.820364 -> 76 150 -idx: 109 entropy_left: 0.999338 entropy_right : 0.839004 -> 76 150 -idx: 110 entropy_left: 0.997502 entropy_right : 0.811278 -> 76 150 -idx: 113 entropy_left: 0.999473 entropy_right : 0.841852 -> 76 150 -idx: 114 entropy_left: 1 entropy_right : 0.811278 -> 76 150 -idx: 117 entropy_left: 0.996135 entropy_right : 0.845351 -> 76 150 -idx: 118 entropy_left: 0.998364 entropy_right : 0.811278 -> 76 150 -idx: 120 entropy_left: 0.99403 entropy_right : 0.836641 -> 76 150 -idx: 122 entropy_left: 0.998636 entropy_right : 0.749595 -> 76 150 -idx: 127 entropy_left: 0.986368 entropy_right : 0.828056 -> 76 150 -idx: 130 entropy_left: 0.996038 entropy_right : 0.60984 -> 76 150 -idx: 132 entropy_left: 0.991703 entropy_right : 0.650022 -> 76 150 -idx: 133 entropy_left: 0.994442 entropy_right : 0.522559 -> 76 150 -idx: 134 entropy_left: 0.992267 entropy_right : 0.543564 -> 76 150 -idx: 135 entropy_left: 0.994813 entropy_right : 0.353359 -> 76 150 -idx: 137 entropy_left: 0.99048 entropy_right : 0.391244 -> 76 150 -idx: 138 entropy_left: 0.993234 entropy_right : 0 -> 76 150 -cut: 5.8 index: 77 -start: 76 cut: 77 end: 150 -k=2 k1=1 k2=2 ent=0.956889 ent1=0 ent2=0.950567 -ig=0.0191673 delta=2.79471 N 74 term 0.121413 -idx: 78 entropy_left: 0 entropy_right : 0.954434 -> 77 150 -idx: 79 entropy_left: 1 entropy_right : 0.947707 -> 77 150 -idx: 81 entropy_left: 0.811278 entropy_right : 0.955759 -> 77 150 -idx: 83 entropy_left: 1 entropy_right : 0.941186 -> 77 150 -idx: 84 entropy_left: 0.985228 entropy_right : 0.94566 -> 77 150 -idx: 87 entropy_left: 0.970951 entropy_right : 0.918296 -> 77 150 -idx: 88 entropy_left: 0.99403 entropy_right : 0.923579 -> 77 150 -idx: 89 entropy_left: 0.979869 entropy_right : 0.912734 -> 77 150 -idx: 91 entropy_left: 1 entropy_right : 0.923842 -> 77 150 -idx: 95 entropy_left: 0.964079 entropy_right : 0.869893 -> 77 150 -idx: 97 entropy_left: 0.992774 entropy_right : 0.883585 -> 77 150 -idx: 99 entropy_left: 0.976021 entropy_right : 0.847862 -> 77 150 -idx: 101 entropy_left: 0.994985 entropy_right : 0.863121 -> 77 150 -idx: 102 entropy_left: 0.989587 entropy_right : 0.842658 -> 77 150 -idx: 104 entropy_left: 0.99901 entropy_right : 0.858981 -> 77 150 -idx: 105 entropy_left: 0.996316 entropy_right : 0.836641 -> 77 150 -idx: 106 entropy_left: 0.999142 entropy_right : 0.845351 -> 77 150 -idx: 107 entropy_left: 0.996792 entropy_right : 0.820364 -> 77 150 -idx: 109 entropy_left: 1 entropy_right : 0.839004 -> 77 150 -idx: 110 entropy_left: 0.999338 entropy_right : 0.811278 -> 77 150 -idx: 113 entropy_left: 0.997772 entropy_right : 0.841852 -> 77 150 -idx: 114 entropy_left: 0.999473 entropy_right : 0.811278 -> 77 150 -idx: 117 entropy_left: 0.992774 entropy_right : 0.845351 -> 77 150 -idx: 118 entropy_left: 0.996135 entropy_right : 0.811278 -> 77 150 -idx: 120 entropy_left: 0.990225 entropy_right : 0.836641 -> 77 150 -idx: 122 entropy_left: 0.996792 entropy_right : 0.749595 -> 77 150 -idx: 127 entropy_left: 0.981454 entropy_right : 0.828056 -> 77 150 -idx: 130 entropy_left: 0.99357 entropy_right : 0.60984 -> 77 150 -idx: 132 entropy_left: 0.988284 entropy_right : 0.650022 -> 77 150 -idx: 133 entropy_left: 0.991703 entropy_right : 0.522559 -> 77 150 -idx: 134 entropy_left: 0.989093 entropy_right : 0.543564 -> 77 150 -idx: 135 entropy_left: 0.992267 entropy_right : 0.353359 -> 77 150 -idx: 137 entropy_left: 0.987138 entropy_right : 0.391244 -> 77 150 -idx: 138 entropy_left: 0.99048 entropy_right : 0 -> 77 150 -cut: 5.8 index: 78 -start: 77 cut: 78 end: 150 -k=2 k1=1 k2=2 ent=0.950567 ent1=0 ent2=0.954434 -ig=0.00920719 delta=2.81509 N 73 term 0.123082 -idx: 79 entropy_left: 0 entropy_right : 0.947707 -> 78 150 -idx: 81 entropy_left: 0.918296 entropy_right : 0.955759 -> 78 150 -idx: 83 entropy_left: 0.970951 entropy_right : 0.941186 -> 78 150 -idx: 84 entropy_left: 1 entropy_right : 0.94566 -> 78 150 -idx: 87 entropy_left: 0.918296 entropy_right : 0.918296 -> 78 150 -idx: 88 entropy_left: 0.970951 entropy_right : 0.923579 -> 78 150 -idx: 89 entropy_left: 0.94566 entropy_right : 0.912734 -> 78 150 -idx: 91 entropy_left: 0.995727 entropy_right : 0.923842 -> 78 150 -idx: 95 entropy_left: 0.936667 entropy_right : 0.869893 -> 78 150 -idx: 97 entropy_left: 0.981941 entropy_right : 0.883585 -> 78 150 -idx: 99 entropy_left: 0.958712 entropy_right : 0.847862 -> 78 150 -idx: 101 entropy_left: 0.987692 entropy_right : 0.863121 -> 78 150 -idx: 102 entropy_left: 0.979869 entropy_right : 0.842658 -> 78 150 -idx: 104 entropy_left: 0.995727 entropy_right : 0.858981 -> 78 150 -idx: 105 entropy_left: 0.991076 entropy_right : 0.836641 -> 78 150 -idx: 106 entropy_left: 0.996316 entropy_right : 0.845351 -> 78 150 -idx: 107 entropy_left: 0.992267 entropy_right : 0.820364 -> 78 150 -idx: 109 entropy_left: 0.999249 entropy_right : 0.839004 -> 78 150 -idx: 110 entropy_left: 0.99718 entropy_right : 0.811278 -> 78 150 -idx: 113 entropy_left: 0.999411 entropy_right : 0.841852 -> 78 150 -idx: 114 entropy_left: 1 entropy_right : 0.811278 -> 78 150 -idx: 117 entropy_left: 0.995727 entropy_right : 0.845351 -> 78 150 -idx: 118 entropy_left: 0.998196 entropy_right : 0.811278 -> 78 150 -idx: 120 entropy_left: 0.993447 entropy_right : 0.836641 -> 78 150 -idx: 122 entropy_left: 0.998509 entropy_right : 0.749595 -> 78 150 -idx: 127 entropy_left: 0.985228 entropy_right : 0.828056 -> 78 150 -idx: 130 entropy_left: 0.995727 entropy_right : 0.60984 -> 78 150 -idx: 132 entropy_left: 0.991076 entropy_right : 0.650022 -> 78 150 -idx: 133 entropy_left: 0.99403 entropy_right : 0.522559 -> 78 150 -idx: 134 entropy_left: 0.991703 entropy_right : 0.543564 -> 78 150 -idx: 135 entropy_left: 0.994442 entropy_right : 0.353359 -> 78 150 -idx: 137 entropy_left: 0.989822 entropy_right : 0.391244 -> 78 150 -idx: 138 entropy_left: 0.992774 entropy_right : 0 -> 78 150 -cut: 5.8 index: 79 -start: 78 cut: 79 end: 150 -k=2 k1=1 k2=2 ent=0.954434 ent1=0 ent2=0.947707 -ig=0.0198892 delta=2.7939 N 72 term 0.124217 -idx: 81 entropy_left: 0 entropy_right : 0.955759 -> 79 150 -idx: 83 entropy_left: 1 entropy_right : 0.941186 -> 79 150 -idx: 84 entropy_left: 0.970951 entropy_right : 0.94566 -> 79 150 -idx: 87 entropy_left: 0.954434 entropy_right : 0.918296 -> 79 150 -idx: 88 entropy_left: 0.991076 entropy_right : 0.923579 -> 79 150 -idx: 89 entropy_left: 0.970951 entropy_right : 0.912734 -> 79 150 -idx: 91 entropy_left: 1 entropy_right : 0.923842 -> 79 150 -idx: 95 entropy_left: 0.954434 entropy_right : 0.869893 -> 79 150 -idx: 97 entropy_left: 0.991076 entropy_right : 0.883585 -> 79 150 -idx: 99 entropy_left: 0.970951 entropy_right : 0.847862 -> 79 150 -idx: 101 entropy_left: 0.99403 entropy_right : 0.863121 -> 79 150 -idx: 102 entropy_left: 0.987692 entropy_right : 0.842658 -> 79 150 -idx: 104 entropy_left: 0.998846 entropy_right : 0.858981 -> 79 150 -idx: 105 entropy_left: 0.995727 entropy_right : 0.836641 -> 79 150 -idx: 106 entropy_left: 0.99901 entropy_right : 0.845351 -> 79 150 -idx: 107 entropy_left: 0.996316 entropy_right : 0.820364 -> 79 150 -idx: 109 entropy_left: 1 entropy_right : 0.839004 -> 79 150 -idx: 110 entropy_left: 0.999249 entropy_right : 0.811278 -> 79 150 -idx: 113 entropy_left: 0.997502 entropy_right : 0.841852 -> 79 150 -idx: 114 entropy_left: 0.999411 entropy_right : 0.811278 -> 79 150 -idx: 117 entropy_left: 0.991992 entropy_right : 0.845351 -> 79 150 -idx: 118 entropy_left: 0.995727 entropy_right : 0.811278 -> 79 150 -idx: 120 entropy_left: 0.989245 entropy_right : 0.836641 -> 79 150 -idx: 122 entropy_left: 0.996486 entropy_right : 0.749595 -> 79 150 -idx: 127 entropy_left: 0.979869 entropy_right : 0.828056 -> 79 150 -idx: 130 entropy_left: 0.993055 entropy_right : 0.60984 -> 79 150 -idx: 132 entropy_left: 0.98738 entropy_right : 0.650022 -> 79 150 -idx: 133 entropy_left: 0.991076 entropy_right : 0.522559 -> 79 150 -idx: 134 entropy_left: 0.988284 entropy_right : 0.543564 -> 79 150 -idx: 135 entropy_left: 0.991703 entropy_right : 0.353359 -> 79 150 -idx: 137 entropy_left: 0.986233 entropy_right : 0.391244 -> 79 150 -idx: 138 entropy_left: 0.989822 entropy_right : 0 -> 79 150 -cut: 5.9 index: 81 -start: 79 cut: 81 end: 150 -k=2 k1=1 k2=2 ent=0.947707 ent1=0 ent2=0.955759 -ig=0.0188711 delta=2.82346 N 71 term 0.126095 -idx: 83 entropy_left: 0 entropy_right : 0.941186 -> 81 150 -idx: 84 entropy_left: 0.918296 entropy_right : 0.94566 -> 81 150 -idx: 87 entropy_left: 0.650022 entropy_right : 0.918296 -> 81 150 -idx: 88 entropy_left: 0.863121 entropy_right : 0.923579 -> 81 150 -idx: 89 entropy_left: 0.811278 entropy_right : 0.912734 -> 81 150 -idx: 91 entropy_left: 0.970951 entropy_right : 0.923842 -> 81 150 -idx: 95 entropy_left: 0.863121 entropy_right : 0.869893 -> 81 150 -idx: 97 entropy_left: 0.954434 entropy_right : 0.883585 -> 81 150 -idx: 99 entropy_left: 0.918296 entropy_right : 0.847862 -> 81 150 -idx: 101 entropy_left: 0.970951 entropy_right : 0.863121 -> 81 150 -idx: 102 entropy_left: 0.958712 entropy_right : 0.842658 -> 81 150 -idx: 104 entropy_left: 0.987692 entropy_right : 0.858981 -> 81 150 -idx: 105 entropy_left: 0.979869 entropy_right : 0.836641 -> 81 150 -idx: 106 entropy_left: 0.989587 entropy_right : 0.845351 -> 81 150 -idx: 107 entropy_left: 0.982859 entropy_right : 0.820364 -> 81 150 -idx: 109 entropy_left: 0.996316 entropy_right : 0.839004 -> 81 150 -idx: 110 entropy_left: 0.992267 entropy_right : 0.811278 -> 81 150 -idx: 113 entropy_left: 1 entropy_right : 0.841852 -> 81 150 -idx: 114 entropy_left: 0.999338 entropy_right : 0.811278 -> 81 150 -idx: 117 entropy_left: 0.997772 entropy_right : 0.845351 -> 81 150 -idx: 118 entropy_left: 0.999473 entropy_right : 0.811278 -> 81 150 -idx: 120 entropy_left: 0.995727 entropy_right : 0.836641 -> 81 150 -idx: 122 entropy_left: 0.999571 entropy_right : 0.749595 -> 81 150 -idx: 127 entropy_left: 0.987692 entropy_right : 0.828056 -> 81 150 -idx: 130 entropy_left: 0.997294 entropy_right : 0.60984 -> 81 150 -idx: 132 entropy_left: 0.993055 entropy_right : 0.650022 -> 81 150 -idx: 133 entropy_left: 0.995727 entropy_right : 0.522559 -> 81 150 -idx: 134 entropy_left: 0.99357 entropy_right : 0.543564 -> 81 150 -idx: 135 entropy_left: 0.996038 entropy_right : 0.353359 -> 81 150 -idx: 137 entropy_left: 0.991703 entropy_right : 0.391244 -> 81 150 -idx: 138 entropy_left: 0.994442 entropy_right : 0 -> 81 150 -cut: 5.95 index: 83 -start: 81 cut: 83 end: 150 -k=2 k1=1 k2=2 ent=0.955759 ent1=0 ent2=0.941186 -ig=0.0418534 delta=2.77821 N 69 term 0.128488 -idx: 84 entropy_left: 0 entropy_right : 0.94566 -> 83 150 -idx: 87 entropy_left: 0.811278 entropy_right : 0.918296 -> 83 150 -idx: 88 entropy_left: 0.970951 entropy_right : 0.923579 -> 83 150 -idx: 89 entropy_left: 0.918296 entropy_right : 0.912734 -> 83 150 -idx: 91 entropy_left: 1 entropy_right : 0.923842 -> 83 150 -idx: 95 entropy_left: 0.918296 entropy_right : 0.869893 -> 83 150 -idx: 97 entropy_left: 0.985228 entropy_right : 0.883585 -> 83 150 -idx: 99 entropy_left: 0.954434 entropy_right : 0.847862 -> 83 150 -idx: 101 entropy_left: 0.991076 entropy_right : 0.863121 -> 83 150 -idx: 102 entropy_left: 0.981941 entropy_right : 0.842658 -> 83 150 -idx: 104 entropy_left: 0.998364 entropy_right : 0.858981 -> 83 150 -idx: 105 entropy_left: 0.99403 entropy_right : 0.836641 -> 83 150 -idx: 106 entropy_left: 0.998636 entropy_right : 0.845351 -> 83 150 -idx: 107 entropy_left: 0.994985 entropy_right : 0.820364 -> 83 150 -idx: 109 entropy_left: 1 entropy_right : 0.839004 -> 83 150 -idx: 110 entropy_left: 0.99901 entropy_right : 0.811278 -> 83 150 -idx: 113 entropy_left: 0.996792 entropy_right : 0.841852 -> 83 150 -idx: 114 entropy_left: 0.999249 entropy_right : 0.811278 -> 83 150 -idx: 117 entropy_left: 0.989993 entropy_right : 0.845351 -> 83 150 -idx: 118 entropy_left: 0.994694 entropy_right : 0.811278 -> 83 150 -idx: 120 entropy_left: 0.986787 entropy_right : 0.836641 -> 83 150 -idx: 122 entropy_left: 0.995727 entropy_right : 0.749595 -> 83 150 -idx: 127 entropy_left: 0.976021 entropy_right : 0.828056 -> 83 150 -idx: 130 entropy_left: 0.991821 entropy_right : 0.60984 -> 83 150 -idx: 132 entropy_left: 0.985228 entropy_right : 0.650022 -> 83 150 -idx: 133 entropy_left: 0.989587 entropy_right : 0.522559 -> 83 150 -idx: 134 entropy_left: 0.986368 entropy_right : 0.543564 -> 83 150 -idx: 135 entropy_left: 0.990375 entropy_right : 0.353359 -> 83 150 -idx: 137 entropy_left: 0.98411 entropy_right : 0.391244 -> 83 150 -idx: 138 entropy_left: 0.988284 entropy_right : 0 -> 83 150 -cut: 6 index: 84 -start: 83 cut: 84 end: 150 -k=2 k1=1 k2=2 ent=0.941186 ent1=0 ent2=0.94566 -ig=0.00964046 delta=2.8163 N 67 term 0.132249 -idx: 87 entropy_left: 0 entropy_right : 0.918296 -> 84 150 -idx: 88 entropy_left: 0.811278 entropy_right : 0.923579 -> 84 150 -idx: 89 entropy_left: 0.721928 entropy_right : 0.912734 -> 84 150 -idx: 91 entropy_left: 0.985228 entropy_right : 0.923842 -> 84 150 -idx: 95 entropy_left: 0.845351 entropy_right : 0.869893 -> 84 150 -idx: 97 entropy_left: 0.961237 entropy_right : 0.883585 -> 84 150 -idx: 99 entropy_left: 0.918296 entropy_right : 0.847862 -> 84 150 -idx: 101 entropy_left: 0.977418 entropy_right : 0.863121 -> 84 150 -idx: 102 entropy_left: 0.964079 entropy_right : 0.842658 -> 84 150 -idx: 104 entropy_left: 0.992774 entropy_right : 0.858981 -> 84 150 -idx: 105 entropy_left: 0.985228 entropy_right : 0.836641 -> 84 150 -idx: 106 entropy_left: 0.99403 entropy_right : 0.845351 -> 84 150 -idx: 107 entropy_left: 0.987692 entropy_right : 0.820364 -> 84 150 -idx: 109 entropy_left: 0.998846 entropy_right : 0.839004 -> 84 150 -idx: 110 entropy_left: 0.995727 entropy_right : 0.811278 -> 84 150 -idx: 113 entropy_left: 0.999142 entropy_right : 0.841852 -> 84 150 -idx: 114 entropy_left: 1 entropy_right : 0.811278 -> 84 150 -idx: 117 entropy_left: 0.99403 entropy_right : 0.845351 -> 84 150 -idx: 118 entropy_left: 0.997502 entropy_right : 0.811278 -> 84 150 -idx: 120 entropy_left: 0.991076 entropy_right : 0.836641 -> 84 150 -idx: 122 entropy_left: 0.998001 entropy_right : 0.749595 -> 84 150 -idx: 127 entropy_left: 0.980798 entropy_right : 0.828056 -> 84 150 -idx: 130 entropy_left: 0.994539 entropy_right : 0.60984 -> 84 150 -idx: 132 entropy_left: 0.988699 entropy_right : 0.650022 -> 84 150 -idx: 133 entropy_left: 0.992476 entropy_right : 0.522559 -> 84 150 -idx: 134 entropy_left: 0.989587 entropy_right : 0.543564 -> 84 150 -idx: 135 entropy_left: 0.993055 entropy_right : 0.353359 -> 84 150 -idx: 137 entropy_left: 0.98738 entropy_right : 0.391244 -> 84 150 -idx: 138 entropy_left: 0.991076 entropy_right : 0 -> 84 150 -cut: 6 index: 87 -start: 84 cut: 87 end: 150 -k=2 k1=1 k2=2 ent=0.94566 ent1=0 ent2=0.918296 -ig=0.0691052 delta=2.75263 N 66 term 0.132954 -idx: 88 entropy_left: 0 entropy_right : 0.923579 -> 87 150 -idx: 89 entropy_left: 1 entropy_right : 0.912734 -> 87 150 -idx: 91 entropy_left: 0.811278 entropy_right : 0.923842 -> 87 150 -idx: 95 entropy_left: 0.954434 entropy_right : 0.869893 -> 87 150 -idx: 97 entropy_left: 1 entropy_right : 0.883585 -> 87 150 -idx: 99 entropy_left: 0.979869 entropy_right : 0.847862 -> 87 150 -idx: 101 entropy_left: 1 entropy_right : 0.863121 -> 87 150 -idx: 102 entropy_left: 0.996792 entropy_right : 0.842658 -> 87 150 -idx: 104 entropy_left: 0.997502 entropy_right : 0.858981 -> 87 150 -idx: 105 entropy_left: 1 entropy_right : 0.836641 -> 87 150 -idx: 106 entropy_left: 0.998001 entropy_right : 0.845351 -> 87 150 -idx: 107 entropy_left: 1 entropy_right : 0.820364 -> 87 150 -idx: 109 entropy_left: 0.99403 entropy_right : 0.839004 -> 87 150 -idx: 110 entropy_left: 0.998636 entropy_right : 0.811278 -> 87 150 -idx: 113 entropy_left: 0.982859 entropy_right : 0.841852 -> 87 150 -idx: 114 entropy_left: 0.991076 entropy_right : 0.811278 -> 87 150 -idx: 117 entropy_left: 0.970951 entropy_right : 0.845351 -> 87 150 -idx: 118 entropy_left: 0.981152 entropy_right : 0.811278 -> 87 150 -idx: 120 entropy_left: 0.967295 entropy_right : 0.836641 -> 87 150 -idx: 122 entropy_left: 0.985228 entropy_right : 0.749595 -> 87 150 -idx: 127 entropy_left: 0.954434 entropy_right : 0.828056 -> 87 150 -idx: 130 entropy_left: 0.980798 entropy_right : 0.60984 -> 87 150 -idx: 132 entropy_left: 0.970951 entropy_right : 0.650022 -> 87 150 -idx: 133 entropy_left: 0.978071 entropy_right : 0.522559 -> 87 150 -idx: 134 entropy_left: 0.973385 entropy_right : 0.543564 -> 87 150 -idx: 135 entropy_left: 0.979869 entropy_right : 0.353359 -> 87 150 -idx: 137 entropy_left: 0.970951 entropy_right : 0.391244 -> 87 150 -idx: 138 entropy_left: 0.977418 entropy_right : 0 -> 87 150 -cut: 6 index: 88 -start: 87 cut: 88 end: 150 -k=2 k1=1 k2=2 ent=0.918296 ent1=0 ent2=0.923579 -ig=0.00937718 delta=2.81792 N 63 term 0.13924 -idx: 89 entropy_left: 0 entropy_right : 0.912734 -> 88 150 -idx: 91 entropy_left: 0.918296 entropy_right : 0.923842 -> 88 150 -idx: 95 entropy_left: 0.863121 entropy_right : 0.869893 -> 88 150 -idx: 97 entropy_left: 0.991076 entropy_right : 0.883585 -> 88 150 -idx: 99 entropy_left: 0.94566 entropy_right : 0.847862 -> 88 150 -idx: 101 entropy_left: 0.995727 entropy_right : 0.863121 -> 88 150 -idx: 102 entropy_left: 0.985228 entropy_right : 0.842658 -> 88 150 -idx: 104 entropy_left: 1 entropy_right : 0.858981 -> 88 150 -idx: 105 entropy_left: 0.997502 entropy_right : 0.836641 -> 88 150 -idx: 106 entropy_left: 1 entropy_right : 0.845351 -> 88 150 -idx: 107 entropy_left: 0.998001 entropy_right : 0.820364 -> 88 150 -idx: 109 entropy_left: 0.998364 entropy_right : 0.839004 -> 88 150 -idx: 110 entropy_left: 1 entropy_right : 0.811278 -> 88 150 -idx: 113 entropy_left: 0.989587 entropy_right : 0.841852 -> 88 150 -idx: 114 entropy_left: 0.995727 entropy_right : 0.811278 -> 88 150 -idx: 117 entropy_left: 0.978449 entropy_right : 0.845351 -> 88 150 -idx: 118 entropy_left: 0.987138 entropy_right : 0.811278 -> 88 150 -idx: 120 entropy_left: 0.974489 entropy_right : 0.836641 -> 88 150 -idx: 122 entropy_left: 0.989993 entropy_right : 0.749595 -> 88 150 -idx: 127 entropy_left: 0.961237 entropy_right : 0.828056 -> 88 150 -idx: 130 entropy_left: 0.985228 entropy_right : 0.60984 -> 88 150 -idx: 132 entropy_left: 0.976021 entropy_right : 0.650022 -> 88 150 -idx: 133 entropy_left: 0.982474 entropy_right : 0.522559 -> 88 150 -idx: 134 entropy_left: 0.978071 entropy_right : 0.543564 -> 88 150 -idx: 135 entropy_left: 0.983939 entropy_right : 0.353359 -> 88 150 -idx: 137 entropy_left: 0.975526 entropy_right : 0.391244 -> 88 150 -idx: 138 entropy_left: 0.981454 entropy_right : 0 -> 88 150 -cut: 6.05 index: 89 -start: 88 cut: 89 end: 150 -k=2 k1=1 k2=2 ent=0.923579 ent1=0 ent2=0.912734 -ig=0.025566 delta=2.78567 N 62 term 0.140587 -idx: 91 entropy_left: 0 entropy_right : 0.923842 -> 89 150 -idx: 95 entropy_left: 0.918296 entropy_right : 0.869893 -> 89 150 -idx: 97 entropy_left: 1 entropy_right : 0.883585 -> 89 150 -idx: 99 entropy_left: 0.970951 entropy_right : 0.847862 -> 89 150 -idx: 101 entropy_left: 1 entropy_right : 0.863121 -> 89 150 -idx: 102 entropy_left: 0.995727 entropy_right : 0.842658 -> 89 150 -idx: 104 entropy_left: 0.996792 entropy_right : 0.858981 -> 89 150 -idx: 105 entropy_left: 1 entropy_right : 0.836641 -> 89 150 -idx: 106 entropy_left: 0.997502 entropy_right : 0.845351 -> 89 150 -idx: 107 entropy_left: 1 entropy_right : 0.820364 -> 89 150 -idx: 109 entropy_left: 0.992774 entropy_right : 0.839004 -> 89 150 -idx: 110 entropy_left: 0.998364 entropy_right : 0.811278 -> 89 150 -idx: 113 entropy_left: 0.979869 entropy_right : 0.841852 -> 89 150 -idx: 114 entropy_left: 0.989587 entropy_right : 0.811278 -> 89 150 -idx: 117 entropy_left: 0.966619 entropy_right : 0.845351 -> 89 150 -idx: 118 entropy_left: 0.978449 entropy_right : 0.811278 -> 89 150 -idx: 120 entropy_left: 0.9629 entropy_right : 0.836641 -> 89 150 -idx: 122 entropy_left: 0.983376 entropy_right : 0.749595 -> 89 150 -idx: 127 entropy_left: 0.949452 entropy_right : 0.828056 -> 89 150 -idx: 130 entropy_left: 0.97887 entropy_right : 0.60984 -> 89 150 -idx: 132 entropy_left: 0.968165 entropy_right : 0.650022 -> 89 150 -idx: 133 entropy_left: 0.976021 entropy_right : 0.522559 -> 89 150 -idx: 134 entropy_left: 0.970951 entropy_right : 0.543564 -> 89 150 -idx: 135 entropy_left: 0.978071 entropy_right : 0.353359 -> 89 150 -idx: 137 entropy_left: 0.968461 entropy_right : 0.391244 -> 89 150 -idx: 138 entropy_left: 0.975526 entropy_right : 0 -> 89 150 -cut: 6.1 index: 91 -start: 89 cut: 91 end: 150 -k=2 k1=1 k2=2 ent=0.912734 ent1=0 ent2=0.923842 -ig=0.0191818 delta=2.82957 N 61 term 0.143221 -idx: 95 entropy_left: 0 entropy_right : 0.869893 -> 91 150 -idx: 97 entropy_left: 0.918296 entropy_right : 0.883585 -> 91 150 -idx: 99 entropy_left: 0.811278 entropy_right : 0.847862 -> 91 150 -idx: 101 entropy_left: 0.970951 entropy_right : 0.863121 -> 91 150 -idx: 102 entropy_left: 0.94566 entropy_right : 0.842658 -> 91 150 -idx: 104 entropy_left: 0.995727 entropy_right : 0.858981 -> 91 150 -idx: 105 entropy_left: 0.985228 entropy_right : 0.836641 -> 91 150 -idx: 106 entropy_left: 0.996792 entropy_right : 0.845351 -> 91 150 -idx: 107 entropy_left: 0.988699 entropy_right : 0.820364 -> 91 150 -idx: 109 entropy_left: 1 entropy_right : 0.839004 -> 91 150 -idx: 110 entropy_left: 0.998001 entropy_right : 0.811278 -> 91 150 -idx: 113 entropy_left: 0.99403 entropy_right : 0.841852 -> 91 150 -idx: 114 entropy_left: 0.998636 entropy_right : 0.811278 -> 91 150 -idx: 117 entropy_left: 0.982859 entropy_right : 0.845351 -> 91 150 -idx: 118 entropy_left: 0.991076 entropy_right : 0.811278 -> 91 150 -idx: 120 entropy_left: 0.978449 entropy_right : 0.836641 -> 91 150 -idx: 122 entropy_left: 0.993234 entropy_right : 0.749595 -> 91 150 -idx: 127 entropy_left: 0.964079 entropy_right : 0.828056 -> 91 150 -idx: 130 entropy_left: 0.988111 entropy_right : 0.60984 -> 91 150 -idx: 132 entropy_left: 0.97887 entropy_right : 0.650022 -> 91 150 -idx: 133 entropy_left: 0.985228 entropy_right : 0.522559 -> 91 150 -idx: 134 entropy_left: 0.980798 entropy_right : 0.543564 -> 91 150 -idx: 135 entropy_left: 0.986545 entropy_right : 0.353359 -> 91 150 -idx: 137 entropy_left: 0.978071 entropy_right : 0.391244 -> 91 150 -idx: 138 entropy_left: 0.983939 entropy_right : 0 -> 91 150 -cut: 6.15 index: 95 -start: 91 cut: 95 end: 150 -k=2 k1=1 k2=2 ent=0.923842 ent1=0 ent2=0.869893 -ig=0.112925 delta=2.69946 N 59 term 0.145041 -idx: 97 entropy_left: 0 entropy_right : 0.883585 -> 95 150 -idx: 99 entropy_left: 1 entropy_right : 0.847862 -> 95 150 -idx: 101 entropy_left: 0.918296 entropy_right : 0.863121 -> 95 150 -idx: 102 entropy_left: 0.985228 entropy_right : 0.842658 -> 95 150 -idx: 104 entropy_left: 0.918296 entropy_right : 0.858981 -> 95 150 -idx: 105 entropy_left: 0.970951 entropy_right : 0.836641 -> 95 150 -idx: 106 entropy_left: 0.94566 entropy_right : 0.845351 -> 95 150 -idx: 107 entropy_left: 0.979869 entropy_right : 0.820364 -> 95 150 -idx: 109 entropy_left: 0.940286 entropy_right : 0.839004 -> 95 150 -idx: 110 entropy_left: 0.970951 entropy_right : 0.811278 -> 95 150 -idx: 113 entropy_left: 0.918296 entropy_right : 0.841852 -> 95 150 -idx: 114 entropy_left: 0.949452 entropy_right : 0.811278 -> 95 150 -idx: 117 entropy_left: 0.902393 entropy_right : 0.845351 -> 95 150 -idx: 118 entropy_left: 0.932112 entropy_right : 0.811278 -> 95 150 -idx: 120 entropy_left: 0.904381 entropy_right : 0.836641 -> 95 150 -idx: 122 entropy_left: 0.950956 entropy_right : 0.749595 -> 95 150 -idx: 127 entropy_left: 0.896038 entropy_right : 0.828056 -> 95 150 -idx: 130 entropy_left: 0.951763 entropy_right : 0.60984 -> 95 150 -idx: 132 entropy_left: 0.935269 entropy_right : 0.650022 -> 95 150 -idx: 133 entropy_left: 0.949452 entropy_right : 0.522559 -> 95 150 -idx: 134 entropy_left: 0.941828 entropy_right : 0.543564 -> 95 150 -idx: 135 entropy_left: 0.954434 entropy_right : 0.353359 -> 95 150 -idx: 137 entropy_left: 0.940286 entropy_right : 0.391244 -> 95 150 -idx: 138 entropy_left: 0.952266 entropy_right : 0 -> 95 150 -cut: 6.2 index: 97 -start: 95 cut: 97 end: 150 -k=2 k1=1 k2=2 ent=0.869893 ent1=0 ent2=0.883585 -ig=0.018438 delta=2.83474 N 55 term 0.156175 -idx: 99 entropy_left: 0 entropy_right : 0.847862 -> 97 150 -idx: 101 entropy_left: 1 entropy_right : 0.863121 -> 97 150 -idx: 102 entropy_left: 0.970951 entropy_right : 0.842658 -> 97 150 -idx: 104 entropy_left: 0.985228 entropy_right : 0.858981 -> 97 150 -idx: 105 entropy_left: 1 entropy_right : 0.836641 -> 97 150 -idx: 106 entropy_left: 0.991076 entropy_right : 0.845351 -> 97 150 -idx: 107 entropy_left: 1 entropy_right : 0.820364 -> 97 150 -idx: 109 entropy_left: 0.979869 entropy_right : 0.839004 -> 97 150 -idx: 110 entropy_left: 0.995727 entropy_right : 0.811278 -> 97 150 -idx: 113 entropy_left: 0.954434 entropy_right : 0.841852 -> 97 150 -idx: 114 entropy_left: 0.977418 entropy_right : 0.811278 -> 97 150 -idx: 117 entropy_left: 0.934068 entropy_right : 0.845351 -> 97 150 -idx: 118 entropy_left: 0.958712 entropy_right : 0.811278 -> 97 150 -idx: 120 entropy_left: 0.932112 entropy_right : 0.836641 -> 97 150 -idx: 122 entropy_left: 0.970951 entropy_right : 0.749595 -> 97 150 -idx: 127 entropy_left: 0.918296 entropy_right : 0.828056 -> 97 150 -idx: 130 entropy_left: 0.967295 entropy_right : 0.60984 -> 97 150 -idx: 132 entropy_left: 0.951763 entropy_right : 0.650022 -> 97 150 -idx: 133 entropy_left: 0.964079 entropy_right : 0.522559 -> 97 150 -idx: 134 entropy_left: 0.956889 entropy_right : 0.543564 -> 97 150 -idx: 135 entropy_left: 0.967788 entropy_right : 0.353359 -> 97 150 -idx: 137 entropy_left: 0.954434 entropy_right : 0.391244 -> 97 150 -idx: 138 entropy_left: 0.964957 entropy_right : 0 -> 97 150 -cut: 6.25 index: 99 -start: 97 cut: 99 end: 150 -k=2 k1=1 k2=2 ent=0.883585 ent1=0 ent2=0.847862 -ig=0.0677181 delta=2.73591 N 53 term 0.159176 -idx: 101 entropy_left: 0 entropy_right : 0.863121 -> 99 150 -idx: 102 entropy_left: 0.918296 entropy_right : 0.842658 -> 99 150 -idx: 104 entropy_left: 0.721928 entropy_right : 0.858981 -> 99 150 -idx: 105 entropy_left: 0.918296 entropy_right : 0.836641 -> 99 150 -idx: 106 entropy_left: 0.863121 entropy_right : 0.845351 -> 99 150 -idx: 107 entropy_left: 0.954434 entropy_right : 0.820364 -> 99 150 -idx: 109 entropy_left: 0.881291 entropy_right : 0.839004 -> 99 150 -idx: 110 entropy_left: 0.94566 entropy_right : 0.811278 -> 99 150 -idx: 113 entropy_left: 0.863121 entropy_right : 0.841852 -> 99 150 -idx: 114 entropy_left: 0.918296 entropy_right : 0.811278 -> 99 150 -idx: 117 entropy_left: 0.852405 entropy_right : 0.845351 -> 99 150 -idx: 118 entropy_left: 0.899744 entropy_right : 0.811278 -> 99 150 -idx: 120 entropy_left: 0.863121 entropy_right : 0.836641 -> 99 150 -idx: 122 entropy_left: 0.932112 entropy_right : 0.749595 -> 99 150 -idx: 127 entropy_left: 0.863121 entropy_right : 0.828056 -> 99 150 -idx: 130 entropy_left: 0.938315 entropy_right : 0.60984 -> 99 150 -idx: 132 entropy_left: 0.918296 entropy_right : 0.650022 -> 99 150 -idx: 133 entropy_left: 0.936667 entropy_right : 0.522559 -> 99 150 -idx: 134 entropy_left: 0.927527 entropy_right : 0.543564 -> 99 150 -idx: 135 entropy_left: 0.943602 entropy_right : 0.353359 -> 99 150 -idx: 137 entropy_left: 0.926819 entropy_right : 0.391244 -> 99 150 -idx: 138 entropy_left: 0.941828 entropy_right : 0 -> 99 150 -cut: 6.3 index: 101 -start: 99 cut: 101 end: 150 -k=2 k1=1 k2=2 ent=0.847862 ent1=0 ent2=0.863121 -ig=0.0185891 delta=2.83787 N 51 term 0.166308 -idx: 102 entropy_left: 0 entropy_right : 0.842658 -> 101 150 -idx: 104 entropy_left: 0.918296 entropy_right : 0.858981 -> 101 150 -idx: 105 entropy_left: 1 entropy_right : 0.836641 -> 101 150 -idx: 106 entropy_left: 0.970951 entropy_right : 0.845351 -> 101 150 -idx: 107 entropy_left: 1 entropy_right : 0.820364 -> 101 150 -idx: 109 entropy_left: 0.954434 entropy_right : 0.839004 -> 101 150 -idx: 110 entropy_left: 0.991076 entropy_right : 0.811278 -> 101 150 -idx: 113 entropy_left: 0.918296 entropy_right : 0.841852 -> 101 150 -idx: 114 entropy_left: 0.961237 entropy_right : 0.811278 -> 101 150 -idx: 117 entropy_left: 0.896038 entropy_right : 0.845351 -> 101 150 -idx: 118 entropy_left: 0.936667 entropy_right : 0.811278 -> 101 150 -idx: 120 entropy_left: 0.899744 entropy_right : 0.836641 -> 101 150 -idx: 122 entropy_left: 0.958712 entropy_right : 0.749595 -> 101 150 -idx: 127 entropy_left: 0.890492 entropy_right : 0.828056 -> 101 150 -idx: 130 entropy_left: 0.957554 entropy_right : 0.60984 -> 101 150 -idx: 132 entropy_left: 0.938315 entropy_right : 0.650022 -> 101 150 -idx: 133 entropy_left: 0.954434 entropy_right : 0.522559 -> 101 150 -idx: 134 entropy_left: 0.94566 entropy_right : 0.543564 -> 101 150 -idx: 135 entropy_left: 0.959687 entropy_right : 0.353359 -> 101 150 -idx: 137 entropy_left: 0.943602 entropy_right : 0.391244 -> 101 150 -idx: 138 entropy_left: 0.956889 entropy_right : 0 -> 101 150 -cut: 6.3 index: 102 -start: 101 cut: 102 end: 150 -k=2 k1=1 k2=2 ent=0.863121 ent1=0 ent2=0.842658 -ig=0.0376598 delta=2.76643 N 49 term 0.170437 -idx: 104 entropy_left: 0 entropy_right : 0.858981 -> 102 150 -idx: 105 entropy_left: 0.918296 entropy_right : 0.836641 -> 102 150 -idx: 106 entropy_left: 0.811278 entropy_right : 0.845351 -> 102 150 -idx: 107 entropy_left: 0.970951 entropy_right : 0.820364 -> 102 150 -idx: 109 entropy_left: 0.863121 entropy_right : 0.839004 -> 102 150 -idx: 110 entropy_left: 0.954434 entropy_right : 0.811278 -> 102 150 -idx: 113 entropy_left: 0.845351 entropy_right : 0.841852 -> 102 150 -idx: 114 entropy_left: 0.918296 entropy_right : 0.811278 -> 102 150 -idx: 117 entropy_left: 0.836641 entropy_right : 0.845351 -> 102 150 -idx: 118 entropy_left: 0.896038 entropy_right : 0.811278 -> 102 150 -idx: 120 entropy_left: 0.852405 entropy_right : 0.836641 -> 102 150 -idx: 122 entropy_left: 0.934068 entropy_right : 0.749595 -> 102 150 -idx: 127 entropy_left: 0.855451 entropy_right : 0.828056 -> 102 150 -idx: 130 entropy_left: 0.940286 entropy_right : 0.60984 -> 102 150 -idx: 132 entropy_left: 0.918296 entropy_right : 0.650022 -> 102 150 -idx: 133 entropy_left: 0.938315 entropy_right : 0.522559 -> 102 150 -idx: 134 entropy_left: 0.928362 entropy_right : 0.543564 -> 102 150 -idx: 135 entropy_left: 0.94566 entropy_right : 0.353359 -> 102 150 -idx: 137 entropy_left: 0.927527 entropy_right : 0.391244 -> 102 150 -idx: 138 entropy_left: 0.943602 entropy_right : 0 -> 102 150 -cut: 6.3 index: 104 -start: 102 cut: 104 end: 150 -k=2 k1=1 k2=2 ent=0.842658 ent1=0 ent2=0.858981 -ig=0.0194677 delta=2.84 N 48 term 0.174887 -idx: 105 entropy_left: 0 entropy_right : 0.836641 -> 104 150 -idx: 106 entropy_left: 1 entropy_right : 0.845351 -> 104 150 -idx: 107 entropy_left: 0.918296 entropy_right : 0.820364 -> 104 150 -idx: 109 entropy_left: 0.970951 entropy_right : 0.839004 -> 104 150 -idx: 110 entropy_left: 1 entropy_right : 0.811278 -> 104 150 -idx: 113 entropy_left: 0.918296 entropy_right : 0.841852 -> 104 150 -idx: 114 entropy_left: 0.970951 entropy_right : 0.811278 -> 104 150 -idx: 117 entropy_left: 0.890492 entropy_right : 0.845351 -> 104 150 -idx: 118 entropy_left: 0.940286 entropy_right : 0.811278 -> 104 150 -idx: 120 entropy_left: 0.896038 entropy_right : 0.836641 -> 104 150 -idx: 122 entropy_left: 0.964079 entropy_right : 0.749595 -> 104 150 -idx: 127 entropy_left: 0.886541 entropy_right : 0.828056 -> 104 150 -idx: 130 entropy_left: 0.961237 entropy_right : 0.60984 -> 104 150 -idx: 132 entropy_left: 0.940286 entropy_right : 0.650022 -> 104 150 -idx: 133 entropy_left: 0.957554 entropy_right : 0.522559 -> 104 150 -idx: 134 entropy_left: 0.948078 entropy_right : 0.543564 -> 104 150 -idx: 135 entropy_left: 0.9629 entropy_right : 0.353359 -> 104 150 -idx: 137 entropy_left: 0.94566 entropy_right : 0.391244 -> 104 150 -idx: 138 entropy_left: 0.959687 entropy_right : 0 -> 104 150 -cut: 6.3 index: 105 -start: 104 cut: 105 end: 150 -k=2 k1=1 k2=2 ent=0.858981 ent1=0 ent2=0.836641 -ig=0.0405282 delta=2.76267 N 46 term 0.179446 -idx: 106 entropy_left: 0 entropy_right : 0.845351 -> 105 150 -idx: 107 entropy_left: 1 entropy_right : 0.820364 -> 105 150 -idx: 109 entropy_left: 0.811278 entropy_right : 0.839004 -> 105 150 -idx: 110 entropy_left: 0.970951 entropy_right : 0.811278 -> 105 150 -idx: 113 entropy_left: 0.811278 entropy_right : 0.841852 -> 105 150 -idx: 114 entropy_left: 0.918296 entropy_right : 0.811278 -> 105 150 -idx: 117 entropy_left: 0.811278 entropy_right : 0.845351 -> 105 150 -idx: 118 entropy_left: 0.890492 entropy_right : 0.811278 -> 105 150 -idx: 120 entropy_left: 0.836641 entropy_right : 0.836641 -> 105 150 -idx: 122 entropy_left: 0.936667 entropy_right : 0.749595 -> 105 150 -idx: 127 entropy_left: 0.845351 entropy_right : 0.828056 -> 105 150 -idx: 130 entropy_left: 0.942683 entropy_right : 0.60984 -> 105 150 -idx: 132 entropy_left: 0.918296 entropy_right : 0.650022 -> 105 150 -idx: 133 entropy_left: 0.940286 entropy_right : 0.522559 -> 105 150 -idx: 134 entropy_left: 0.929364 entropy_right : 0.543564 -> 105 150 -idx: 135 entropy_left: 0.948078 entropy_right : 0.353359 -> 105 150 -idx: 137 entropy_left: 0.928362 entropy_right : 0.391244 -> 105 150 -idx: 138 entropy_left: 0.94566 entropy_right : 0 -> 105 150 -cut: 6.3 index: 106 -start: 105 cut: 106 end: 150 -k=2 k1=1 k2=2 ent=0.836641 ent1=0 ent2=0.845351 -ig=0.0100753 delta=2.82478 N 45 term 0.184093 -idx: 107 entropy_left: 0 entropy_right : 0.820364 -> 106 150 -idx: 109 entropy_left: 0.918296 entropy_right : 0.839004 -> 106 150 -idx: 110 entropy_left: 1 entropy_right : 0.811278 -> 106 150 -idx: 113 entropy_left: 0.863121 entropy_right : 0.841852 -> 106 150 -idx: 114 entropy_left: 0.954434 entropy_right : 0.811278 -> 106 150 -idx: 117 entropy_left: 0.845351 entropy_right : 0.845351 -> 106 150 -idx: 118 entropy_left: 0.918296 entropy_right : 0.811278 -> 106 150 -idx: 120 entropy_left: 0.863121 entropy_right : 0.836641 -> 106 150 -idx: 122 entropy_left: 0.954434 entropy_right : 0.749595 -> 106 150 -idx: 127 entropy_left: 0.863121 entropy_right : 0.828056 -> 106 150 -idx: 130 entropy_left: 0.954434 entropy_right : 0.60984 -> 106 150 -idx: 132 entropy_left: 0.930586 entropy_right : 0.650022 -> 106 150 -idx: 133 entropy_left: 0.950956 entropy_right : 0.522559 -> 106 150 -idx: 134 entropy_left: 0.940286 entropy_right : 0.543564 -> 106 150 -idx: 135 entropy_left: 0.957554 entropy_right : 0.353359 -> 106 150 -idx: 137 entropy_left: 0.938315 entropy_right : 0.391244 -> 106 150 -idx: 138 entropy_left: 0.954434 entropy_right : 0 -> 106 150 -cut: 6.3 index: 107 -start: 106 cut: 107 end: 150 -k=2 k1=1 k2=2 ent=0.845351 ent1=0 ent2=0.820364 -ig=0.043632 delta=2.75738 N 44 term 0.185992 -idx: 109 entropy_left: 0 entropy_right : 0.839004 -> 107 150 -idx: 110 entropy_left: 0.918296 entropy_right : 0.811278 -> 107 150 -idx: 113 entropy_left: 0.650022 entropy_right : 0.841852 -> 107 150 -idx: 114 entropy_left: 0.863121 entropy_right : 0.811278 -> 107 150 -idx: 117 entropy_left: 0.721928 entropy_right : 0.845351 -> 107 150 -idx: 118 entropy_left: 0.845351 entropy_right : 0.811278 -> 107 150 -idx: 120 entropy_left: 0.77935 entropy_right : 0.836641 -> 107 150 -idx: 122 entropy_left: 0.918296 entropy_right : 0.749595 -> 107 150 -idx: 127 entropy_left: 0.811278 entropy_right : 0.828056 -> 107 150 -idx: 130 entropy_left: 0.932112 entropy_right : 0.60984 -> 107 150 -idx: 132 entropy_left: 0.904381 entropy_right : 0.650022 -> 107 150 -idx: 133 entropy_left: 0.930586 entropy_right : 0.522559 -> 107 150 -idx: 134 entropy_left: 0.918296 entropy_right : 0.543564 -> 107 150 -idx: 135 entropy_left: 0.940286 entropy_right : 0.353359 -> 107 150 -idx: 137 entropy_left: 0.918296 entropy_right : 0.391244 -> 107 150 -idx: 138 entropy_left: 0.938315 entropy_right : 0 -> 107 150 -cut: 6.4 index: 109 -start: 107 cut: 109 end: 150 -k=2 k1=1 k2=2 ent=0.820364 ent1=0 ent2=0.839004 -ig=0.0203831 delta=2.84464 N 43 term 0.191557 -idx: 110 entropy_left: 0 entropy_right : 0.811278 -> 109 150 -idx: 113 entropy_left: 0.811278 entropy_right : 0.841852 -> 109 150 -idx: 114 entropy_left: 0.970951 entropy_right : 0.811278 -> 109 150 -idx: 117 entropy_left: 0.811278 entropy_right : 0.845351 -> 109 150 -idx: 118 entropy_left: 0.918296 entropy_right : 0.811278 -> 109 150 -idx: 120 entropy_left: 0.845351 entropy_right : 0.836641 -> 109 150 -idx: 122 entropy_left: 0.961237 entropy_right : 0.749595 -> 109 150 -idx: 127 entropy_left: 0.852405 entropy_right : 0.828056 -> 109 150 -idx: 130 entropy_left: 0.958712 entropy_right : 0.60984 -> 109 150 -idx: 132 entropy_left: 0.932112 entropy_right : 0.650022 -> 109 150 -idx: 133 entropy_left: 0.954434 entropy_right : 0.522559 -> 109 150 -idx: 134 entropy_left: 0.942683 entropy_right : 0.543564 -> 109 150 -idx: 135 entropy_left: 0.961237 entropy_right : 0.353359 -> 109 150 -idx: 137 entropy_left: 0.940286 entropy_right : 0.391244 -> 109 150 -idx: 138 entropy_left: 0.957554 entropy_right : 0 -> 109 150 -cut: 6.4 index: 110 -start: 109 cut: 110 end: 150 -k=2 k1=1 k2=2 ent=0.839004 ent1=0 ent2=0.811278 -ig=0.0475132 delta=2.7519 N 41 term 0.196923 -idx: 113 entropy_left: 0 entropy_right : 0.841852 -> 110 150 -idx: 114 entropy_left: 0.811278 entropy_right : 0.811278 -> 110 150 -idx: 117 entropy_left: 0.591673 entropy_right : 0.845351 -> 110 150 -idx: 118 entropy_left: 0.811278 entropy_right : 0.811278 -> 110 150 -idx: 120 entropy_left: 0.721928 entropy_right : 0.836641 -> 110 150 -idx: 122 entropy_left: 0.918296 entropy_right : 0.749595 -> 110 150 -idx: 127 entropy_left: 0.787127 entropy_right : 0.828056 -> 110 150 -idx: 130 entropy_left: 0.934068 entropy_right : 0.60984 -> 110 150 -idx: 132 entropy_left: 0.902393 entropy_right : 0.650022 -> 110 150 -idx: 133 entropy_left: 0.932112 entropy_right : 0.522559 -> 110 150 -idx: 134 entropy_left: 0.918296 entropy_right : 0.543564 -> 110 150 -idx: 135 entropy_left: 0.942683 entropy_right : 0.353359 -> 110 150 -idx: 137 entropy_left: 0.918296 entropy_right : 0.391244 -> 110 150 -idx: 138 entropy_left: 0.940286 entropy_right : 0 -> 110 150 -cut: 6.4 index: 113 -start: 110 cut: 113 end: 150 -k=2 k1=1 k2=2 ent=0.811278 ent1=0 ent2=0.841852 -ig=0.0325648 delta=2.8685 N 40 term 0.203848 -idx: 114 entropy_left: 0 entropy_right : 0.811278 -> 113 150 -idx: 117 entropy_left: 0.811278 entropy_right : 0.845351 -> 113 150 -idx: 118 entropy_left: 0.970951 entropy_right : 0.811278 -> 113 150 -idx: 120 entropy_left: 0.863121 entropy_right : 0.836641 -> 113 150 -idx: 122 entropy_left: 0.991076 entropy_right : 0.749595 -> 113 150 -idx: 127 entropy_left: 0.863121 entropy_right : 0.828056 -> 113 150 -idx: 130 entropy_left: 0.977418 entropy_right : 0.60984 -> 113 150 -idx: 132 entropy_left: 0.949452 entropy_right : 0.650022 -> 113 150 -idx: 133 entropy_left: 0.970951 entropy_right : 0.522559 -> 113 150 -idx: 134 entropy_left: 0.958712 entropy_right : 0.543564 -> 113 150 -idx: 135 entropy_left: 0.976021 entropy_right : 0.353359 -> 113 150 -idx: 137 entropy_left: 0.954434 entropy_right : 0.391244 -> 113 150 -idx: 138 entropy_left: 0.970951 entropy_right : 0 -> 113 150 -cut: 6.4 index: 114 -start: 113 cut: 114 end: 150 -k=2 k1=1 k2=2 ent=0.841852 ent1=0 ent2=0.811278 -ig=0.0525005 delta=2.74621 N 37 term 0.21395 -idx: 117 entropy_left: 0 entropy_right : 0.845351 -> 114 150 -idx: 118 entropy_left: 0.811278 entropy_right : 0.811278 -> 114 150 -idx: 120 entropy_left: 0.650022 entropy_right : 0.836641 -> 114 150 -idx: 122 entropy_left: 0.954434 entropy_right : 0.749595 -> 114 150 -idx: 127 entropy_left: 0.77935 entropy_right : 0.828056 -> 114 150 -idx: 130 entropy_left: 0.954434 entropy_right : 0.60984 -> 114 150 -idx: 132 entropy_left: 0.918296 entropy_right : 0.650022 -> 114 150 -idx: 133 entropy_left: 0.949452 entropy_right : 0.522559 -> 114 150 -idx: 134 entropy_left: 0.934068 entropy_right : 0.543564 -> 114 150 -idx: 135 entropy_left: 0.958712 entropy_right : 0.353359 -> 114 150 -idx: 137 entropy_left: 0.932112 entropy_right : 0.391244 -> 114 150 -idx: 138 entropy_left: 0.954434 entropy_right : 0 -> 114 150 -cut: 6.5 index: 117 -start: 114 cut: 117 end: 150 -k=2 k1=1 k2=2 ent=0.811278 ent1=0 ent2=0.845351 -ig=0.0363731 delta=2.8755 N 36 term 0.222355 -idx: 118 entropy_left: 0 entropy_right : 0.811278 -> 117 150 -idx: 120 entropy_left: 0.918296 entropy_right : 0.836641 -> 117 150 -idx: 122 entropy_left: 0.970951 entropy_right : 0.749595 -> 117 150 -idx: 127 entropy_left: 0.881291 entropy_right : 0.828056 -> 117 150 -idx: 130 entropy_left: 0.995727 entropy_right : 0.60984 -> 117 150 -idx: 132 entropy_left: 0.970951 entropy_right : 0.650022 -> 117 150 -idx: 133 entropy_left: 0.988699 entropy_right : 0.522559 -> 117 150 -idx: 134 entropy_left: 0.977418 entropy_right : 0.543564 -> 117 150 -idx: 135 entropy_left: 0.991076 entropy_right : 0.353359 -> 117 150 -idx: 137 entropy_left: 0.970951 entropy_right : 0.391244 -> 117 150 -idx: 138 entropy_left: 0.985228 entropy_right : 0 -> 117 150 -cut: 6.5 index: 118 -start: 117 cut: 118 end: 150 -k=2 k1=1 k2=2 ent=0.845351 ent1=0 ent2=0.811278 -ig=0.058657 delta=2.73921 N 33 term 0.234521 -idx: 120 entropy_left: 0 entropy_right : 0.836641 -> 118 150 -idx: 122 entropy_left: 1 entropy_right : 0.749595 -> 118 150 -idx: 127 entropy_left: 0.764205 entropy_right : 0.828056 -> 118 150 -idx: 130 entropy_left: 0.979869 entropy_right : 0.60984 -> 118 150 -idx: 132 entropy_left: 0.940286 entropy_right : 0.650022 -> 118 150 -idx: 133 entropy_left: 0.970951 entropy_right : 0.522559 -> 118 150 -idx: 134 entropy_left: 0.954434 entropy_right : 0.543564 -> 118 150 -idx: 135 entropy_left: 0.977418 entropy_right : 0.353359 -> 118 150 -idx: 137 entropy_left: 0.949452 entropy_right : 0.391244 -> 118 150 -idx: 138 entropy_left: 0.970951 entropy_right : 0 -> 118 150 -cut: 6.55 index: 120 -start: 118 cut: 120 end: 150 -k=2 k1=1 k2=2 ent=0.811278 ent1=0 ent2=0.836641 -ig=0.0269274 delta=2.85808 N 32 term 0.244134 -idx: 122 entropy_left: 0 entropy_right : 0.749595 -> 120 150 -idx: 127 entropy_left: 0.863121 entropy_right : 0.828056 -> 120 150 -idx: 130 entropy_left: 1 entropy_right : 0.60984 -> 120 150 -idx: 132 entropy_left: 0.979869 entropy_right : 0.650022 -> 120 150 -idx: 133 entropy_left: 0.995727 entropy_right : 0.522559 -> 120 150 -idx: 134 entropy_left: 0.985228 entropy_right : 0.543564 -> 120 150 -idx: 135 entropy_left: 0.996792 entropy_right : 0.353359 -> 120 150 -idx: 137 entropy_left: 0.977418 entropy_right : 0.391244 -> 120 150 -idx: 138 entropy_left: 0.991076 entropy_right : 0 -> 120 150 -cut: 6.65 index: 122 -start: 120 cut: 122 end: 150 -k=2 k1=1 k2=2 ent=0.836641 ent1=0 ent2=0.749595 -ig=0.137018 delta=2.63326 N 30 term 0.249708 -idx: 127 entropy_left: 0 entropy_right : 0.828056 -> 122 150 -idx: 130 entropy_left: 0.954434 entropy_right : 0.60984 -> 122 150 -idx: 132 entropy_left: 0.881291 entropy_right : 0.650022 -> 122 150 -idx: 133 entropy_left: 0.94566 entropy_right : 0.522559 -> 122 150 -idx: 134 entropy_left: 0.918296 entropy_right : 0.543564 -> 122 150 -idx: 135 entropy_left: 0.961237 entropy_right : 0.353359 -> 122 150 -idx: 137 entropy_left: 0.918296 entropy_right : 0.391244 -> 122 150 -idx: 138 entropy_left: 0.954434 entropy_right : 0 -> 122 150 -cut: 6.7 index: 127 -start: 122 cut: 127 end: 150 -k=2 k1=1 k2=2 ent=0.749595 ent1=0 ent2=0.828056 -ig=0.0694066 delta=2.96428 N 28 term 0.275684 -idx: 130 entropy_left: 0 entropy_right : 0.60984 -> 127 150 -idx: 132 entropy_left: 0.970951 entropy_right : 0.650022 -> 127 150 -idx: 133 entropy_left: 0.918296 entropy_right : 0.522559 -> 127 150 -idx: 134 entropy_left: 0.985228 entropy_right : 0.543564 -> 127 150 -idx: 135 entropy_left: 0.954434 entropy_right : 0.353359 -> 127 150 -idx: 137 entropy_left: 1 entropy_right : 0.391244 -> 127 150 -idx: 138 entropy_left: 0.99403 entropy_right : 0 -> 127 150 -cut: 6.75 index: 130 -start: 127 cut: 130 end: 150 -k=2 k1=1 k2=2 ent=0.828056 ent1=0 ent2=0.60984 -ig=0.29776 delta=2.37092 N 23 term 0.296972 -¡Ding! 6.75 130 -idx: 132 entropy_left: 0 entropy_right : 0.650022 -> 130 150 -idx: 133 entropy_left: 0.918296 entropy_right : 0.522559 -> 130 150 -idx: 134 entropy_left: 0.811278 entropy_right : 0.543564 -> 130 150 -idx: 135 entropy_left: 0.970951 entropy_right : 0.353359 -> 130 150 -idx: 137 entropy_left: 0.863121 entropy_right : 0.391244 -> 130 150 -idx: 138 entropy_left: 0.954434 entropy_right : 0 -> 130 150 -cut: 6.8 index: 132 -start: 130 cut: 132 end: 150 -k=2 k1=1 k2=2 ent=0.60984 ent1=0 ent2=0.650022 -ig=0.0248201 delta=2.88772 N 20 term 0.356782 -idx: 133 entropy_left: 0 entropy_right : 0.522559 -> 132 150 -idx: 134 entropy_left: 1 entropy_right : 0.543564 -> 132 150 -idx: 135 entropy_left: 0.918296 entropy_right : 0.353359 -> 132 150 -idx: 137 entropy_left: 0.970951 entropy_right : 0.391244 -> 132 150 -idx: 138 entropy_left: 1 entropy_right : 0 -> 132 150 -cut: 6.85 index: 133 -start: 132 cut: 133 end: 150 -k=2 k1=1 k2=2 ent=0.650022 ent1=0 ent2=0.522559 -ig=0.156494 delta=2.55243 N 18 term 0.368883 -idx: 134 entropy_left: 0 entropy_right : 0.543564 -> 133 150 -idx: 135 entropy_left: 1 entropy_right : 0.353359 -> 133 150 -idx: 137 entropy_left: 0.811278 entropy_right : 0.391244 -> 133 150 -idx: 138 entropy_left: 0.970951 entropy_right : 0 -> 133 150 -cut: 6.9 index: 134 -start: 133 cut: 134 end: 150 -k=2 k1=1 k2=2 ent=0.522559 ent1=0 ent2=0.543564 -ig=0.0109693 delta=2.84936 N 17 term 0.402904 -idx: 135 entropy_left: 0 entropy_right : 0.353359 -> 134 150 -idx: 137 entropy_left: 0.918296 entropy_right : 0.391244 -> 134 150 -idx: 138 entropy_left: 1 entropy_right : 0 -> 134 150 -cut: 6.9 index: 135 -start: 134 cut: 135 end: 150 -k=2 k1=1 k2=2 ent=0.543564 ent1=0 ent2=0.353359 -ig=0.21229 delta=2.42694 N 16 term 0.395865 -idx: 137 entropy_left: 0 entropy_right : 0.391244 -> 135 150 -idx: 138 entropy_left: 0.918296 entropy_right : 0 -> 135 150 -cut: 6.95 index: 137 -start: 135 cut: 137 end: 150 -k=2 k1=1 k2=2 ent=0.353359 ent1=0 ent2=0.391244 -ig=0.0142816 delta=2.88312 N 15 term 0.446032 -idx: 138 entropy_left: 0 entropy_right : 0 -> 137 150 -cut: 7.05 index: 138 -start: 137 cut: 138 end: 150 -k=2 k1=1 k2=1 ent=0.391244 ent1=0 ent2=0 -ig=0.391244 delta=2.02487 N 13 term 0.431525 -idx: 3 entropy_left: 0 entropy_right : 1.58436 -> 0 150 -idx: 4 entropy_left: 0.811278 entropy_right : 1.58449 -> 0 150 -idx: 5 entropy_left: 0.721928 entropy_right : 1.58406 -> 0 150 -idx: 6 entropy_left: 1.25163 entropy_right : 1.58433 -> 0 150 -idx: 11 entropy_left: 0.865857 entropy_right : 1.58008 -> 0 150 -idx: 15 entropy_left: 1.23096 entropy_right : 1.58116 -> 0 150 -idx: 20 entropy_left: 1.0763 entropy_right : 1.57336 -> 0 150 -idx: 22 entropy_left: 1.14332 entropy_right : 1.57369 -> 0 150 -idx: 24 entropy_left: 1.09948 entropy_right : 1.56915 -> 0 150 -idx: 26 entropy_left: 1.14162 entropy_right : 1.56908 -> 0 150 -idx: 27 entropy_left: 1.12466 entropy_right : 1.56654 -> 0 150 -idx: 28 entropy_left: 1.13928 entropy_right : 1.56629 -> 0 150 -idx: 30 entropy_left: 1.10923 entropy_right : 1.56041 -> 0 150 -idx: 31 entropy_left: 1.12309 entropy_right : 1.5601 -> 0 150 -idx: 33 entropy_left: 1.09614 entropy_right : 1.55299 -> 0 150 -idx: 36 entropy_left: 1.1271 entropy_right : 1.55114 -> 0 150 -idx: 38 entropy_left: 1.10727 entropy_right : 1.54289 -> 0 150 -idx: 39 entropy_left: 1.11501 entropy_right : 1.54191 -> 0 150 -idx: 40 entropy_left: 1.10587 entropy_right : 1.5372 -> 0 150 -idx: 41 entropy_left: 1.1127 entropy_right : 1.53602 -> 0 150 -idx: 42 entropy_left: 1.10431 entropy_right : 1.5309 -> 0 150 -idx: 44 entropy_left: 1.115 entropy_right : 1.52776 -> 0 150 -idx: 46 entropy_left: 1.10094 entropy_right : 1.51618 -> 0 150 -idx: 47 entropy_left: 1.10581 entropy_right : 1.51424 -> 0 150 -idx: 48 entropy_left: 1.1872 entropy_right : 1.5185 -> 0 150 -idx: 54 entropy_left: 1.14052 entropy_right : 1.46887 -> 0 150 -idx: 56 entropy_left: 1.15193 entropy_right : 1.46473 -> 0 150 -idx: 57 entropy_left: 1.14495 entropy_right : 1.45357 -> 0 150 -idx: 60 entropy_left: 1.15668 entropy_right : 1.44419 -> 0 150 -idx: 62 entropy_left: 1.14522 entropy_right : 1.41861 -> 0 150 -idx: 63 entropy_left: 1.14849 entropy_right : 1.41447 -> 0 150 -idx: 64 entropy_left: 1.20362 entropy_right : 1.42086 -> 0 150 -idx: 66 entropy_left: 1.20721 entropy_right : 1.41124 -> 0 150 -idx: 67 entropy_left: 1.20211 entropy_right : 1.39657 -> 0 150 -idx: 68 entropy_left: 1.20348 entropy_right : 1.39074 -> 0 150 -idx: 69 entropy_left: 1.2483 entropy_right : 1.39791 -> 0 150 -idx: 70 entropy_left: 1.24884 entropy_right : 1.39158 -> 0 150 -idx: 72 entropy_left: 1.32074 entropy_right : 1.40644 -> 0 150 -idx: 76 entropy_left: 1.31734 entropy_right : 1.37422 -> 0 150 -idx: 77 entropy_left: 1.34645 entropy_right : 1.38267 -> 0 150 -idx: 78 entropy_left: 1.34261 entropy_right : 1.36665 -> 0 150 -idx: 79 entropy_left: 1.36851 entropy_right : 1.37533 -> 0 150 -idx: 84 entropy_left: 1.34715 entropy_right : 1.26234 -> 0 150 -idx: 85 entropy_left: 1.347 entropy_right : 1.25116 -> 0 150 -idx: 87 entropy_left: 1.33826 entropy_right : 1.18225 -> 0 150 -idx: 90 entropy_left: 1.40118 entropy_right : 1.21122 -> 0 150 -idx: 93 entropy_left: 1.40005 entropy_right : 1.16892 -> 0 150 -idx: 98 entropy_left: 1.47304 entropy_right : 1.22565 -> 0 150 -idx: 100 entropy_left: 1.47122 entropy_right : 1.19111 -> 0 150 -idx: 101 entropy_left: 1.46797 entropy_right : 1.14476 -> 0 150 -idx: 102 entropy_left: 1.47927 entropy_right : 1.15749 -> 0 150 -idx: 105 entropy_left: 1.47569 entropy_right : 1.08152 -> 0 150 -idx: 107 entropy_left: 1.47004 entropy_right : 0.950334 -> 0 150 -idx: 108 entropy_left: 1.48068 entropy_right : 0.963746 -> 0 150 -idx: 109 entropy_left: 1.4795 entropy_right : 0.927028 -> 0 150 -idx: 110 entropy_left: 1.47673 entropy_right : 0.830641 -> 0 150 -idx: 111 entropy_left: 1.47555 entropy_right : 0.785152 -> 0 150 -idx: 112 entropy_left: 1.48551 entropy_right : 0.798194 -> 0 150 -idx: 114 entropy_left: 1.48276 entropy_right : 0.681589 -> 0 150 -idx: 123 entropy_left: 1.54568 entropy_right : 0.82498 -> 0 150 -idx: 124 entropy_left: 1.54385 entropy_right : 0.619382 -> 0 150 -idx: 125 entropy_left: 1.54287 entropy_right : 0.529361 -> 0 150 -idx: 131 entropy_left: 1.566 entropy_right : 0.629249 -> 0 150 -idx: 132 entropy_left: 1.56527 entropy_right : 0.503258 -> 0 150 -idx: 138 entropy_left: 1.57847 entropy_right : 0.650022 -> 0 150 -idx: 139 entropy_left: 1.578 entropy_right : 0.439497 -> 0 150 -idx: 141 entropy_left: 1.58075 entropy_right : 0.503258 -> 0 150 -idx: 142 entropy_left: 1.58029 entropy_right : 0 -> 0 150 -cut: 3.8 index: 142 -start: 0 cut: 142 end: 150 -k=3 k1=3 k2=1 ent=1.58496 ent1=1.58029 ent2=0 -ig=0.088955 delta=4.62984 N 150 term 0.0789934 -¡Ding! 3.8 142 -idx: 3 entropy_left: 0 entropy_right : 1.58127 -> 0 142 -idx: 4 entropy_left: 0.811278 entropy_right : 1.58198 -> 0 142 -idx: 5 entropy_left: 0.721928 entropy_right : 1.58211 -> 0 142 -idx: 6 entropy_left: 1.25163 entropy_right : 1.58111 -> 0 142 -idx: 11 entropy_left: 0.865857 entropy_right : 1.57968 -> 0 142 -idx: 15 entropy_left: 1.23096 entropy_right : 1.58355 -> 0 142 -idx: 20 entropy_left: 1.0763 entropy_right : 1.57901 -> 0 142 -idx: 22 entropy_left: 1.14332 entropy_right : 1.581 -> 0 142 -idx: 24 entropy_left: 1.09948 entropy_right : 1.57787 -> 0 142 -idx: 26 entropy_left: 1.14162 entropy_right : 1.57959 -> 0 142 -idx: 27 entropy_left: 1.12466 entropy_right : 1.5778 -> 0 142 -idx: 28 entropy_left: 1.13928 entropy_right : 1.57849 -> 0 142 -idx: 30 entropy_left: 1.10923 entropy_right : 1.57417 -> 0 142 -idx: 31 entropy_left: 1.12309 entropy_right : 1.57486 -> 0 142 -idx: 33 entropy_left: 1.09614 entropy_right : 1.56936 -> 0 142 -idx: 36 entropy_left: 1.1271 entropy_right : 1.57077 -> 0 142 -idx: 38 entropy_left: 1.10727 entropy_right : 1.5643 -> 0 142 -idx: 39 entropy_left: 1.11501 entropy_right : 1.5645 -> 0 142 -idx: 40 entropy_left: 1.10587 entropy_right : 1.5607 -> 0 142 -idx: 41 entropy_left: 1.1127 entropy_right : 1.56074 -> 0 142 -idx: 42 entropy_left: 1.10431 entropy_right : 1.55656 -> 0 142 -idx: 44 entropy_left: 1.115 entropy_right : 1.55597 -> 0 142 -idx: 46 entropy_left: 1.10094 entropy_right : 1.5464 -> 0 142 -idx: 47 entropy_left: 1.10581 entropy_right : 1.54584 -> 0 142 -idx: 48 entropy_left: 1.1872 entropy_right : 1.54928 -> 0 142 -idx: 54 entropy_left: 1.14052 entropy_right : 1.50552 -> 0 142 -idx: 56 entropy_left: 1.15193 entropy_right : 1.50481 -> 0 142 -idx: 57 entropy_left: 1.14495 entropy_right : 1.49458 -> 0 142 -idx: 60 entropy_left: 1.15668 entropy_right : 1.49062 -> 0 142 -idx: 62 entropy_left: 1.14522 entropy_right : 1.46703 -> 0 142 -idx: 63 entropy_left: 1.14849 entropy_right : 1.46484 -> 0 142 -idx: 64 entropy_left: 1.20362 entropy_right : 1.47091 -> 0 142 -idx: 66 entropy_left: 1.20721 entropy_right : 1.46535 -> 0 142 -idx: 67 entropy_left: 1.20211 entropy_right : 1.45177 -> 0 142 -idx: 68 entropy_left: 1.20348 entropy_right : 1.44805 -> 0 142 -idx: 69 entropy_left: 1.2483 entropy_right : 1.45511 -> 0 142 -idx: 70 entropy_left: 1.24884 entropy_right : 1.45096 -> 0 142 -idx: 72 entropy_left: 1.32074 entropy_right : 1.46554 -> 0 142 -idx: 76 entropy_left: 1.31734 entropy_right : 1.44273 -> 0 142 -idx: 77 entropy_left: 1.34645 entropy_right : 1.45133 -> 0 142 -idx: 78 entropy_left: 1.34261 entropy_right : 1.43701 -> 0 142 -idx: 79 entropy_left: 1.36851 entropy_right : 1.44585 -> 0 142 -idx: 84 entropy_left: 1.34715 entropy_right : 1.33881 -> 0 142 -idx: 85 entropy_left: 1.347 entropy_right : 1.33069 -> 0 142 -idx: 87 entropy_left: 1.33826 entropy_right : 1.26166 -> 0 142 -idx: 90 entropy_left: 1.40118 entropy_right : 1.29295 -> 0 142 -idx: 93 entropy_left: 1.40005 entropy_right : 1.26174 -> 0 142 -idx: 98 entropy_left: 1.47304 entropy_right : 1.32473 -> 0 142 -idx: 100 entropy_left: 1.47122 entropy_right : 1.30006 -> 0 142 -idx: 101 entropy_left: 1.46797 entropy_right : 1.25352 -> 0 142 -idx: 102 entropy_left: 1.47927 entropy_right : 1.26817 -> 0 142 -idx: 105 entropy_left: 1.47569 entropy_right : 1.20685 -> 0 142 -idx: 107 entropy_left: 1.47004 entropy_right : 1.06939 -> 0 142 -idx: 108 entropy_left: 1.48068 entropy_right : 1.08631 -> 0 142 -idx: 109 entropy_left: 1.4795 entropy_right : 1.05377 -> 0 142 -idx: 110 entropy_left: 1.47673 entropy_right : 0.947169 -> 0 142 -idx: 111 entropy_left: 1.47555 entropy_right : 0.904233 -> 0 142 -idx: 112 entropy_left: 1.48551 entropy_right : 0.921834 -> 0 142 -idx: 114 entropy_left: 1.48276 entropy_right : 0.805858 -> 0 142 -idx: 123 entropy_left: 1.54568 entropy_right : 1.02146 -> 0 142 -idx: 124 entropy_left: 1.54385 entropy_right : 0.764205 -> 0 142 -idx: 125 entropy_left: 1.54287 entropy_right : 0.672295 -> 0 142 -idx: 131 entropy_left: 1.566 entropy_right : 0.845351 -> 0 142 -idx: 132 entropy_left: 1.56527 entropy_right : 0.721928 -> 0 142 -idx: 138 entropy_left: 1.57847 entropy_right : 1 -> 0 142 -idx: 139 entropy_left: 1.578 entropy_right : 0.918296 -> 0 142 -idx: 141 entropy_left: 1.58075 entropy_right : 0 -> 0 142 -cut: 3.8 index: 141 -start: 0 cut: 141 end: 142 -k=3 k1=3 k2=1 ent=1.58029 ent1=1.58075 ent2=0 -ig=0.0106711 delta=4.64524 N 142 term 0.0829915 -idx: 3 entropy_left: 0 entropy_right : 1.58198 -> 0 141 -idx: 4 entropy_left: 0.811278 entropy_right : 1.58255 -> 0 141 -idx: 5 entropy_left: 0.721928 entropy_right : 1.58276 -> 0 141 -idx: 6 entropy_left: 1.25163 entropy_right : 1.58184 -> 0 141 -idx: 11 entropy_left: 0.865857 entropy_right : 1.58085 -> 0 141 -idx: 15 entropy_left: 1.23096 entropy_right : 1.58415 -> 0 141 -idx: 20 entropy_left: 1.0763 entropy_right : 1.58009 -> 0 141 -idx: 22 entropy_left: 1.14332 entropy_right : 1.58176 -> 0 141 -idx: 24 entropy_left: 1.09948 entropy_right : 1.57882 -> 0 141 -idx: 26 entropy_left: 1.14162 entropy_right : 1.58018 -> 0 141 -idx: 27 entropy_left: 1.12466 entropy_right : 1.57849 -> 0 141 -idx: 28 entropy_left: 1.13928 entropy_right : 1.57898 -> 0 141 -idx: 30 entropy_left: 1.10923 entropy_right : 1.57486 -> 0 141 -idx: 31 entropy_left: 1.12309 entropy_right : 1.57535 -> 0 141 -idx: 33 entropy_left: 1.09614 entropy_right : 1.57005 -> 0 141 -idx: 36 entropy_left: 1.1271 entropy_right : 1.57076 -> 0 141 -idx: 38 entropy_left: 1.10727 entropy_right : 1.5645 -> 0 141 -idx: 39 entropy_left: 1.11501 entropy_right : 1.56443 -> 0 141 -idx: 40 entropy_left: 1.10587 entropy_right : 1.56074 -> 0 141 -idx: 41 entropy_left: 1.1127 entropy_right : 1.5605 -> 0 141 -idx: 42 entropy_left: 1.10431 entropy_right : 1.55642 -> 0 141 -idx: 44 entropy_left: 1.115 entropy_right : 1.55521 -> 0 141 -idx: 46 entropy_left: 1.10094 entropy_right : 1.54584 -> 0 141 -idx: 47 entropy_left: 1.10581 entropy_right : 1.54493 -> 0 141 -idx: 48 entropy_left: 1.1872 entropy_right : 1.54856 -> 0 141 -idx: 54 entropy_left: 1.14052 entropy_right : 1.50535 -> 0 141 -idx: 56 entropy_left: 1.15193 entropy_right : 1.50386 -> 0 141 -idx: 57 entropy_left: 1.14495 entropy_right : 1.49371 -> 0 141 -idx: 60 entropy_left: 1.15668 entropy_right : 1.48832 -> 0 141 -idx: 62 entropy_left: 1.14522 entropy_right : 1.46484 -> 0 141 -idx: 63 entropy_left: 1.14849 entropy_right : 1.46208 -> 0 141 -idx: 64 entropy_left: 1.20362 entropy_right : 1.46844 -> 0 141 -idx: 66 entropy_left: 1.20721 entropy_right : 1.4616 -> 0 141 -idx: 67 entropy_left: 1.20211 entropy_right : 1.44805 -> 0 141 -idx: 68 entropy_left: 1.20348 entropy_right : 1.44359 -> 0 141 -idx: 69 entropy_left: 1.2483 entropy_right : 1.45096 -> 0 141 -idx: 70 entropy_left: 1.24884 entropy_right : 1.44601 -> 0 141 -idx: 72 entropy_left: 1.32074 entropy_right : 1.46126 -> 0 141 -idx: 76 entropy_left: 1.31734 entropy_right : 1.43432 -> 0 141 -idx: 77 entropy_left: 1.34645 entropy_right : 1.44327 -> 0 141 -idx: 78 entropy_left: 1.34261 entropy_right : 1.42896 -> 0 141 -idx: 79 entropy_left: 1.36851 entropy_right : 1.43818 -> 0 141 -idx: 84 entropy_left: 1.34715 entropy_right : 1.33069 -> 0 141 -idx: 85 entropy_left: 1.347 entropy_right : 1.32113 -> 0 141 -idx: 87 entropy_left: 1.33826 entropy_right : 1.25143 -> 0 141 -idx: 90 entropy_left: 1.40118 entropy_right : 1.28433 -> 0 141 -idx: 93 entropy_left: 1.40005 entropy_right : 1.24727 -> 0 141 -idx: 98 entropy_left: 1.47304 entropy_right : 1.31369 -> 0 141 -idx: 100 entropy_left: 1.47122 entropy_right : 1.2834 -> 0 141 -idx: 101 entropy_left: 1.46797 entropy_right : 1.23616 -> 0 141 -idx: 102 entropy_left: 1.47927 entropy_right : 1.25167 -> 0 141 -idx: 105 entropy_left: 1.47569 entropy_right : 1.17693 -> 0 141 -idx: 107 entropy_left: 1.47004 entropy_right : 1.03605 -> 0 141 -idx: 108 entropy_left: 1.48068 entropy_right : 1.05377 -> 0 141 -idx: 109 entropy_left: 1.4795 entropy_right : 1.0141 -> 0 141 -idx: 110 entropy_left: 1.47673 entropy_right : 0.904233 -> 0 141 -idx: 111 entropy_left: 1.47555 entropy_right : 0.851933 -> 0 141 -idx: 112 entropy_left: 1.48551 entropy_right : 0.869996 -> 0 141 -idx: 114 entropy_left: 1.48276 entropy_right : 0.725376 -> 0 141 -idx: 123 entropy_left: 1.54568 entropy_right : 0.944489 -> 0 141 -idx: 124 entropy_left: 1.54385 entropy_right : 0.672295 -> 0 141 -idx: 125 entropy_left: 1.54287 entropy_right : 0.543564 -> 0 141 -idx: 131 entropy_left: 1.566 entropy_right : 0.721928 -> 0 141 -idx: 132 entropy_left: 1.56527 entropy_right : 0.503258 -> 0 141 -idx: 138 entropy_left: 1.57847 entropy_right : 0.918296 -> 0 141 -idx: 139 entropy_left: 1.578 entropy_right : 0 -> 0 141 -cut: 3.8 index: 139 -start: 0 cut: 139 end: 141 -k=3 k1=3 k2=1 ent=1.58075 ent1=1.578 ent2=0 -ig=0.0251329 delta=4.63561 N 141 term 0.0834389 -idx: 3 entropy_left: 0 entropy_right : 1.57964 -> 0 139 -idx: 4 entropy_left: 0.811278 entropy_right : 1.58036 -> 0 139 -idx: 5 entropy_left: 0.721928 entropy_right : 1.58072 -> 0 139 -idx: 6 entropy_left: 1.25163 entropy_right : 1.5794 -> 0 139 -idx: 11 entropy_left: 0.865857 entropy_right : 1.57915 -> 0 139 -idx: 15 entropy_left: 1.23096 entropy_right : 1.58319 -> 0 139 -idx: 20 entropy_left: 1.0763 entropy_right : 1.58 -> 0 139 -idx: 22 entropy_left: 1.14332 entropy_right : 1.58211 -> 0 139 -idx: 24 entropy_left: 1.09948 entropy_right : 1.57956 -> 0 139 -idx: 26 entropy_left: 1.14162 entropy_right : 1.5814 -> 0 139 -idx: 27 entropy_left: 1.12466 entropy_right : 1.57992 -> 0 139 -idx: 28 entropy_left: 1.13928 entropy_right : 1.58066 -> 0 139 -idx: 30 entropy_left: 1.10923 entropy_right : 1.57698 -> 0 139 -idx: 31 entropy_left: 1.12309 entropy_right : 1.57774 -> 0 139 -idx: 33 entropy_left: 1.09614 entropy_right : 1.57289 -> 0 139 -idx: 36 entropy_left: 1.1271 entropy_right : 1.57449 -> 0 139 -idx: 38 entropy_left: 1.10727 entropy_right : 1.56873 -> 0 139 -idx: 39 entropy_left: 1.11501 entropy_right : 1.56899 -> 0 139 -idx: 40 entropy_left: 1.10587 entropy_right : 1.56556 -> 0 139 -idx: 41 entropy_left: 1.1127 entropy_right : 1.56566 -> 0 139 -idx: 42 entropy_left: 1.10431 entropy_right : 1.56185 -> 0 139 -idx: 44 entropy_left: 1.115 entropy_right : 1.56136 -> 0 139 -idx: 46 entropy_left: 1.10094 entropy_right : 1.55257 -> 0 139 -idx: 47 entropy_left: 1.10581 entropy_right : 1.55205 -> 0 139 -idx: 48 entropy_left: 1.1872 entropy_right : 1.55538 -> 0 139 -idx: 54 entropy_left: 1.14052 entropy_right : 1.51392 -> 0 139 -idx: 56 entropy_left: 1.15193 entropy_right : 1.51342 -> 0 139 -idx: 57 entropy_left: 1.14495 entropy_right : 1.50356 -> 0 139 -idx: 60 entropy_left: 1.15668 entropy_right : 1.49976 -> 0 139 -idx: 62 entropy_left: 1.14522 entropy_right : 1.47691 -> 0 139 -idx: 63 entropy_left: 1.14849 entropy_right : 1.47473 -> 0 139 -idx: 64 entropy_left: 1.20362 entropy_right : 1.48093 -> 0 139 -idx: 66 entropy_left: 1.20721 entropy_right : 1.4753 -> 0 139 -idx: 67 entropy_left: 1.20211 entropy_right : 1.46211 -> 0 139 -idx: 68 entropy_left: 1.20348 entropy_right : 1.45828 -> 0 139 -idx: 69 entropy_left: 1.2483 entropy_right : 1.46554 -> 0 139 -idx: 70 entropy_left: 1.24884 entropy_right : 1.46126 -> 0 139 -idx: 72 entropy_left: 1.32074 entropy_right : 1.47627 -> 0 139 -idx: 76 entropy_left: 1.31734 entropy_right : 1.45221 -> 0 139 -idx: 77 entropy_left: 1.34645 entropy_right : 1.46112 -> 0 139 -idx: 78 entropy_left: 1.34261 entropy_right : 1.44738 -> 0 139 -idx: 79 entropy_left: 1.36851 entropy_right : 1.45656 -> 0 139 -idx: 84 entropy_left: 1.34715 entropy_right : 1.35133 -> 0 139 -idx: 85 entropy_left: 1.347 entropy_right : 1.34276 -> 0 139 -idx: 87 entropy_left: 1.33826 entropy_right : 1.27327 -> 0 139 -idx: 90 entropy_left: 1.40118 entropy_right : 1.30666 -> 0 139 -idx: 93 entropy_left: 1.40005 entropy_right : 1.27333 -> 0 139 -idx: 98 entropy_left: 1.47304 entropy_right : 1.34125 -> 0 139 -idx: 100 entropy_left: 1.47122 entropy_right : 1.31443 -> 0 139 -idx: 101 entropy_left: 1.46797 entropy_right : 1.26744 -> 0 139 -idx: 102 entropy_left: 1.47927 entropy_right : 1.28347 -> 0 139 -idx: 105 entropy_left: 1.47569 entropy_right : 1.21413 -> 0 139 -idx: 107 entropy_left: 1.47004 entropy_right : 1.07208 -> 0 139 -idx: 108 entropy_left: 1.48068 entropy_right : 1.091 -> 0 139 -idx: 109 entropy_left: 1.4795 entropy_right : 1.05298 -> 0 139 -idx: 110 entropy_left: 1.47673 entropy_right : 0.940144 -> 0 139 -idx: 111 entropy_left: 1.47555 entropy_right : 0.888886 -> 0 139 -idx: 112 entropy_left: 1.48551 entropy_right : 0.908654 -> 0 139 -idx: 114 entropy_left: 1.48276 entropy_right : 0.764114 -> 0 139 -idx: 123 entropy_left: 1.54568 entropy_right : 1.0141 -> 0 139 -idx: 124 entropy_left: 1.54385 entropy_right : 0.721928 -> 0 139 -idx: 125 entropy_left: 1.54287 entropy_right : 0.591673 -> 0 139 -idx: 131 entropy_left: 1.566 entropy_right : 0.811278 -> 0 139 -idx: 132 entropy_left: 1.56527 entropy_right : 0.591673 -> 0 139 -idx: 138 entropy_left: 1.57847 entropy_right : 0 -> 0 139 -cut: 3.75 index: 138 -start: 0 cut: 138 end: 139 -k=3 k1=3 k2=1 ent=1.578 ent1=1.57847 ent2=0 -ig=0.0108911 delta=4.64525 N 139 term 0.0845595 -idx: 3 entropy_left: 0 entropy_right : 1.58036 -> 0 138 -idx: 4 entropy_left: 0.811278 entropy_right : 1.58095 -> 0 138 -idx: 5 entropy_left: 0.721928 entropy_right : 1.5814 -> 0 138 -idx: 6 entropy_left: 1.25163 entropy_right : 1.58015 -> 0 138 -idx: 11 entropy_left: 0.865857 entropy_right : 1.58037 -> 0 138 -idx: 15 entropy_left: 1.23096 entropy_right : 1.58382 -> 0 138 -idx: 20 entropy_left: 1.0763 entropy_right : 1.58114 -> 0 138 -idx: 22 entropy_left: 1.14332 entropy_right : 1.58292 -> 0 138 -idx: 24 entropy_left: 1.09948 entropy_right : 1.58057 -> 0 138 -idx: 26 entropy_left: 1.14162 entropy_right : 1.58204 -> 0 138 -idx: 27 entropy_left: 1.12466 entropy_right : 1.58066 -> 0 138 -idx: 28 entropy_left: 1.13928 entropy_right : 1.58121 -> 0 138 -idx: 30 entropy_left: 1.10923 entropy_right : 1.57774 -> 0 138 -idx: 31 entropy_left: 1.12309 entropy_right : 1.57828 -> 0 138 -idx: 33 entropy_left: 1.09614 entropy_right : 1.57366 -> 0 138 -idx: 36 entropy_left: 1.1271 entropy_right : 1.57452 -> 0 138 -idx: 38 entropy_left: 1.10727 entropy_right : 1.56899 -> 0 138 -idx: 39 entropy_left: 1.11501 entropy_right : 1.56898 -> 0 138 -idx: 40 entropy_left: 1.10587 entropy_right : 1.56566 -> 0 138 -idx: 41 entropy_left: 1.1127 entropy_right : 1.56546 -> 0 138 -idx: 42 entropy_left: 1.10431 entropy_right : 1.56176 -> 0 138 -idx: 44 entropy_left: 1.115 entropy_right : 1.56061 -> 0 138 -idx: 46 entropy_left: 1.10094 entropy_right : 1.55205 -> 0 138 -idx: 47 entropy_left: 1.10581 entropy_right : 1.55116 -> 0 138 -idx: 48 entropy_left: 1.1872 entropy_right : 1.55469 -> 0 138 -idx: 54 entropy_left: 1.14052 entropy_right : 1.51387 -> 0 138 -idx: 56 entropy_left: 1.15193 entropy_right : 1.51255 -> 0 138 -idx: 57 entropy_left: 1.14495 entropy_right : 1.50277 -> 0 138 -idx: 60 entropy_left: 1.15668 entropy_right : 1.49745 -> 0 138 -idx: 62 entropy_left: 1.14522 entropy_right : 1.47473 -> 0 138 -idx: 63 entropy_left: 1.14849 entropy_right : 1.47194 -> 0 138 -idx: 64 entropy_left: 1.20362 entropy_right : 1.47844 -> 0 138 -idx: 66 entropy_left: 1.20721 entropy_right : 1.47143 -> 0 138 -idx: 67 entropy_left: 1.20211 entropy_right : 1.45828 -> 0 138 -idx: 68 entropy_left: 1.20348 entropy_right : 1.45365 -> 0 138 -idx: 69 entropy_left: 1.2483 entropy_right : 1.46126 -> 0 138 -idx: 70 entropy_left: 1.24884 entropy_right : 1.45609 -> 0 138 -idx: 72 entropy_left: 1.32074 entropy_right : 1.47182 -> 0 138 -idx: 76 entropy_left: 1.31734 entropy_right : 1.44318 -> 0 138 -idx: 77 entropy_left: 1.34645 entropy_right : 1.45247 -> 0 138 -idx: 78 entropy_left: 1.34261 entropy_right : 1.43876 -> 0 138 -idx: 79 entropy_left: 1.36851 entropy_right : 1.44836 -> 0 138 -idx: 84 entropy_left: 1.34715 entropy_right : 1.34276 -> 0 138 -idx: 85 entropy_left: 1.347 entropy_right : 1.33255 -> 0 138 -idx: 87 entropy_left: 1.33826 entropy_right : 1.26237 -> 0 138 -idx: 90 entropy_left: 1.40118 entropy_right : 1.29759 -> 0 138 -idx: 93 entropy_left: 1.40005 entropy_right : 1.25752 -> 0 138 -idx: 98 entropy_left: 1.47304 entropy_right : 1.32937 -> 0 138 -idx: 100 entropy_left: 1.47122 entropy_right : 1.29587 -> 0 138 -idx: 101 entropy_left: 1.46797 entropy_right : 1.24814 -> 0 138 -idx: 102 entropy_left: 1.47927 entropy_right : 1.26517 -> 0 138 -idx: 105 entropy_left: 1.47569 entropy_right : 1.17919 -> 0 138 -idx: 107 entropy_left: 1.47004 entropy_right : 1.03317 -> 0 138 -idx: 108 entropy_left: 1.48068 entropy_right : 1.05298 -> 0 138 -idx: 109 entropy_left: 1.4795 entropy_right : 1.00567 -> 0 138 -idx: 110 entropy_left: 1.47673 entropy_right : 0.888886 -> 0 138 -idx: 111 entropy_left: 1.47555 entropy_right : 0.82498 -> 0 138 -idx: 112 entropy_left: 1.48551 entropy_right : 0.845106 -> 0 138 -idx: 114 entropy_left: 1.48276 entropy_right : 0.658351 -> 0 138 -idx: 123 entropy_left: 1.54568 entropy_right : 0.905587 -> 0 138 -idx: 124 entropy_left: 1.54385 entropy_right : 0.591673 -> 0 138 -idx: 125 entropy_left: 1.54287 entropy_right : 0.391244 -> 0 138 -idx: 131 entropy_left: 1.566 entropy_right : 0.591673 -> 0 138 -idx: 132 entropy_left: 1.56527 entropy_right : 0 -> 0 138 -cut: 3.6 index: 132 -start: 0 cut: 132 end: 138 -k=3 k1=3 k2=1 ent=1.57847 ent1=1.56527 ent2=0 -ig=0.0812533 delta=4.60426 N 138 term 0.0847992 -idx: 3 entropy_left: 0 entropy_right : 1.56846 -> 0 132 -idx: 4 entropy_left: 0.811278 entropy_right : 1.56949 -> 0 132 -idx: 5 entropy_left: 0.721928 entropy_right : 1.57039 -> 0 132 -idx: 6 entropy_left: 1.25163 entropy_right : 1.56764 -> 0 132 -idx: 11 entropy_left: 0.865857 entropy_right : 1.57018 -> 0 132 -idx: 15 entropy_left: 1.23096 entropy_right : 1.57589 -> 0 132 -idx: 20 entropy_left: 1.0763 entropy_right : 1.576 -> 0 132 -idx: 22 entropy_left: 1.14332 entropy_right : 1.57916 -> 0 132 -idx: 24 entropy_left: 1.09948 entropy_right : 1.57805 -> 0 132 -idx: 26 entropy_left: 1.14162 entropy_right : 1.58104 -> 0 132 -idx: 27 entropy_left: 1.12466 entropy_right : 1.58033 -> 0 132 -idx: 28 entropy_left: 1.13928 entropy_right : 1.58168 -> 0 132 -idx: 30 entropy_left: 1.10923 entropy_right : 1.57962 -> 0 132 -idx: 31 entropy_left: 1.12309 entropy_right : 1.58103 -> 0 132 -idx: 33 entropy_left: 1.09614 entropy_right : 1.57788 -> 0 132 -idx: 36 entropy_left: 1.1271 entropy_right : 1.58163 -> 0 132 -idx: 38 entropy_left: 1.10727 entropy_right : 1.57777 -> 0 132 -idx: 39 entropy_left: 1.11501 entropy_right : 1.57881 -> 0 132 -idx: 40 entropy_left: 1.10587 entropy_right : 1.57637 -> 0 132 -idx: 41 entropy_left: 1.1127 entropy_right : 1.57728 -> 0 132 -idx: 42 entropy_left: 1.10431 entropy_right : 1.5745 -> 0 132 -idx: 44 entropy_left: 1.115 entropy_right : 1.5757 -> 0 132 -idx: 46 entropy_left: 1.10094 entropy_right : 1.56913 -> 0 132 -idx: 47 entropy_left: 1.10581 entropy_right : 1.56953 -> 0 132 -idx: 48 entropy_left: 1.1872 entropy_right : 1.5718 -> 0 132 -idx: 54 entropy_left: 1.14052 entropy_right : 1.53709 -> 0 132 -idx: 56 entropy_left: 1.15193 entropy_right : 1.53913 -> 0 132 -idx: 57 entropy_left: 1.14495 entropy_right : 1.53039 -> 0 132 -idx: 60 entropy_left: 1.15668 entropy_right : 1.53049 -> 0 132 -idx: 62 entropy_left: 1.14522 entropy_right : 1.51011 -> 0 132 -idx: 63 entropy_left: 1.14849 entropy_right : 1.50932 -> 0 132 -idx: 64 entropy_left: 1.20362 entropy_right : 1.51504 -> 0 132 -idx: 66 entropy_left: 1.20721 entropy_right : 1.51225 -> 0 132 -idx: 67 entropy_left: 1.20211 entropy_right : 1.50045 -> 0 132 -idx: 68 entropy_left: 1.20348 entropy_right : 1.49806 -> 0 132 -idx: 69 entropy_left: 1.2483 entropy_right : 1.50504 -> 0 132 -idx: 70 entropy_left: 1.24884 entropy_right : 1.50221 -> 0 132 -idx: 72 entropy_left: 1.32074 entropy_right : 1.51652 -> 0 132 -idx: 76 entropy_left: 1.31734 entropy_right : 1.49816 -> 0 132 -idx: 77 entropy_left: 1.34645 entropy_right : 1.50698 -> 0 132 -idx: 78 entropy_left: 1.34261 entropy_right : 1.49554 -> 0 132 -idx: 79 entropy_left: 1.36851 entropy_right : 1.50463 -> 0 132 -idx: 84 entropy_left: 1.34715 entropy_right : 1.40858 -> 0 132 -idx: 85 entropy_left: 1.347 entropy_right : 1.40212 -> 0 132 -idx: 87 entropy_left: 1.33826 entropy_right : 1.33354 -> 0 132 -idx: 90 entropy_left: 1.40118 entropy_right : 1.36959 -> 0 132 -idx: 93 entropy_left: 1.40005 entropy_right : 1.34424 -> 0 132 -idx: 98 entropy_left: 1.47304 entropy_right : 1.41917 -> 0 132 -idx: 100 entropy_left: 1.47122 entropy_right : 1.40007 -> 0 132 -idx: 101 entropy_left: 1.46797 entropy_right : 1.35458 -> 0 132 -idx: 102 entropy_left: 1.47927 entropy_right : 1.37302 -> 0 132 -idx: 105 entropy_left: 1.47569 entropy_right : 1.31057 -> 0 132 -idx: 107 entropy_left: 1.47004 entropy_right : 1.16399 -> 0 132 -idx: 108 entropy_left: 1.48068 entropy_right : 1.18872 -> 0 132 -idx: 109 entropy_left: 1.4795 entropy_right : 1.14923 -> 0 132 -idx: 110 entropy_left: 1.47673 entropy_right : 1.02263 -> 0 132 -idx: 111 entropy_left: 1.47555 entropy_right : 0.963746 -> 0 132 -idx: 112 entropy_left: 1.48551 entropy_right : 0.99176 -> 0 132 -idx: 114 entropy_left: 1.48276 entropy_right : 0.803072 -> 0 132 -idx: 123 entropy_left: 1.54568 entropy_right : 1.22439 -> 0 132 -idx: 124 entropy_left: 1.54385 entropy_right : 0.811278 -> 0 132 -idx: 125 entropy_left: 1.54287 entropy_right : 0.591673 -> 0 132 -idx: 131 entropy_left: 1.566 entropy_right : 0 -> 0 132 -cut: 3.55 index: 131 -start: 0 cut: 131 end: 132 -k=3 k1=3 k2=1 ent=1.56527 ent1=1.566 ent2=0 -ig=0.0111296 delta=4.64606 N 132 term 0.0884809 -idx: 3 entropy_left: 0 entropy_right : 1.56949 -> 0 131 -idx: 4 entropy_left: 0.811278 entropy_right : 1.57039 -> 0 131 -idx: 5 entropy_left: 0.721928 entropy_right : 1.5714 -> 0 131 -idx: 6 entropy_left: 1.25163 entropy_right : 1.56872 -> 0 131 -idx: 11 entropy_left: 0.865857 entropy_right : 1.57182 -> 0 131 -idx: 15 entropy_left: 1.23096 entropy_right : 1.57693 -> 0 131 -idx: 20 entropy_left: 1.0763 entropy_right : 1.57766 -> 0 131 -idx: 22 entropy_left: 1.14332 entropy_right : 1.58048 -> 0 131 -idx: 24 entropy_left: 1.09948 entropy_right : 1.57964 -> 0 131 -idx: 26 entropy_left: 1.14162 entropy_right : 1.58225 -> 0 131 -idx: 27 entropy_left: 1.12466 entropy_right : 1.58168 -> 0 131 -idx: 28 entropy_left: 1.13928 entropy_right : 1.58281 -> 0 131 -idx: 30 entropy_left: 1.10923 entropy_right : 1.58103 -> 0 131 -idx: 31 entropy_left: 1.12309 entropy_right : 1.58223 -> 0 131 -idx: 33 entropy_left: 1.09614 entropy_right : 1.57937 -> 0 131 -idx: 36 entropy_left: 1.1271 entropy_right : 1.58237 -> 0 131 -idx: 38 entropy_left: 1.10727 entropy_right : 1.57881 -> 0 131 -idx: 39 entropy_left: 1.11501 entropy_right : 1.57957 -> 0 131 -idx: 40 entropy_left: 1.10587 entropy_right : 1.57728 -> 0 131 -idx: 41 entropy_left: 1.1127 entropy_right : 1.57789 -> 0 131 -idx: 42 entropy_left: 1.10431 entropy_right : 1.57527 -> 0 131 -idx: 44 entropy_left: 1.115 entropy_right : 1.57578 -> 0 131 -idx: 46 entropy_left: 1.10094 entropy_right : 1.56953 -> 0 131 -idx: 47 entropy_left: 1.10581 entropy_right : 1.56955 -> 0 131 -idx: 48 entropy_left: 1.1872 entropy_right : 1.57205 -> 0 131 -idx: 54 entropy_left: 1.14052 entropy_right : 1.53831 -> 0 131 -idx: 56 entropy_left: 1.15193 entropy_right : 1.53951 -> 0 131 -idx: 57 entropy_left: 1.14495 entropy_right : 1.53092 -> 0 131 -idx: 60 entropy_left: 1.15668 entropy_right : 1.52944 -> 0 131 -idx: 62 entropy_left: 1.14522 entropy_right : 1.50932 -> 0 131 -idx: 63 entropy_left: 1.14849 entropy_right : 1.5079 -> 0 131 -idx: 64 entropy_left: 1.20362 entropy_right : 1.51399 -> 0 131 -idx: 66 entropy_left: 1.20721 entropy_right : 1.50973 -> 0 131 -idx: 67 entropy_left: 1.20211 entropy_right : 1.49806 -> 0 131 -idx: 68 entropy_left: 1.20348 entropy_right : 1.4948 -> 0 131 -idx: 69 entropy_left: 1.2483 entropy_right : 1.50221 -> 0 131 -idx: 70 entropy_left: 1.24884 entropy_right : 1.49842 -> 0 131 -idx: 72 entropy_left: 1.32074 entropy_right : 1.51365 -> 0 131 -idx: 76 entropy_left: 1.31734 entropy_right : 1.49018 -> 0 131 -idx: 77 entropy_left: 1.34645 entropy_right : 1.49951 -> 0 131 -idx: 78 entropy_left: 1.34261 entropy_right : 1.48821 -> 0 131 -idx: 79 entropy_left: 1.36851 entropy_right : 1.49786 -> 0 131 -idx: 84 entropy_left: 1.34715 entropy_right : 1.40212 -> 0 131 -idx: 85 entropy_left: 1.347 entropy_right : 1.39381 -> 0 131 -idx: 87 entropy_left: 1.33826 entropy_right : 1.32473 -> 0 131 -idx: 90 entropy_left: 1.40118 entropy_right : 1.36347 -> 0 131 -idx: 93 entropy_left: 1.40005 entropy_right : 1.33027 -> 0 131 -idx: 98 entropy_left: 1.47304 entropy_right : 1.41144 -> 0 131 -idx: 100 entropy_left: 1.47122 entropy_right : 1.38425 -> 0 131 -idx: 101 entropy_left: 1.46797 entropy_right : 1.33827 -> 0 131 -idx: 102 entropy_left: 1.47927 entropy_right : 1.35843 -> 0 131 -idx: 105 entropy_left: 1.47569 entropy_right : 1.27365 -> 0 131 -idx: 107 entropy_left: 1.47004 entropy_right : 1.12261 -> 0 131 -idx: 108 entropy_left: 1.48068 entropy_right : 1.14923 -> 0 131 -idx: 109 entropy_left: 1.4795 entropy_right : 1.0958 -> 0 131 -idx: 110 entropy_left: 1.47673 entropy_right : 0.963746 -> 0 131 -idx: 111 entropy_left: 1.47555 entropy_right : 0.884184 -> 0 131 -idx: 112 entropy_left: 1.48551 entropy_right : 0.913283 -> 0 131 -idx: 114 entropy_left: 1.48276 entropy_right : 0.640206 -> 0 131 -idx: 123 entropy_left: 1.54568 entropy_right : 1.06128 -> 0 131 -idx: 124 entropy_left: 1.54385 entropy_right : 0.591673 -> 0 131 -idx: 125 entropy_left: 1.54287 entropy_right : 0 -> 0 131 -cut: 3.45 index: 125 -start: 0 cut: 125 end: 131 -k=3 k1=3 k2=1 ent=1.566 ent1=1.54287 ent2=0 -ig=0.0937982 delta=4.57446 N 131 term 0.0885254 -¡Ding! 3.45 125 -idx: 3 entropy_left: 0 entropy_right : 1.54764 -> 0 125 -idx: 4 entropy_left: 0.811278 entropy_right : 1.54898 -> 0 125 -idx: 5 entropy_left: 0.721928 entropy_right : 1.55044 -> 0 125 -idx: 6 entropy_left: 1.25163 entropy_right : 1.54566 -> 0 125 -idx: 11 entropy_left: 0.865857 entropy_right : 1.55109 -> 0 125 -idx: 15 entropy_left: 1.23096 entropy_right : 1.55846 -> 0 125 -idx: 20 entropy_left: 1.0763 entropy_right : 1.56209 -> 0 125 -idx: 22 entropy_left: 1.14332 entropy_right : 1.56634 -> 0 125 -idx: 24 entropy_left: 1.09948 entropy_right : 1.5668 -> 0 125 -idx: 26 entropy_left: 1.14162 entropy_right : 1.571 -> 0 125 -idx: 27 entropy_left: 1.12466 entropy_right : 1.57116 -> 0 125 -idx: 28 entropy_left: 1.13928 entropy_right : 1.57314 -> 0 125 -idx: 30 entropy_left: 1.10923 entropy_right : 1.57289 -> 0 125 -idx: 31 entropy_left: 1.12309 entropy_right : 1.57502 -> 0 125 -idx: 33 entropy_left: 1.09614 entropy_right : 1.57377 -> 0 125 -idx: 36 entropy_left: 1.1271 entropy_right : 1.57991 -> 0 125 -idx: 38 entropy_left: 1.10727 entropy_right : 1.57824 -> 0 125 -idx: 39 entropy_left: 1.11501 entropy_right : 1.58017 -> 0 125 -idx: 40 entropy_left: 1.10587 entropy_right : 1.57888 -> 0 125 -idx: 41 entropy_left: 1.1127 entropy_right : 1.58073 -> 0 125 -idx: 42 entropy_left: 1.10431 entropy_right : 1.57915 -> 0 125 -idx: 44 entropy_left: 1.115 entropy_right : 1.58232 -> 0 125 -idx: 46 entropy_left: 1.10094 entropy_right : 1.5784 -> 0 125 -idx: 47 entropy_left: 1.10581 entropy_right : 1.57989 -> 0 125 -idx: 48 entropy_left: 1.1872 entropy_right : 1.5803 -> 0 125 -idx: 54 entropy_left: 1.14052 entropy_right : 1.55391 -> 0 125 -idx: 56 entropy_left: 1.15193 entropy_right : 1.55911 -> 0 125 -idx: 57 entropy_left: 1.14495 entropy_right : 1.55183 -> 0 125 -idx: 60 entropy_left: 1.15668 entropy_right : 1.55693 -> 0 125 -idx: 62 entropy_left: 1.14522 entropy_right : 1.53988 -> 0 125 -idx: 63 entropy_left: 1.14849 entropy_right : 1.54094 -> 0 125 -idx: 64 entropy_left: 1.20362 entropy_right : 1.54538 -> 0 125 -idx: 66 entropy_left: 1.20721 entropy_right : 1.54641 -> 0 125 -idx: 67 entropy_left: 1.20211 entropy_right : 1.53659 -> 0 125 -idx: 68 entropy_left: 1.20348 entropy_right : 1.53618 -> 0 125 -idx: 69 entropy_left: 1.2483 entropy_right : 1.54208 -> 0 125 -idx: 70 entropy_left: 1.24884 entropy_right : 1.5413 -> 0 125 -idx: 72 entropy_left: 1.32074 entropy_right : 1.55298 -> 0 125 -idx: 76 entropy_left: 1.31734 entropy_right : 1.54295 -> 0 125 -idx: 77 entropy_left: 1.34645 entropy_right : 1.55064 -> 0 125 -idx: 78 entropy_left: 1.34261 entropy_right : 1.54265 -> 0 125 -idx: 79 entropy_left: 1.36851 entropy_right : 1.55049 -> 0 125 -idx: 84 entropy_left: 1.34715 entropy_right : 1.46992 -> 0 125 -idx: 85 entropy_left: 1.347 entropy_right : 1.46703 -> 0 125 -idx: 87 entropy_left: 1.33826 entropy_right : 1.40177 -> 0 125 -idx: 90 entropy_left: 1.40118 entropy_right : 1.43779 -> 0 125 -idx: 93 entropy_left: 1.40005 entropy_right : 1.42763 -> 0 125 -idx: 98 entropy_left: 1.47304 entropy_right : 1.50124 -> 0 125 -idx: 100 entropy_left: 1.47122 entropy_right : 1.49869 -> 0 125 -idx: 101 entropy_left: 1.46797 entropy_right : 1.45915 -> 0 125 -idx: 102 entropy_left: 1.47927 entropy_right : 1.47775 -> 0 125 -idx: 105 entropy_left: 1.47569 entropy_right : 1.43876 -> 0 125 -idx: 107 entropy_left: 1.47004 entropy_right : 1.29974 -> 0 125 -idx: 108 entropy_left: 1.48068 entropy_right : 1.33282 -> 0 125 -idx: 109 entropy_left: 1.4795 entropy_right : 1.29879 -> 0 125 -idx: 110 entropy_left: 1.47673 entropy_right : 1.15894 -> 0 125 -idx: 111 entropy_left: 1.47555 entropy_right : 1.09491 -> 0 125 -idx: 112 entropy_left: 1.48551 entropy_right : 1.14012 -> 0 125 -idx: 114 entropy_left: 1.48276 entropy_right : 0.865857 -> 0 125 -idx: 123 entropy_left: 1.54568 entropy_right : 1 -> 0 125 -idx: 124 entropy_left: 1.54385 entropy_right : 0 -> 0 125 -cut: 3.4 index: 124 -start: 0 cut: 124 end: 125 -k=3 k1=3 k2=1 ent=1.54287 ent1=1.54385 ent2=0 -ig=0.011367 delta=4.64681 N 125 term 0.092808 -idx: 3 entropy_left: 0 entropy_right : 1.54898 -> 0 124 -idx: 4 entropy_left: 0.811278 entropy_right : 1.55018 -> 0 124 -idx: 5 entropy_left: 0.721928 entropy_right : 1.55177 -> 0 124 -idx: 6 entropy_left: 1.25163 entropy_right : 1.54706 -> 0 124 -idx: 11 entropy_left: 0.865857 entropy_right : 1.55314 -> 0 124 -idx: 15 entropy_left: 1.23096 entropy_right : 1.55992 -> 0 124 -idx: 20 entropy_left: 1.0763 entropy_right : 1.5643 -> 0 124 -idx: 22 entropy_left: 1.14332 entropy_right : 1.56821 -> 0 124 -idx: 24 entropy_left: 1.09948 entropy_right : 1.56899 -> 0 124 -idx: 26 entropy_left: 1.14162 entropy_right : 1.57282 -> 0 124 -idx: 27 entropy_left: 1.12466 entropy_right : 1.57314 -> 0 124 -idx: 28 entropy_left: 1.13928 entropy_right : 1.57492 -> 0 124 -idx: 30 entropy_left: 1.10923 entropy_right : 1.57502 -> 0 124 -idx: 31 entropy_left: 1.12309 entropy_right : 1.57693 -> 0 124 -idx: 33 entropy_left: 1.09614 entropy_right : 1.57605 -> 0 124 -idx: 36 entropy_left: 1.1271 entropy_right : 1.58144 -> 0 124 -idx: 38 entropy_left: 1.10727 entropy_right : 1.58017 -> 0 124 -idx: 39 entropy_left: 1.11501 entropy_right : 1.58181 -> 0 124 -idx: 40 entropy_left: 1.10587 entropy_right : 1.58073 -> 0 124 -idx: 41 entropy_left: 1.1127 entropy_right : 1.58227 -> 0 124 -idx: 42 entropy_left: 1.10431 entropy_right : 1.5809 -> 0 124 -idx: 44 entropy_left: 1.115 entropy_right : 1.58337 -> 0 124 -idx: 46 entropy_left: 1.10094 entropy_right : 1.57989 -> 0 124 -idx: 47 entropy_left: 1.10581 entropy_right : 1.581 -> 0 124 -idx: 48 entropy_left: 1.1872 entropy_right : 1.58167 -> 0 124 -idx: 54 entropy_left: 1.14052 entropy_right : 1.55671 -> 0 124 -idx: 56 entropy_left: 1.15193 entropy_right : 1.56107 -> 0 124 -idx: 57 entropy_left: 1.14495 entropy_right : 1.55403 -> 0 124 -idx: 60 entropy_left: 1.15668 entropy_right : 1.55752 -> 0 124 -idx: 62 entropy_left: 1.14522 entropy_right : 1.54094 -> 0 124 -idx: 63 entropy_left: 1.14849 entropy_right : 1.54134 -> 0 124 -idx: 64 entropy_left: 1.20362 entropy_right : 1.54626 -> 0 124 -idx: 66 entropy_left: 1.20721 entropy_right : 1.54574 -> 0 124 -idx: 67 entropy_left: 1.20211 entropy_right : 1.53618 -> 0 124 -idx: 68 entropy_left: 1.20348 entropy_right : 1.53484 -> 0 124 -idx: 69 entropy_left: 1.2483 entropy_right : 1.5413 -> 0 124 -idx: 70 entropy_left: 1.24884 entropy_right : 1.53949 -> 0 124 -idx: 72 entropy_left: 1.32074 entropy_right : 1.55236 -> 0 124 -idx: 76 entropy_left: 1.31734 entropy_right : 1.53665 -> 0 124 -idx: 77 entropy_left: 1.34645 entropy_right : 1.54501 -> 0 124 -idx: 78 entropy_left: 1.34261 entropy_right : 1.53739 -> 0 124 -idx: 79 entropy_left: 1.36851 entropy_right : 1.54599 -> 0 124 -idx: 84 entropy_left: 1.34715 entropy_right : 1.46703 -> 0 124 -idx: 85 entropy_left: 1.347 entropy_right : 1.46208 -> 0 124 -idx: 87 entropy_left: 1.33826 entropy_right : 1.39681 -> 0 124 -idx: 90 entropy_left: 1.40118 entropy_right : 1.43699 -> 0 124 -idx: 93 entropy_left: 1.40005 entropy_right : 1.41788 -> 0 124 -idx: 98 entropy_left: 1.47304 entropy_right : 1.50204 -> 0 124 -idx: 100 entropy_left: 1.47122 entropy_right : 1.48993 -> 0 124 -idx: 101 entropy_left: 1.46797 entropy_right : 1.45091 -> 0 124 -idx: 102 entropy_left: 1.47927 entropy_right : 1.47283 -> 0 124 -idx: 105 entropy_left: 1.47569 entropy_right : 1.40299 -> 0 124 -idx: 107 entropy_left: 1.47004 entropy_right : 1.26077 -> 0 124 -idx: 108 entropy_left: 1.48068 entropy_right : 1.29879 -> 0 124 -idx: 109 entropy_left: 1.4795 entropy_right : 1.24195 -> 0 124 -idx: 110 entropy_left: 1.47673 entropy_right : 1.09491 -> 0 124 -idx: 111 entropy_left: 1.47555 entropy_right : 0.991264 -> 0 124 -idx: 112 entropy_left: 1.48551 entropy_right : 1.04085 -> 0 124 -idx: 114 entropy_left: 1.48276 entropy_right : 0.468996 -> 0 124 -idx: 123 entropy_left: 1.54568 entropy_right : 0 -> 0 124 -cut: 3.4 index: 123 -start: 0 cut: 123 end: 124 -k=3 k1=3 k2=1 ent=1.54385 ent1=1.54568 ent2=0 -ig=0.0106375 delta=4.64934 N 124 term 0.0934827 -idx: 3 entropy_left: 0 entropy_right : 1.55044 -> 0 123 -idx: 4 entropy_left: 0.811278 entropy_right : 1.55177 -> 0 123 -idx: 5 entropy_left: 0.721928 entropy_right : 1.55321 -> 0 123 -idx: 6 entropy_left: 1.25163 entropy_right : 1.54858 -> 0 123 -idx: 11 entropy_left: 0.865857 entropy_right : 1.55385 -> 0 123 -idx: 15 entropy_left: 1.23096 entropy_right : 1.5612 -> 0 123 -idx: 20 entropy_left: 1.0763 entropy_right : 1.5645 -> 0 123 -idx: 22 entropy_left: 1.14332 entropy_right : 1.56873 -> 0 123 -idx: 24 entropy_left: 1.09948 entropy_right : 1.56898 -> 0 123 -idx: 26 entropy_left: 1.14162 entropy_right : 1.57314 -> 0 123 -idx: 27 entropy_left: 1.12466 entropy_right : 1.57317 -> 0 123 -idx: 28 entropy_left: 1.13928 entropy_right : 1.57513 -> 0 123 -idx: 30 entropy_left: 1.10923 entropy_right : 1.57458 -> 0 123 -idx: 31 entropy_left: 1.12309 entropy_right : 1.57668 -> 0 123 -idx: 33 entropy_left: 1.09614 entropy_right : 1.57504 -> 0 123 -idx: 36 entropy_left: 1.1271 entropy_right : 1.58101 -> 0 123 -idx: 38 entropy_left: 1.10727 entropy_right : 1.57888 -> 0 123 -idx: 39 entropy_left: 1.11501 entropy_right : 1.58073 -> 0 123 -idx: 40 entropy_left: 1.10587 entropy_right : 1.57915 -> 0 123 -idx: 41 entropy_left: 1.1127 entropy_right : 1.5809 -> 0 123 -idx: 42 entropy_left: 1.10431 entropy_right : 1.57901 -> 0 123 -idx: 44 entropy_left: 1.115 entropy_right : 1.58192 -> 0 123 -idx: 46 entropy_left: 1.10094 entropy_right : 1.57724 -> 0 123 -idx: 47 entropy_left: 1.10581 entropy_right : 1.57857 -> 0 123 -idx: 48 entropy_left: 1.1872 entropy_right : 1.57947 -> 0 123 -idx: 54 entropy_left: 1.14052 entropy_right : 1.5492 -> 0 123 -idx: 56 entropy_left: 1.15193 entropy_right : 1.55403 -> 0 123 -idx: 57 entropy_left: 1.14495 entropy_right : 1.54574 -> 0 123 -idx: 60 entropy_left: 1.15668 entropy_right : 1.54994 -> 0 123 -idx: 62 entropy_left: 1.14522 entropy_right : 1.53033 -> 0 123 -idx: 63 entropy_left: 1.14849 entropy_right : 1.53096 -> 0 123 -idx: 64 entropy_left: 1.20362 entropy_right : 1.53619 -> 0 123 -idx: 66 entropy_left: 1.20721 entropy_right : 1.53618 -> 0 123 -idx: 67 entropy_left: 1.20211 entropy_right : 1.52474 -> 0 123 -idx: 68 entropy_left: 1.20348 entropy_right : 1.52364 -> 0 123 -idx: 69 entropy_left: 1.2483 entropy_right : 1.53049 -> 0 123 -idx: 70 entropy_left: 1.24884 entropy_right : 1.52895 -> 0 123 -idx: 72 entropy_left: 1.32074 entropy_right : 1.54274 -> 0 123 -idx: 76 entropy_left: 1.31734 entropy_right : 1.52836 -> 0 123 -idx: 77 entropy_left: 1.34645 entropy_right : 1.53739 -> 0 123 -idx: 78 entropy_left: 1.34261 entropy_right : 1.52745 -> 0 123 -idx: 79 entropy_left: 1.36851 entropy_right : 1.53675 -> 0 123 -idx: 84 entropy_left: 1.34715 entropy_right : 1.43786 -> 0 123 -idx: 85 entropy_left: 1.347 entropy_right : 1.43298 -> 0 123 -idx: 87 entropy_left: 1.33826 entropy_right : 1.35164 -> 0 123 -idx: 90 entropy_left: 1.40118 entropy_right : 1.39268 -> 0 123 -idx: 93 entropy_left: 1.40005 entropy_right : 1.37302 -> 0 123 -idx: 98 entropy_left: 1.47304 entropy_right : 1.4619 -> 0 123 -idx: 100 entropy_left: 1.47122 entropy_right : 1.45091 -> 0 123 -idx: 101 entropy_left: 1.46797 entropy_right : 1.39462 -> 0 123 -idx: 102 entropy_left: 1.47927 entropy_right : 1.41803 -> 0 123 -idx: 105 entropy_left: 1.47569 entropy_right : 1.34722 -> 0 123 -idx: 107 entropy_left: 1.47004 entropy_right : 1.12164 -> 0 123 -idx: 108 entropy_left: 1.48068 entropy_right : 1.15894 -> 0 123 -idx: 109 entropy_left: 1.4795 entropy_right : 1.09491 -> 0 123 -idx: 110 entropy_left: 1.47673 entropy_right : 0.77935 -> 0 123 -idx: 111 entropy_left: 1.47555 entropy_right : 0.650022 -> 0 123 -idx: 112 entropy_left: 1.48551 entropy_right : 0.684038 -> 0 123 -idx: 114 entropy_left: 1.48276 entropy_right : 0 -> 0 123 -cut: 3.4 index: 114 -start: 0 cut: 114 end: 123 -k=3 k1=3 k2=1 ent=1.54568 ent1=1.48276 ent2=0 -ig=0.171419 delta=4.45508 N 123 term 0.0925676 -¡Ding! 3.4 114 -idx: 3 entropy_left: 0 entropy_right : 1.48921 -> 0 114 -idx: 4 entropy_left: 0.811278 entropy_right : 1.49111 -> 0 114 -idx: 5 entropy_left: 0.721928 entropy_right : 1.49316 -> 0 114 -idx: 6 entropy_left: 1.25163 entropy_right : 1.48336 -> 0 114 -idx: 11 entropy_left: 0.865857 entropy_right : 1.49165 -> 0 114 -idx: 15 entropy_left: 1.23096 entropy_right : 1.50213 -> 0 114 -idx: 20 entropy_left: 1.0763 entropy_right : 1.50945 -> 0 114 -idx: 22 entropy_left: 1.14332 entropy_right : 1.5158 -> 0 114 -idx: 24 entropy_left: 1.09948 entropy_right : 1.51792 -> 0 114 -idx: 26 entropy_left: 1.14162 entropy_right : 1.52451 -> 0 114 -idx: 27 entropy_left: 1.12466 entropy_right : 1.52561 -> 0 114 -idx: 28 entropy_left: 1.13928 entropy_right : 1.52887 -> 0 114 -idx: 30 entropy_left: 1.10923 entropy_right : 1.53062 -> 0 114 -idx: 31 entropy_left: 1.12309 entropy_right : 1.53419 -> 0 114 -idx: 33 entropy_left: 1.09614 entropy_right : 1.53504 -> 0 114 -idx: 36 entropy_left: 1.1271 entropy_right : 1.54611 -> 0 114 -idx: 38 entropy_left: 1.10727 entropy_right : 1.54701 -> 0 114 -idx: 39 entropy_left: 1.11501 entropy_right : 1.55082 -> 0 114 -idx: 40 entropy_left: 1.10587 entropy_right : 1.55087 -> 0 114 -idx: 41 entropy_left: 1.1127 entropy_right : 1.55473 -> 0 114 -idx: 42 entropy_left: 1.10431 entropy_right : 1.55459 -> 0 114 -idx: 44 entropy_left: 1.115 entropy_right : 1.56209 -> 0 114 -idx: 46 entropy_left: 1.10094 entropy_right : 1.5614 -> 0 114 -idx: 47 entropy_left: 1.10581 entropy_right : 1.56537 -> 0 114 -idx: 48 entropy_left: 1.1872 entropy_right : 1.5599 -> 0 114 -idx: 54 entropy_left: 1.14052 entropy_right : 1.54241 -> 0 114 -idx: 56 entropy_left: 1.15193 entropy_right : 1.55482 -> 0 114 -idx: 57 entropy_left: 1.14495 entropy_right : 1.54891 -> 0 114 -idx: 60 entropy_left: 1.15668 entropy_right : 1.56604 -> 0 114 -idx: 62 entropy_left: 1.14522 entropy_right : 1.55236 -> 0 114 -idx: 63 entropy_left: 1.14849 entropy_right : 1.55809 -> 0 114 -idx: 64 entropy_left: 1.20362 entropy_right : 1.55697 -> 0 114 -idx: 66 entropy_left: 1.20721 entropy_right : 1.56796 -> 0 114 -idx: 67 entropy_left: 1.20211 entropy_right : 1.56033 -> 0 114 -idx: 68 entropy_left: 1.20348 entropy_right : 1.56534 -> 0 114 -idx: 69 entropy_left: 1.2483 entropy_right : 1.5656 -> 0 114 -idx: 70 entropy_left: 1.24884 entropy_right : 1.57057 -> 0 114 -idx: 72 entropy_left: 1.32074 entropy_right : 1.56822 -> 0 114 -idx: 76 entropy_left: 1.31734 entropy_right : 1.58395 -> 0 114 -idx: 77 entropy_left: 1.34645 entropy_right : 1.58392 -> 0 114 -idx: 78 entropy_left: 1.34261 entropy_right : 1.58162 -> 0 114 -idx: 79 entropy_left: 1.36851 entropy_right : 1.58033 -> 0 114 -idx: 84 entropy_left: 1.34715 entropy_right : 1.51792 -> 0 114 -idx: 85 entropy_left: 1.347 entropy_right : 1.52753 -> 0 114 -idx: 87 entropy_left: 1.33826 entropy_right : 1.45588 -> 0 114 -idx: 90 entropy_left: 1.40118 entropy_right : 1.45915 -> 0 114 -idx: 93 entropy_left: 1.40005 entropy_right : 1.50997 -> 0 114 -idx: 98 entropy_left: 1.47304 entropy_right : 1.41974 -> 0 114 -idx: 100 entropy_left: 1.47122 entropy_right : 1.49261 -> 0 114 -idx: 101 entropy_left: 1.46797 entropy_right : 1.45727 -> 0 114 -idx: 102 entropy_left: 1.47927 entropy_right : 1.38443 -> 0 114 -idx: 105 entropy_left: 1.47569 entropy_right : 1.53049 -> 0 114 -idx: 107 entropy_left: 1.47004 entropy_right : 1.37878 -> 0 114 -idx: 108 entropy_left: 1.48068 entropy_right : 1.25163 -> 0 114 -idx: 109 entropy_left: 1.4795 entropy_right : 1.37095 -> 0 114 -idx: 110 entropy_left: 1.47673 entropy_right : 0.811278 -> 0 114 -idx: 111 entropy_left: 1.47555 entropy_right : 0.918296 -> 0 114 -idx: 112 entropy_left: 1.48551 entropy_right : 0 -> 0 114 -cut: 3.3 index: 112 -start: 0 cut: 112 end: 114 -k=3 k1=3 k2=1 ent=1.48276 ent1=1.48551 ent2=0 -ig=0.0233057 delta=4.65212 N 114 term 0.100634 -idx: 3 entropy_left: 0 entropy_right : 1.49287 -> 0 112 -idx: 4 entropy_left: 0.811278 entropy_right : 1.49448 -> 0 112 -idx: 5 entropy_left: 0.721928 entropy_right : 1.49686 -> 0 112 -idx: 6 entropy_left: 1.25163 entropy_right : 1.48715 -> 0 112 -idx: 11 entropy_left: 0.865857 entropy_right : 1.49717 -> 0 112 -idx: 15 entropy_left: 1.23096 entropy_right : 1.50644 -> 0 112 -idx: 20 entropy_left: 1.0763 entropy_right : 1.5158 -> 0 112 -idx: 22 entropy_left: 1.14332 entropy_right : 1.52148 -> 0 112 -idx: 24 entropy_left: 1.09948 entropy_right : 1.52451 -> 0 112 -idx: 26 entropy_left: 1.14162 entropy_right : 1.53035 -> 0 112 -idx: 27 entropy_left: 1.12466 entropy_right : 1.53194 -> 0 112 -idx: 28 entropy_left: 1.13928 entropy_right : 1.53479 -> 0 112 -idx: 30 entropy_left: 1.10923 entropy_right : 1.53756 -> 0 112 -idx: 31 entropy_left: 1.12309 entropy_right : 1.54071 -> 0 112 -idx: 33 entropy_left: 1.09614 entropy_right : 1.54265 -> 0 112 -idx: 36 entropy_left: 1.1271 entropy_right : 1.55225 -> 0 112 -idx: 38 entropy_left: 1.10727 entropy_right : 1.55436 -> 0 112 -idx: 39 entropy_left: 1.11501 entropy_right : 1.55761 -> 0 112 -idx: 40 entropy_left: 1.10587 entropy_right : 1.55831 -> 0 112 -idx: 41 entropy_left: 1.1127 entropy_right : 1.56156 -> 0 112 -idx: 42 entropy_left: 1.10431 entropy_right : 1.56209 -> 0 112 -idx: 44 entropy_left: 1.115 entropy_right : 1.56821 -> 0 112 -idx: 46 entropy_left: 1.10094 entropy_right : 1.56898 -> 0 112 -idx: 47 entropy_left: 1.10581 entropy_right : 1.57217 -> 0 112 -idx: 48 entropy_left: 1.1872 entropy_right : 1.56733 -> 0 112 -idx: 54 entropy_left: 1.14052 entropy_right : 1.55482 -> 0 112 -idx: 56 entropy_left: 1.15193 entropy_right : 1.56577 -> 0 112 -idx: 57 entropy_left: 1.14495 entropy_right : 1.56078 -> 0 112 -idx: 60 entropy_left: 1.15668 entropy_right : 1.57489 -> 0 112 -idx: 62 entropy_left: 1.14522 entropy_right : 1.56323 -> 0 112 -idx: 63 entropy_left: 1.14849 entropy_right : 1.56771 -> 0 112 -idx: 64 entropy_left: 1.20362 entropy_right : 1.56796 -> 0 112 -idx: 66 entropy_left: 1.20721 entropy_right : 1.5759 -> 0 112 -idx: 67 entropy_left: 1.20211 entropy_right : 1.56949 -> 0 112 -idx: 68 entropy_left: 1.20348 entropy_right : 1.57262 -> 0 112 -idx: 69 entropy_left: 1.2483 entropy_right : 1.57457 -> 0 112 -idx: 70 entropy_left: 1.24884 entropy_right : 1.57741 -> 0 112 -idx: 72 entropy_left: 1.32074 entropy_right : 1.57871 -> 0 112 -idx: 76 entropy_left: 1.31734 entropy_right : 1.58162 -> 0 112 -idx: 77 entropy_left: 1.34645 entropy_right : 1.58377 -> 0 112 -idx: 78 entropy_left: 1.34261 entropy_right : 1.58373 -> 0 112 -idx: 79 entropy_left: 1.36851 entropy_right : 1.58496 -> 0 112 -idx: 84 entropy_left: 1.34715 entropy_right : 1.53531 -> 0 112 -idx: 85 entropy_left: 1.347 entropy_right : 1.54071 -> 0 112 -idx: 87 entropy_left: 1.33826 entropy_right : 1.47293 -> 0 112 -idx: 90 entropy_left: 1.40118 entropy_right : 1.49492 -> 0 112 -idx: 93 entropy_left: 1.40005 entropy_right : 1.52943 -> 0 112 -idx: 98 entropy_left: 1.47304 entropy_right : 1.49261 -> 0 112 -idx: 100 entropy_left: 1.47122 entropy_right : 1.55459 -> 0 112 -idx: 101 entropy_left: 1.46797 entropy_right : 1.53948 -> 0 112 -idx: 102 entropy_left: 1.47927 entropy_right : 1.48548 -> 0 112 -idx: 105 entropy_left: 1.47569 entropy_right : 1.55666 -> 0 112 -idx: 107 entropy_left: 1.47004 entropy_right : 1.52193 -> 0 112 -idx: 108 entropy_left: 1.48068 entropy_right : 1.5 -> 0 112 -idx: 109 entropy_left: 1.4795 entropy_right : 1.58496 -> 0 112 -idx: 110 entropy_left: 1.47673 entropy_right : 1 -> 0 112 -idx: 111 entropy_left: 1.47555 entropy_right : 0 -> 0 112 -cut: 3.3 index: 111 -start: 0 cut: 111 end: 112 -k=3 k1=3 k2=1 ent=1.48551 ent1=1.47555 ent2=0 -ig=0.0231395 delta=4.61396 N 112 term 0.101861 -idx: 3 entropy_left: 0 entropy_right : 1.48306 -> 0 111 -idx: 4 entropy_left: 0.811278 entropy_right : 1.48472 -> 0 111 -idx: 5 entropy_left: 0.721928 entropy_right : 1.48715 -> 0 111 -idx: 6 entropy_left: 1.25163 entropy_right : 1.47663 -> 0 111 -idx: 11 entropy_left: 0.865857 entropy_right : 1.48692 -> 0 111 -idx: 15 entropy_left: 1.23096 entropy_right : 1.49648 -> 0 111 -idx: 20 entropy_left: 1.0763 entropy_right : 1.50623 -> 0 111 -idx: 22 entropy_left: 1.14332 entropy_right : 1.51212 -> 0 111 -idx: 24 entropy_left: 1.09948 entropy_right : 1.51534 -> 0 111 -idx: 26 entropy_left: 1.14162 entropy_right : 1.52143 -> 0 111 -idx: 27 entropy_left: 1.12466 entropy_right : 1.52313 -> 0 111 -idx: 28 entropy_left: 1.13928 entropy_right : 1.52612 -> 0 111 -idx: 30 entropy_left: 1.10923 entropy_right : 1.52914 -> 0 111 -idx: 31 entropy_left: 1.12309 entropy_right : 1.53245 -> 0 111 -idx: 33 entropy_left: 1.09614 entropy_right : 1.53466 -> 0 111 -idx: 36 entropy_left: 1.1271 entropy_right : 1.54483 -> 0 111 -idx: 38 entropy_left: 1.10727 entropy_right : 1.54729 -> 0 111 -idx: 39 entropy_left: 1.11501 entropy_right : 1.55076 -> 0 111 -idx: 40 entropy_left: 1.10587 entropy_right : 1.55165 -> 0 111 -idx: 41 entropy_left: 1.1127 entropy_right : 1.55515 -> 0 111 -idx: 42 entropy_left: 1.10431 entropy_right : 1.55589 -> 0 111 -idx: 44 entropy_left: 1.115 entropy_right : 1.56255 -> 0 111 -idx: 46 entropy_left: 1.10094 entropy_right : 1.56382 -> 0 111 -idx: 47 entropy_left: 1.10581 entropy_right : 1.56733 -> 0 111 -idx: 48 entropy_left: 1.1872 entropy_right : 1.56134 -> 0 111 -idx: 54 entropy_left: 1.14052 entropy_right : 1.5505 -> 0 111 -idx: 56 entropy_left: 1.15193 entropy_right : 1.56242 -> 0 111 -idx: 57 entropy_left: 1.14495 entropy_right : 1.55775 -> 0 111 -idx: 60 entropy_left: 1.15668 entropy_right : 1.57356 -> 0 111 -idx: 62 entropy_left: 1.14522 entropy_right : 1.56279 -> 0 111 -idx: 63 entropy_left: 1.14849 entropy_right : 1.56796 -> 0 111 -idx: 64 entropy_left: 1.20362 entropy_right : 1.56694 -> 0 111 -idx: 66 entropy_left: 1.20721 entropy_right : 1.57639 -> 0 111 -idx: 67 entropy_left: 1.20211 entropy_right : 1.57057 -> 0 111 -idx: 68 entropy_left: 1.20348 entropy_right : 1.57457 -> 0 111 -idx: 69 entropy_left: 1.2483 entropy_right : 1.57511 -> 0 111 -idx: 70 entropy_left: 1.24884 entropy_right : 1.57887 -> 0 111 -idx: 72 entropy_left: 1.32074 entropy_right : 1.57662 -> 0 111 -idx: 76 entropy_left: 1.31734 entropy_right : 1.58377 -> 0 111 -idx: 77 entropy_left: 1.34645 entropy_right : 1.58373 -> 0 111 -idx: 78 entropy_left: 1.34261 entropy_right : 1.58496 -> 0 111 -idx: 79 entropy_left: 1.36851 entropy_right : 1.58354 -> 0 111 -idx: 84 entropy_left: 1.34715 entropy_right : 1.54071 -> 0 111 -idx: 85 entropy_left: 1.347 entropy_right : 1.54858 -> 0 111 -idx: 87 entropy_left: 1.33826 entropy_right : 1.48336 -> 0 111 -idx: 90 entropy_left: 1.40118 entropy_right : 1.49371 -> 0 111 -idx: 93 entropy_left: 1.40005 entropy_right : 1.54198 -> 0 111 -idx: 98 entropy_left: 1.47304 entropy_right : 1.41956 -> 0 111 -idx: 100 entropy_left: 1.47122 entropy_right : 1.49492 -> 0 111 -idx: 101 entropy_left: 1.46797 entropy_right : 1.48548 -> 0 111 -idx: 102 entropy_left: 1.47927 entropy_right : 1.35164 -> 0 111 -idx: 105 entropy_left: 1.47569 entropy_right : 1.45915 -> 0 111 -idx: 107 entropy_left: 1.47004 entropy_right : 1.5 -> 0 111 -idx: 108 entropy_left: 1.48068 entropy_right : 0.918296 -> 0 111 -idx: 109 entropy_left: 1.4795 entropy_right : 1 -> 0 111 -idx: 110 entropy_left: 1.47673 entropy_right : 0 -> 0 111 -cut: 3.3 index: 110 -start: 0 cut: 110 end: 111 -k=3 k1=3 k2=1 ent=1.47555 ent1=1.47673 ent2=0 -ig=0.0121168 delta=4.64742 N 111 term 0.102962 -idx: 3 entropy_left: 0 entropy_right : 1.48472 -> 0 110 -idx: 4 entropy_left: 0.811278 entropy_right : 1.48622 -> 0 110 -idx: 5 entropy_left: 0.721928 entropy_right : 1.48882 -> 0 110 -idx: 6 entropy_left: 1.25163 entropy_right : 1.47835 -> 0 110 -idx: 11 entropy_left: 0.865857 entropy_right : 1.48955 -> 0 110 -idx: 15 entropy_left: 1.23096 entropy_right : 1.49843 -> 0 110 -idx: 20 entropy_left: 1.0763 entropy_right : 1.50926 -> 0 110 -idx: 22 entropy_left: 1.14332 entropy_right : 1.51478 -> 0 110 -idx: 24 entropy_left: 1.09948 entropy_right : 1.51848 -> 0 110 -idx: 26 entropy_left: 1.14162 entropy_right : 1.52416 -> 0 110 -idx: 27 entropy_left: 1.12466 entropy_right : 1.52612 -> 0 110 -idx: 28 entropy_left: 1.13928 entropy_right : 1.52887 -> 0 110 -idx: 30 entropy_left: 1.10923 entropy_right : 1.53245 -> 0 110 -idx: 31 entropy_left: 1.12309 entropy_right : 1.53551 -> 0 110 -idx: 33 entropy_left: 1.09614 entropy_right : 1.53831 -> 0 110 -idx: 36 entropy_left: 1.1271 entropy_right : 1.54764 -> 0 110 -idx: 38 entropy_left: 1.10727 entropy_right : 1.55076 -> 0 110 -idx: 39 entropy_left: 1.11501 entropy_right : 1.55391 -> 0 110 -idx: 40 entropy_left: 1.10587 entropy_right : 1.55515 -> 0 110 -idx: 41 entropy_left: 1.1127 entropy_right : 1.5583 -> 0 110 -idx: 42 entropy_left: 1.10431 entropy_right : 1.5594 -> 0 110 -idx: 44 entropy_left: 1.115 entropy_right : 1.56527 -> 0 110 -idx: 46 entropy_left: 1.10094 entropy_right : 1.56733 -> 0 110 -idx: 47 entropy_left: 1.10581 entropy_right : 1.5704 -> 0 110 -idx: 48 entropy_left: 1.1872 entropy_right : 1.56473 -> 0 110 -idx: 54 entropy_left: 1.14052 entropy_right : 1.55666 -> 0 110 -idx: 56 entropy_left: 1.15193 entropy_right : 1.56771 -> 0 110 -idx: 57 entropy_left: 1.14495 entropy_right : 1.56356 -> 0 110 -idx: 60 entropy_left: 1.15668 entropy_right : 1.57758 -> 0 110 -idx: 62 entropy_left: 1.14522 entropy_right : 1.56796 -> 0 110 -idx: 63 entropy_left: 1.14849 entropy_right : 1.57237 -> 0 110 -idx: 64 entropy_left: 1.20362 entropy_right : 1.57209 -> 0 110 -idx: 66 entropy_left: 1.20721 entropy_right : 1.57968 -> 0 110 -idx: 67 entropy_left: 1.20211 entropy_right : 1.57457 -> 0 110 -idx: 68 entropy_left: 1.20348 entropy_right : 1.57741 -> 0 110 -idx: 69 entropy_left: 1.2483 entropy_right : 1.57887 -> 0 110 -idx: 70 entropy_left: 1.24884 entropy_right : 1.58129 -> 0 110 -idx: 72 entropy_left: 1.32074 entropy_right : 1.58103 -> 0 110 -idx: 76 entropy_left: 1.31734 entropy_right : 1.57986 -> 0 110 -idx: 77 entropy_left: 1.34645 entropy_right : 1.58098 -> 0 110 -idx: 78 entropy_left: 1.34261 entropy_right : 1.58354 -> 0 110 -idx: 79 entropy_left: 1.36851 entropy_right : 1.58348 -> 0 110 -idx: 84 entropy_left: 1.34715 entropy_right : 1.54858 -> 0 110 -idx: 85 entropy_left: 1.347 entropy_right : 1.55352 -> 0 110 -idx: 87 entropy_left: 1.33826 entropy_right : 1.49101 -> 0 110 -idx: 90 entropy_left: 1.40118 entropy_right : 1.51289 -> 0 110 -idx: 93 entropy_left: 1.40005 entropy_right : 1.54857 -> 0 110 -idx: 98 entropy_left: 1.47304 entropy_right : 1.45915 -> 0 110 -idx: 100 entropy_left: 1.47122 entropy_right : 1.52193 -> 0 110 -idx: 101 entropy_left: 1.46797 entropy_right : 1.53049 -> 0 110 -idx: 102 entropy_left: 1.47927 entropy_right : 1.40564 -> 0 110 -idx: 105 entropy_left: 1.47569 entropy_right : 1.37095 -> 0 110 -idx: 107 entropy_left: 1.47004 entropy_right : 1.58496 -> 0 110 -idx: 108 entropy_left: 1.48068 entropy_right : 1 -> 0 110 -idx: 109 entropy_left: 1.4795 entropy_right : 0 -> 0 110 -cut: 3.3 index: 109 -start: 0 cut: 109 end: 110 -k=3 k1=3 k2=1 ent=1.47673 ent1=1.4795 ent2=0 -ig=0.0106809 delta=4.65216 N 110 term 0.103821 -idx: 3 entropy_left: 0 entropy_right : 1.48715 -> 0 109 -idx: 4 entropy_left: 0.811278 entropy_right : 1.48882 -> 0 109 -idx: 5 entropy_left: 0.721928 entropy_right : 1.4913 -> 0 109 -idx: 6 entropy_left: 1.25163 entropy_right : 1.48088 -> 0 109 -idx: 11 entropy_left: 0.865857 entropy_right : 1.49129 -> 0 109 -idx: 15 entropy_left: 1.23096 entropy_right : 1.50098 -> 0 109 -idx: 20 entropy_left: 1.0763 entropy_right : 1.51077 -> 0 109 -idx: 22 entropy_left: 1.14332 entropy_right : 1.51676 -> 0 109 -idx: 24 entropy_left: 1.09948 entropy_right : 1.51993 -> 0 109 -idx: 26 entropy_left: 1.14162 entropy_right : 1.52612 -> 0 109 -idx: 27 entropy_left: 1.12466 entropy_right : 1.52779 -> 0 109 -idx: 28 entropy_left: 1.13928 entropy_right : 1.53081 -> 0 109 -idx: 30 entropy_left: 1.10923 entropy_right : 1.53374 -> 0 109 -idx: 31 entropy_left: 1.12309 entropy_right : 1.53709 -> 0 109 -idx: 33 entropy_left: 1.09614 entropy_right : 1.53913 -> 0 109 -idx: 36 entropy_left: 1.1271 entropy_right : 1.54941 -> 0 109 -idx: 38 entropy_left: 1.10727 entropy_right : 1.55165 -> 0 109 -idx: 39 entropy_left: 1.11501 entropy_right : 1.55515 -> 0 109 -idx: 40 entropy_left: 1.10587 entropy_right : 1.55589 -> 0 109 -idx: 41 entropy_left: 1.1127 entropy_right : 1.5594 -> 0 109 -idx: 42 entropy_left: 1.10431 entropy_right : 1.55996 -> 0 109 -idx: 44 entropy_left: 1.115 entropy_right : 1.5666 -> 0 109 -idx: 46 entropy_left: 1.10094 entropy_right : 1.56741 -> 0 109 -idx: 47 entropy_left: 1.10581 entropy_right : 1.5709 -> 0 109 -idx: 48 entropy_left: 1.1872 entropy_right : 1.56553 -> 0 109 -idx: 54 entropy_left: 1.14052 entropy_right : 1.5515 -> 0 109 -idx: 56 entropy_left: 1.15193 entropy_right : 1.56356 -> 0 109 -idx: 57 entropy_left: 1.14495 entropy_right : 1.55793 -> 0 109 -idx: 60 entropy_left: 1.15668 entropy_right : 1.57362 -> 0 109 -idx: 62 entropy_left: 1.14522 entropy_right : 1.56033 -> 0 109 -idx: 63 entropy_left: 1.14849 entropy_right : 1.56534 -> 0 109 -idx: 64 entropy_left: 1.20362 entropy_right : 1.5656 -> 0 109 -idx: 66 entropy_left: 1.20721 entropy_right : 1.57457 -> 0 109 -idx: 67 entropy_left: 1.20211 entropy_right : 1.56715 -> 0 109 -idx: 68 entropy_left: 1.20348 entropy_right : 1.57071 -> 0 109 -idx: 69 entropy_left: 1.2483 entropy_right : 1.57293 -> 0 109 -idx: 70 entropy_left: 1.24884 entropy_right : 1.57618 -> 0 109 -idx: 72 entropy_left: 1.32074 entropy_right : 1.57766 -> 0 109 -idx: 76 entropy_left: 1.31734 entropy_right : 1.58098 -> 0 109 -idx: 77 entropy_left: 1.34645 entropy_right : 1.58354 -> 0 109 -idx: 78 entropy_left: 1.34261 entropy_right : 1.58348 -> 0 109 -idx: 79 entropy_left: 1.36851 entropy_right : 1.58496 -> 0 109 -idx: 84 entropy_left: 1.34715 entropy_right : 1.52193 -> 0 109 -idx: 85 entropy_left: 1.347 entropy_right : 1.52837 -> 0 109 -idx: 87 entropy_left: 1.33826 entropy_right : 1.43655 -> 0 109 -idx: 90 entropy_left: 1.40118 entropy_right : 1.46184 -> 0 109 -idx: 93 entropy_left: 1.40005 entropy_right : 1.50524 -> 0 109 -idx: 98 entropy_left: 1.47304 entropy_right : 1.43537 -> 0 109 -idx: 100 entropy_left: 1.47122 entropy_right : 1.53049 -> 0 109 -idx: 101 entropy_left: 1.46797 entropy_right : 1.5 -> 0 109 -idx: 102 entropy_left: 1.47927 entropy_right : 1.37878 -> 0 109 -idx: 105 entropy_left: 1.47569 entropy_right : 1.5 -> 0 109 -idx: 107 entropy_left: 1.47004 entropy_right : 1 -> 0 109 -idx: 108 entropy_left: 1.48068 entropy_right : 0 -> 0 109 -cut: 3.3 index: 108 -start: 0 cut: 108 end: 109 -k=3 k1=3 k2=1 ent=1.4795 ent1=1.48068 ent2=0 -ig=0.0124054 delta=4.64739 N 109 term 0.104608 -idx: 3 entropy_left: 0 entropy_right : 1.48882 -> 0 108 -idx: 4 entropy_left: 0.811278 entropy_right : 1.49033 -> 0 108 -idx: 5 entropy_left: 0.721928 entropy_right : 1.49297 -> 0 108 -idx: 6 entropy_left: 1.25163 entropy_right : 1.48261 -> 0 108 -idx: 11 entropy_left: 0.865857 entropy_right : 1.49396 -> 0 108 -idx: 15 entropy_left: 1.23096 entropy_right : 1.50295 -> 0 108 -idx: 20 entropy_left: 1.0763 entropy_right : 1.51386 -> 0 108 -idx: 22 entropy_left: 1.14332 entropy_right : 1.51946 -> 0 108 -idx: 24 entropy_left: 1.09948 entropy_right : 1.52313 -> 0 108 -idx: 26 entropy_left: 1.14162 entropy_right : 1.52887 -> 0 108 -idx: 27 entropy_left: 1.12466 entropy_right : 1.53081 -> 0 108 -idx: 28 entropy_left: 1.13928 entropy_right : 1.53359 -> 0 108 -idx: 30 entropy_left: 1.10923 entropy_right : 1.53709 -> 0 108 -idx: 31 entropy_left: 1.12309 entropy_right : 1.54018 -> 0 108 -idx: 33 entropy_left: 1.09614 entropy_right : 1.54283 -> 0 108 -idx: 36 entropy_left: 1.1271 entropy_right : 1.55222 -> 0 108 -idx: 38 entropy_left: 1.10727 entropy_right : 1.55515 -> 0 108 -idx: 39 entropy_left: 1.11501 entropy_right : 1.5583 -> 0 108 -idx: 40 entropy_left: 1.10587 entropy_right : 1.5594 -> 0 108 -idx: 41 entropy_left: 1.1127 entropy_right : 1.56255 -> 0 108 -idx: 42 entropy_left: 1.10431 entropy_right : 1.56348 -> 0 108 -idx: 44 entropy_left: 1.115 entropy_right : 1.56925 -> 0 108 -idx: 46 entropy_left: 1.10094 entropy_right : 1.5709 -> 0 108 -idx: 47 entropy_left: 1.10581 entropy_right : 1.57389 -> 0 108 -idx: 48 entropy_left: 1.1872 entropy_right : 1.56888 -> 0 108 -idx: 54 entropy_left: 1.14052 entropy_right : 1.55775 -> 0 108 -idx: 56 entropy_left: 1.15193 entropy_right : 1.56886 -> 0 108 -idx: 57 entropy_left: 1.14495 entropy_right : 1.56377 -> 0 108 -idx: 60 entropy_left: 1.15668 entropy_right : 1.57743 -> 0 108 -idx: 62 entropy_left: 1.14522 entropy_right : 1.56534 -> 0 108 -idx: 63 entropy_left: 1.14849 entropy_right : 1.56949 -> 0 108 -idx: 64 entropy_left: 1.20362 entropy_right : 1.57057 -> 0 108 -idx: 66 entropy_left: 1.20721 entropy_right : 1.57741 -> 0 108 -idx: 67 entropy_left: 1.20211 entropy_right : 1.57071 -> 0 108 -idx: 68 entropy_left: 1.20348 entropy_right : 1.57293 -> 0 108 -idx: 69 entropy_left: 1.2483 entropy_right : 1.57618 -> 0 108 -idx: 70 entropy_left: 1.24884 entropy_right : 1.57786 -> 0 108 -idx: 72 entropy_left: 1.32074 entropy_right : 1.58162 -> 0 108 -idx: 76 entropy_left: 1.31734 entropy_right : 1.57492 -> 0 108 -idx: 77 entropy_left: 1.34645 entropy_right : 1.57881 -> 0 108 -idx: 78 entropy_left: 1.34261 entropy_right : 1.58015 -> 0 108 -idx: 79 entropy_left: 1.36851 entropy_right : 1.58323 -> 0 108 -idx: 84 entropy_left: 1.34715 entropy_right : 1.52837 -> 0 108 -idx: 85 entropy_left: 1.347 entropy_right : 1.531 -> 0 108 -idx: 87 entropy_left: 1.33826 entropy_right : 1.44117 -> 0 108 -idx: 90 entropy_left: 1.40118 entropy_right : 1.48068 -> 0 108 -idx: 93 entropy_left: 1.40005 entropy_right : 1.50582 -> 0 108 -idx: 98 entropy_left: 1.47304 entropy_right : 1.48548 -> 0 108 -idx: 100 entropy_left: 1.47122 entropy_right : 1.56128 -> 0 108 -idx: 101 entropy_left: 1.46797 entropy_right : 1.55666 -> 0 108 -idx: 102 entropy_left: 1.47927 entropy_right : 1.45915 -> 0 108 -idx: 105 entropy_left: 1.47569 entropy_right : 0.918296 -> 0 108 -idx: 107 entropy_left: 1.47004 entropy_right : 0 -> 0 108 -cut: 3.25 index: 107 -start: 0 cut: 107 end: 108 -k=3 k1=3 k2=1 ent=1.48068 ent1=1.47004 ent2=0 -ig=0.0242509 delta=4.61194 N 108 term 0.105124 -idx: 3 entropy_left: 0 entropy_right : 1.47835 -> 0 107 -idx: 4 entropy_left: 0.811278 entropy_right : 1.4799 -> 0 107 -idx: 5 entropy_left: 0.721928 entropy_right : 1.48261 -> 0 107 -idx: 6 entropy_left: 1.25163 entropy_right : 1.47133 -> 0 107 -idx: 11 entropy_left: 0.865857 entropy_right : 1.48298 -> 0 107 -idx: 15 entropy_left: 1.23096 entropy_right : 1.49225 -> 0 107 -idx: 20 entropy_left: 1.0763 entropy_right : 1.50359 -> 0 107 -idx: 22 entropy_left: 1.14332 entropy_right : 1.50941 -> 0 107 -idx: 24 entropy_left: 1.09948 entropy_right : 1.51329 -> 0 107 -idx: 26 entropy_left: 1.14162 entropy_right : 1.51929 -> 0 107 -idx: 27 entropy_left: 1.12466 entropy_right : 1.52136 -> 0 107 -idx: 28 entropy_left: 1.13928 entropy_right : 1.52429 -> 0 107 -idx: 30 entropy_left: 1.10923 entropy_right : 1.52807 -> 0 107 -idx: 31 entropy_left: 1.12309 entropy_right : 1.53133 -> 0 107 -idx: 33 entropy_left: 1.09614 entropy_right : 1.53429 -> 0 107 -idx: 36 entropy_left: 1.1271 entropy_right : 1.54428 -> 0 107 -idx: 38 entropy_left: 1.10727 entropy_right : 1.54762 -> 0 107 -idx: 39 entropy_left: 1.11501 entropy_right : 1.55102 -> 0 107 -idx: 40 entropy_left: 1.10587 entropy_right : 1.55234 -> 0 107 -idx: 41 entropy_left: 1.1127 entropy_right : 1.55575 -> 0 107 -idx: 42 entropy_left: 1.10431 entropy_right : 1.55693 -> 0 107 -idx: 44 entropy_left: 1.115 entropy_right : 1.5633 -> 0 107 -idx: 46 entropy_left: 1.10094 entropy_right : 1.56553 -> 0 107 -idx: 47 entropy_left: 1.10581 entropy_right : 1.56888 -> 0 107 -idx: 48 entropy_left: 1.1872 entropy_right : 1.56258 -> 0 107 -idx: 54 entropy_left: 1.14052 entropy_right : 1.55342 -> 0 107 -idx: 56 entropy_left: 1.15193 entropy_right : 1.56565 -> 0 107 -idx: 57 entropy_left: 1.14495 entropy_right : 1.56096 -> 0 107 -idx: 60 entropy_left: 1.15668 entropy_right : 1.57661 -> 0 107 -idx: 62 entropy_left: 1.14522 entropy_right : 1.5656 -> 0 107 -idx: 63 entropy_left: 1.14849 entropy_right : 1.57057 -> 0 107 -idx: 64 entropy_left: 1.20362 entropy_right : 1.57023 -> 0 107 -idx: 66 entropy_left: 1.20721 entropy_right : 1.57887 -> 0 107 -idx: 67 entropy_left: 1.20211 entropy_right : 1.57293 -> 0 107 -idx: 68 entropy_left: 1.20348 entropy_right : 1.57618 -> 0 107 -idx: 69 entropy_left: 1.2483 entropy_right : 1.57786 -> 0 107 -idx: 70 entropy_left: 1.24884 entropy_right : 1.58066 -> 0 107 -idx: 72 entropy_left: 1.32074 entropy_right : 1.58033 -> 0 107 -idx: 76 entropy_left: 1.31734 entropy_right : 1.57881 -> 0 107 -idx: 77 entropy_left: 1.34645 entropy_right : 1.58015 -> 0 107 -idx: 78 entropy_left: 1.34261 entropy_right : 1.58323 -> 0 107 -idx: 79 entropy_left: 1.36851 entropy_right : 1.58314 -> 0 107 -idx: 84 entropy_left: 1.34715 entropy_right : 1.53798 -> 0 107 -idx: 85 entropy_left: 1.347 entropy_right : 1.54402 -> 0 107 -idx: 87 entropy_left: 1.33826 entropy_right : 1.45772 -> 0 107 -idx: 90 entropy_left: 1.40118 entropy_right : 1.48366 -> 0 107 -idx: 93 entropy_left: 1.40005 entropy_right : 1.53062 -> 0 107 -idx: 98 entropy_left: 1.47304 entropy_right : 1.35164 -> 0 107 -idx: 100 entropy_left: 1.47122 entropy_right : 1.44882 -> 0 107 -idx: 101 entropy_left: 1.46797 entropy_right : 1.45915 -> 0 107 -idx: 102 entropy_left: 1.47927 entropy_right : 0.970951 -> 0 107 -idx: 105 entropy_left: 1.47569 entropy_right : 0 -> 0 107 -cut: 3.2 index: 105 -start: 0 cut: 105 end: 107 -k=3 k1=3 k2=1 ent=1.47004 ent1=1.47569 ent2=0 -ig=0.021933 delta=4.66081 N 107 term 0.106437 -idx: 3 entropy_left: 0 entropy_right : 1.48327 -> 0 105 -idx: 4 entropy_left: 0.811278 entropy_right : 1.48518 -> 0 105 -idx: 5 entropy_left: 0.721928 entropy_right : 1.48762 -> 0 105 -idx: 6 entropy_left: 1.25163 entropy_right : 1.47646 -> 0 105 -idx: 11 entropy_left: 0.865857 entropy_right : 1.4864 -> 0 105 -idx: 15 entropy_left: 1.23096 entropy_right : 1.49741 -> 0 105 -idx: 20 entropy_left: 1.0763 entropy_right : 1.50645 -> 0 105 -idx: 22 entropy_left: 1.14332 entropy_right : 1.51329 -> 0 105 -idx: 24 entropy_left: 1.09948 entropy_right : 1.516 -> 0 105 -idx: 26 entropy_left: 1.14162 entropy_right : 1.52313 -> 0 105 -idx: 27 entropy_left: 1.12466 entropy_right : 1.52455 -> 0 105 -idx: 28 entropy_left: 1.13928 entropy_right : 1.52807 -> 0 105 -idx: 30 entropy_left: 1.10923 entropy_right : 1.53039 -> 0 105 -idx: 31 entropy_left: 1.12309 entropy_right : 1.53429 -> 0 105 -idx: 33 entropy_left: 1.09614 entropy_right : 1.53553 -> 0 105 -idx: 36 entropy_left: 1.1271 entropy_right : 1.54762 -> 0 105 -idx: 38 entropy_left: 1.10727 entropy_right : 1.54896 -> 0 105 -idx: 39 entropy_left: 1.11501 entropy_right : 1.55312 -> 0 105 -idx: 40 entropy_left: 1.10587 entropy_right : 1.5533 -> 0 105 -idx: 41 entropy_left: 1.1127 entropy_right : 1.55752 -> 0 105 -idx: 42 entropy_left: 1.10431 entropy_right : 1.55744 -> 0 105 -idx: 44 entropy_left: 1.115 entropy_right : 1.56553 -> 0 105 -idx: 46 entropy_left: 1.10094 entropy_right : 1.56485 -> 0 105 -idx: 47 entropy_left: 1.10581 entropy_right : 1.56914 -> 0 105 -idx: 48 entropy_left: 1.1872 entropy_right : 1.56349 -> 0 105 -idx: 54 entropy_left: 1.14052 entropy_right : 1.54005 -> 0 105 -idx: 56 entropy_left: 1.15193 entropy_right : 1.55455 -> 0 105 -idx: 57 entropy_left: 1.14495 entropy_right : 1.54618 -> 0 105 -idx: 60 entropy_left: 1.15668 entropy_right : 1.5656 -> 0 105 -idx: 62 entropy_left: 1.14522 entropy_right : 1.5453 -> 0 105 -idx: 63 entropy_left: 1.14849 entropy_right : 1.55161 -> 0 105 -idx: 64 entropy_left: 1.20362 entropy_right : 1.55245 -> 0 105 -idx: 66 entropy_left: 1.20721 entropy_right : 1.56423 -> 0 105 -idx: 67 entropy_left: 1.20211 entropy_right : 1.55225 -> 0 105 -idx: 68 entropy_left: 1.20348 entropy_right : 1.55715 -> 0 105 -idx: 69 entropy_left: 1.2483 entropy_right : 1.56054 -> 0 105 -idx: 70 entropy_left: 1.24884 entropy_right : 1.56526 -> 0 105 -idx: 72 entropy_left: 1.32074 entropy_right : 1.56898 -> 0 105 -idx: 76 entropy_left: 1.31734 entropy_right : 1.57824 -> 0 105 -idx: 77 entropy_left: 1.34645 entropy_right : 1.58314 -> 0 105 -idx: 78 entropy_left: 1.34261 entropy_right : 1.57901 -> 0 105 -idx: 79 entropy_left: 1.36851 entropy_right : 1.5828 -> 0 105 -idx: 84 entropy_left: 1.34715 entropy_right : 1.44882 -> 0 105 -idx: 85 entropy_left: 1.347 entropy_right : 1.45772 -> 0 105 -idx: 87 entropy_left: 1.33826 entropy_right : 1.25163 -> 0 105 -idx: 90 entropy_left: 1.40118 entropy_right : 1.27291 -> 0 105 -idx: 93 entropy_left: 1.40005 entropy_right : 1.32501 -> 0 105 -idx: 98 entropy_left: 1.47304 entropy_right : 1.14883 -> 0 105 -idx: 100 entropy_left: 1.47122 entropy_right : 1.37095 -> 0 105 -idx: 101 entropy_left: 1.46797 entropy_right : 0.811278 -> 0 105 -idx: 102 entropy_left: 1.47927 entropy_right : 0 -> 0 105 -cut: 3.2 index: 102 -start: 0 cut: 102 end: 105 -k=3 k1=3 k2=1 ent=1.47569 ent1=1.47927 ent2=0 -ig=0.0386835 delta=4.6546 N 105 term 0.108143 -idx: 3 entropy_left: 0 entropy_right : 1.48848 -> 0 102 -idx: 4 entropy_left: 0.811278 entropy_right : 1.48984 -> 0 102 -idx: 5 entropy_left: 0.721928 entropy_right : 1.49285 -> 0 102 -idx: 6 entropy_left: 1.25163 entropy_right : 1.48185 -> 0 102 -idx: 11 entropy_left: 0.865857 entropy_right : 1.49493 -> 0 102 -idx: 15 entropy_left: 1.23096 entropy_right : 1.50359 -> 0 102 -idx: 20 entropy_left: 1.0763 entropy_right : 1.51641 -> 0 102 -idx: 22 entropy_left: 1.14332 entropy_right : 1.52193 -> 0 102 -idx: 24 entropy_left: 1.09948 entropy_right : 1.52634 -> 0 102 -idx: 26 entropy_left: 1.14162 entropy_right : 1.53196 -> 0 102 -idx: 27 entropy_left: 1.12466 entropy_right : 1.53431 -> 0 102 -idx: 28 entropy_left: 1.13928 entropy_right : 1.53698 -> 0 102 -idx: 30 entropy_left: 1.10923 entropy_right : 1.54127 -> 0 102 -idx: 31 entropy_left: 1.12309 entropy_right : 1.54428 -> 0 102 -idx: 33 entropy_left: 1.09614 entropy_right : 1.54762 -> 0 102 -idx: 36 entropy_left: 1.1271 entropy_right : 1.55662 -> 0 102 -idx: 38 entropy_left: 1.10727 entropy_right : 1.56034 -> 0 102 -idx: 39 entropy_left: 1.11501 entropy_right : 1.5633 -> 0 102 -idx: 40 entropy_left: 1.10587 entropy_right : 1.56473 -> 0 102 -idx: 41 entropy_left: 1.1127 entropy_right : 1.56763 -> 0 102 -idx: 42 entropy_left: 1.10431 entropy_right : 1.56888 -> 0 102 -idx: 44 entropy_left: 1.115 entropy_right : 1.57389 -> 0 102 -idx: 46 entropy_left: 1.10094 entropy_right : 1.57612 -> 0 102 -idx: 47 entropy_left: 1.10581 entropy_right : 1.57865 -> 0 102 -idx: 48 entropy_left: 1.1872 entropy_right : 1.57428 -> 0 102 -idx: 54 entropy_left: 1.14052 entropy_right : 1.56105 -> 0 102 -idx: 56 entropy_left: 1.15193 entropy_right : 1.57209 -> 0 102 -idx: 57 entropy_left: 1.14495 entropy_right : 1.5656 -> 0 102 -idx: 60 entropy_left: 1.15668 entropy_right : 1.57741 -> 0 102 -idx: 62 entropy_left: 1.14522 entropy_right : 1.56128 -> 0 102 -idx: 63 entropy_left: 1.14849 entropy_right : 1.56423 -> 0 102 -idx: 64 entropy_left: 1.20362 entropy_right : 1.56832 -> 0 102 -idx: 66 entropy_left: 1.20721 entropy_right : 1.57154 -> 0 102 -idx: 67 entropy_left: 1.20211 entropy_right : 1.56209 -> 0 102 -idx: 68 entropy_left: 1.20348 entropy_right : 1.5614 -> 0 102 -idx: 69 entropy_left: 1.2483 entropy_right : 1.56898 -> 0 102 -idx: 70 entropy_left: 1.24884 entropy_right : 1.56705 -> 0 102 -idx: 72 entropy_left: 1.32074 entropy_right : 1.58015 -> 0 102 -idx: 76 entropy_left: 1.31734 entropy_right : 1.54302 -> 0 102 -idx: 77 entropy_left: 1.34645 entropy_right : 1.55352 -> 0 102 -idx: 78 entropy_left: 1.34261 entropy_right : 1.55459 -> 0 102 -idx: 79 entropy_left: 1.36851 entropy_right : 1.56534 -> 0 102 -idx: 84 entropy_left: 1.34715 entropy_right : 1.45915 -> 0 102 -idx: 85 entropy_left: 1.347 entropy_right : 1.44665 -> 0 102 -idx: 87 entropy_left: 1.33826 entropy_right : 1.23096 -> 0 102 -idx: 90 entropy_left: 1.40118 entropy_right : 1.32501 -> 0 102 -idx: 93 entropy_left: 1.40005 entropy_right : 1.22439 -> 0 102 -idx: 98 entropy_left: 1.47304 entropy_right : 1.5 -> 0 102 -idx: 100 entropy_left: 1.47122 entropy_right : 1 -> 0 102 -idx: 101 entropy_left: 1.46797 entropy_right : 0 -> 0 102 -cut: 3.2 index: 101 -start: 0 cut: 101 end: 102 -k=3 k1=3 k2=1 ent=1.47927 ent1=1.46797 ent2=0 -ig=0.0256976 delta=4.60994 N 102 term 0.110472 -idx: 3 entropy_left: 0 entropy_right : 1.47736 -> 0 101 -idx: 4 entropy_left: 0.811278 entropy_right : 1.47877 -> 0 101 -idx: 5 entropy_left: 0.721928 entropy_right : 1.48185 -> 0 101 -idx: 6 entropy_left: 1.25163 entropy_right : 1.46984 -> 0 101 -idx: 11 entropy_left: 0.865857 entropy_right : 1.48325 -> 0 101 -idx: 15 entropy_left: 1.23096 entropy_right : 1.49223 -> 0 101 -idx: 20 entropy_left: 1.0763 entropy_right : 1.50556 -> 0 101 -idx: 22 entropy_left: 1.14332 entropy_right : 1.51133 -> 0 101 -idx: 24 entropy_left: 1.09948 entropy_right : 1.51601 -> 0 101 -idx: 26 entropy_left: 1.14162 entropy_right : 1.52193 -> 0 101 -idx: 27 entropy_left: 1.12466 entropy_right : 1.52443 -> 0 101 -idx: 28 entropy_left: 1.13928 entropy_right : 1.52727 -> 0 101 -idx: 30 entropy_left: 1.10923 entropy_right : 1.53191 -> 0 101 -idx: 31 entropy_left: 1.12309 entropy_right : 1.53512 -> 0 101 -idx: 33 entropy_left: 1.09614 entropy_right : 1.53885 -> 0 101 -idx: 36 entropy_left: 1.1271 entropy_right : 1.54858 -> 0 101 -idx: 38 entropy_left: 1.10727 entropy_right : 1.55281 -> 0 101 -idx: 39 entropy_left: 1.11501 entropy_right : 1.55606 -> 0 101 -idx: 40 entropy_left: 1.10587 entropy_right : 1.55779 -> 0 101 -idx: 41 entropy_left: 1.1127 entropy_right : 1.56101 -> 0 101 -idx: 42 entropy_left: 1.10431 entropy_right : 1.56258 -> 0 101 -idx: 44 entropy_left: 1.115 entropy_right : 1.56832 -> 0 101 -idx: 46 entropy_left: 1.10094 entropy_right : 1.57131 -> 0 101 -idx: 47 entropy_left: 1.10581 entropy_right : 1.57428 -> 0 101 -idx: 48 entropy_left: 1.1872 entropy_right : 1.56845 -> 0 101 -idx: 54 entropy_left: 1.14052 entropy_right : 1.55784 -> 0 101 -idx: 56 entropy_left: 1.15193 entropy_right : 1.57036 -> 0 101 -idx: 57 entropy_left: 1.14495 entropy_right : 1.5644 -> 0 101 -idx: 60 entropy_left: 1.15668 entropy_right : 1.57887 -> 0 101 -idx: 62 entropy_left: 1.14522 entropy_right : 1.56423 -> 0 101 -idx: 63 entropy_left: 1.14849 entropy_right : 1.56832 -> 0 101 -idx: 64 entropy_left: 1.20362 entropy_right : 1.57086 -> 0 101 -idx: 66 entropy_left: 1.20721 entropy_right : 1.57658 -> 0 101 -idx: 67 entropy_left: 1.20211 entropy_right : 1.56821 -> 0 101 -idx: 68 entropy_left: 1.20348 entropy_right : 1.56898 -> 0 101 -idx: 69 entropy_left: 1.2483 entropy_right : 1.57492 -> 0 101 -idx: 70 entropy_left: 1.24884 entropy_right : 1.57458 -> 0 101 -idx: 72 entropy_left: 1.32074 entropy_right : 1.58323 -> 0 101 -idx: 76 entropy_left: 1.31734 entropy_right : 1.55352 -> 0 101 -idx: 77 entropy_left: 1.34645 entropy_right : 1.56128 -> 0 101 -idx: 78 entropy_left: 1.34261 entropy_right : 1.56534 -> 0 101 -idx: 79 entropy_left: 1.36851 entropy_right : 1.57262 -> 0 101 -idx: 84 entropy_left: 1.34715 entropy_right : 1.48366 -> 0 101 -idx: 85 entropy_left: 1.347 entropy_right : 1.47722 -> 0 101 -idx: 87 entropy_left: 1.33826 entropy_right : 1.26381 -> 0 101 -idx: 90 entropy_left: 1.40118 entropy_right : 1.34859 -> 0 101 -idx: 93 entropy_left: 1.40005 entropy_right : 1.29879 -> 0 101 -idx: 98 entropy_left: 1.47304 entropy_right : 0.918296 -> 0 101 -idx: 100 entropy_left: 1.47122 entropy_right : 0 -> 0 101 -cut: 3.2 index: 100 -start: 0 cut: 100 end: 101 -k=3 k1=3 k2=1 ent=1.46797 ent1=1.47122 ent2=0 -ig=0.0113194 delta=4.6536 N 101 term 0.111856 -idx: 3 entropy_left: 0 entropy_right : 1.48024 -> 0 100 -idx: 4 entropy_left: 0.811278 entropy_right : 1.48185 -> 0 100 -idx: 5 entropy_left: 0.721928 entropy_right : 1.48479 -> 0 100 -idx: 6 entropy_left: 1.25163 entropy_right : 1.47284 -> 0 100 -idx: 11 entropy_left: 0.865857 entropy_right : 1.48537 -> 0 100 -idx: 15 entropy_left: 1.23096 entropy_right : 1.49534 -> 0 100 -idx: 20 entropy_left: 1.0763 entropy_right : 1.50746 -> 0 100 -idx: 22 entropy_left: 1.14332 entropy_right : 1.51382 -> 0 100 -idx: 24 entropy_left: 1.09948 entropy_right : 1.51786 -> 0 100 -idx: 26 entropy_left: 1.14162 entropy_right : 1.52443 -> 0 100 -idx: 27 entropy_left: 1.12466 entropy_right : 1.52659 -> 0 100 -idx: 28 entropy_left: 1.13928 entropy_right : 1.52978 -> 0 100 -idx: 30 entropy_left: 1.10923 entropy_right : 1.53362 -> 0 100 -idx: 31 entropy_left: 1.12309 entropy_right : 1.53721 -> 0 100 -idx: 33 entropy_left: 1.09614 entropy_right : 1.53999 -> 0 100 -idx: 36 entropy_left: 1.1271 entropy_right : 1.55096 -> 0 100 -idx: 38 entropy_left: 1.10727 entropy_right : 1.55408 -> 0 100 -idx: 39 entropy_left: 1.11501 entropy_right : 1.55779 -> 0 100 -idx: 40 entropy_left: 1.10587 entropy_right : 1.55887 -> 0 100 -idx: 41 entropy_left: 1.1127 entropy_right : 1.56258 -> 0 100 -idx: 42 entropy_left: 1.10431 entropy_right : 1.56343 -> 0 100 -idx: 44 entropy_left: 1.115 entropy_right : 1.5702 -> 0 100 -idx: 46 entropy_left: 1.10094 entropy_right : 1.57154 -> 0 100 -idx: 47 entropy_left: 1.10581 entropy_right : 1.57508 -> 0 100 -idx: 48 entropy_left: 1.1872 entropy_right : 1.56967 -> 0 100 -idx: 54 entropy_left: 1.14052 entropy_right : 1.55049 -> 0 100 -idx: 56 entropy_left: 1.15193 entropy_right : 1.5644 -> 0 100 -idx: 57 entropy_left: 1.14495 entropy_right : 1.55614 -> 0 100 -idx: 60 entropy_left: 1.15668 entropy_right : 1.57293 -> 0 100 -idx: 62 entropy_left: 1.14522 entropy_right : 1.55225 -> 0 100 -idx: 63 entropy_left: 1.14849 entropy_right : 1.55715 -> 0 100 -idx: 64 entropy_left: 1.20362 entropy_right : 1.56054 -> 0 100 -idx: 66 entropy_left: 1.20721 entropy_right : 1.56821 -> 0 100 -idx: 67 entropy_left: 1.20211 entropy_right : 1.55575 -> 0 100 -idx: 68 entropy_left: 1.20348 entropy_right : 1.55752 -> 0 100 -idx: 69 entropy_left: 1.2483 entropy_right : 1.56473 -> 0 100 -idx: 70 entropy_left: 1.24884 entropy_right : 1.5656 -> 0 100 -idx: 72 entropy_left: 1.32074 entropy_right : 1.57741 -> 0 100 -idx: 76 entropy_left: 1.31734 entropy_right : 1.55459 -> 0 100 -idx: 77 entropy_left: 1.34645 entropy_right : 1.56534 -> 0 100 -idx: 78 entropy_left: 1.34261 entropy_right : 1.5644 -> 0 100 -idx: 79 entropy_left: 1.36851 entropy_right : 1.57511 -> 0 100 -idx: 84 entropy_left: 1.34715 entropy_right : 1.40564 -> 0 100 -idx: 85 entropy_left: 1.347 entropy_right : 1.39958 -> 0 100 -idx: 87 entropy_left: 1.33826 entropy_right : 0.961237 -> 0 100 -idx: 90 entropy_left: 1.40118 entropy_right : 1 -> 0 100 -idx: 93 entropy_left: 1.40005 entropy_right : 0.863121 -> 0 100 -idx: 98 entropy_left: 1.47304 entropy_right : 0 -> 0 100 -cut: 3.2 index: 98 -start: 0 cut: 98 end: 100 -k=3 k1=3 k2=1 ent=1.47122 ent1=1.47304 ent2=0 -ig=0.0276315 delta=4.64934 N 100 term 0.112787 -idx: 3 entropy_left: 0 entropy_right : 1.48325 -> 0 98 -idx: 4 entropy_left: 0.811278 entropy_right : 1.48443 -> 0 98 -idx: 5 entropy_left: 0.721928 entropy_right : 1.48779 -> 0 98 -idx: 6 entropy_left: 1.25163 entropy_right : 1.47595 -> 0 98 -idx: 11 entropy_left: 0.865857 entropy_right : 1.49078 -> 0 98 -idx: 15 entropy_left: 1.23096 entropy_right : 1.49889 -> 0 98 -idx: 20 entropy_left: 1.0763 entropy_right : 1.51382 -> 0 98 -idx: 22 entropy_left: 1.14332 entropy_right : 1.51911 -> 0 98 -idx: 24 entropy_left: 1.09948 entropy_right : 1.52443 -> 0 98 -idx: 26 entropy_left: 1.14162 entropy_right : 1.52978 -> 0 98 -idx: 27 entropy_left: 1.12466 entropy_right : 1.53263 -> 0 98 -idx: 28 entropy_left: 1.13928 entropy_right : 1.53512 -> 0 98 -idx: 30 entropy_left: 1.10923 entropy_right : 1.54045 -> 0 98 -idx: 31 entropy_left: 1.12309 entropy_right : 1.54331 -> 0 98 -idx: 33 entropy_left: 1.09614 entropy_right : 1.54769 -> 0 98 -idx: 36 entropy_left: 1.1271 entropy_right : 1.55606 -> 0 98 -idx: 38 entropy_left: 1.10727 entropy_right : 1.56101 -> 0 98 -idx: 39 entropy_left: 1.11501 entropy_right : 1.56369 -> 0 98 -idx: 40 entropy_left: 1.10587 entropy_right : 1.56575 -> 0 98 -idx: 41 entropy_left: 1.1127 entropy_right : 1.56832 -> 0 98 -idx: 42 entropy_left: 1.10431 entropy_right : 1.5702 -> 0 98 -idx: 44 entropy_left: 1.115 entropy_right : 1.57428 -> 0 98 -idx: 46 entropy_left: 1.10094 entropy_right : 1.57789 -> 0 98 -idx: 47 entropy_left: 1.10581 entropy_right : 1.57986 -> 0 98 -idx: 48 entropy_left: 1.1872 entropy_right : 1.57545 -> 0 98 -idx: 54 entropy_left: 1.14052 entropy_right : 1.5644 -> 0 98 -idx: 56 entropy_left: 1.15193 entropy_right : 1.57511 -> 0 98 -idx: 57 entropy_left: 1.14495 entropy_right : 1.56836 -> 0 98 -idx: 60 entropy_left: 1.15668 entropy_right : 1.57786 -> 0 98 -idx: 62 entropy_left: 1.14522 entropy_right : 1.56054 -> 0 98 -idx: 63 entropy_left: 1.14849 entropy_right : 1.56209 -> 0 98 -idx: 64 entropy_left: 1.20362 entropy_right : 1.56821 -> 0 98 -idx: 66 entropy_left: 1.20721 entropy_right : 1.56705 -> 0 98 -idx: 67 entropy_left: 1.20211 entropy_right : 1.55662 -> 0 98 -idx: 68 entropy_left: 1.20348 entropy_right : 1.55239 -> 0 98 -idx: 69 entropy_left: 1.2483 entropy_right : 1.56319 -> 0 98 -idx: 70 entropy_left: 1.24884 entropy_right : 1.55666 -> 0 98 -idx: 72 entropy_left: 1.32074 entropy_right : 1.57662 -> 0 98 -idx: 76 entropy_left: 1.31734 entropy_right : 1.49492 -> 0 98 -idx: 77 entropy_left: 1.34645 entropy_right : 1.50997 -> 0 98 -idx: 78 entropy_left: 1.34261 entropy_right : 1.51289 -> 0 98 -idx: 79 entropy_left: 1.36851 entropy_right : 1.52943 -> 0 98 -idx: 84 entropy_left: 1.34715 entropy_right : 1.37878 -> 0 98 -idx: 85 entropy_left: 1.347 entropy_right : 1.33468 -> 0 98 -idx: 87 entropy_left: 1.33826 entropy_right : 0.845351 -> 0 98 -idx: 90 entropy_left: 1.40118 entropy_right : 0.954434 -> 0 98 -idx: 93 entropy_left: 1.40005 entropy_right : 0 -> 0 98 -cut: 3.1 index: 93 -start: 0 cut: 93 end: 98 -k=3 k1=3 k2=1 ent=1.47304 ent1=1.40005 ent2=0 -ig=0.144424 delta=4.42488 N 98 term 0.112498 -¡Ding! 3.1 93 -idx: 3 entropy_left: 0 entropy_right : 1.41095 -> 0 93 -idx: 4 entropy_left: 0.811278 entropy_right : 1.41227 -> 0 93 -idx: 5 entropy_left: 0.721928 entropy_right : 1.4159 -> 0 93 -idx: 6 entropy_left: 1.25163 entropy_right : 1.39701 -> 0 93 -idx: 11 entropy_left: 0.865857 entropy_right : 1.41299 -> 0 93 -idx: 15 entropy_left: 1.23096 entropy_right : 1.42211 -> 0 93 -idx: 20 entropy_left: 1.0763 entropy_right : 1.43915 -> 0 93 -idx: 22 entropy_left: 1.14332 entropy_right : 1.44544 -> 0 93 -idx: 24 entropy_left: 1.09948 entropy_right : 1.45189 -> 0 93 -idx: 26 entropy_left: 1.14162 entropy_right : 1.45853 -> 0 93 -idx: 27 entropy_left: 1.12466 entropy_right : 1.4621 -> 0 93 -idx: 28 entropy_left: 1.13928 entropy_right : 1.46533 -> 0 93 -idx: 30 entropy_left: 1.10923 entropy_right : 1.47232 -> 0 93 -idx: 31 entropy_left: 1.12309 entropy_right : 1.4761 -> 0 93 -idx: 33 entropy_left: 1.09614 entropy_right : 1.48239 -> 0 93 -idx: 36 entropy_left: 1.1271 entropy_right : 1.49429 -> 0 93 -idx: 38 entropy_left: 1.10727 entropy_right : 1.50193 -> 0 93 -idx: 39 entropy_left: 1.11501 entropy_right : 1.5061 -> 0 93 -idx: 40 entropy_left: 1.10587 entropy_right : 1.5097 -> 0 93 -idx: 41 entropy_left: 1.1127 entropy_right : 1.51397 -> 0 93 -idx: 42 entropy_left: 1.10431 entropy_right : 1.51759 -> 0 93 -idx: 44 entropy_left: 1.115 entropy_right : 1.52556 -> 0 93 -idx: 46 entropy_left: 1.10094 entropy_right : 1.53356 -> 0 93 -idx: 47 entropy_left: 1.10581 entropy_right : 1.53798 -> 0 93 -idx: 48 entropy_left: 1.1872 entropy_right : 1.52193 -> 0 93 -idx: 54 entropy_left: 1.14052 entropy_right : 1.52623 -> 0 93 -idx: 56 entropy_left: 1.15193 entropy_right : 1.54597 -> 0 93 -idx: 57 entropy_left: 1.14495 entropy_right : 1.54262 -> 0 93 -idx: 60 entropy_left: 1.15668 entropy_right : 1.56898 -> 0 93 -idx: 62 entropy_left: 1.14522 entropy_right : 1.5618 -> 0 93 -idx: 63 entropy_left: 1.14849 entropy_right : 1.57095 -> 0 93 -idx: 64 entropy_left: 1.20362 entropy_right : 1.56319 -> 0 93 -idx: 66 entropy_left: 1.20721 entropy_right : 1.57901 -> 0 93 -idx: 67 entropy_left: 1.20211 entropy_right : 1.57662 -> 0 93 -idx: 68 entropy_left: 1.20348 entropy_right : 1.58268 -> 0 93 -idx: 69 entropy_left: 1.2483 entropy_right : 1.57743 -> 0 93 -idx: 70 entropy_left: 1.24884 entropy_right : 1.58219 -> 0 93 -idx: 72 entropy_left: 1.32074 entropy_right : 1.55376 -> 0 93 -idx: 76 entropy_left: 1.31734 entropy_right : 1.52219 -> 0 93 -idx: 77 entropy_left: 1.34645 entropy_right : 1.5 -> 0 93 -idx: 78 entropy_left: 1.34261 entropy_right : 1.53012 -> 0 93 -idx: 79 entropy_left: 1.36851 entropy_right : 1.49261 -> 0 93 -idx: 84 entropy_left: 1.34715 entropy_right : 1.53049 -> 0 93 -idx: 85 entropy_left: 1.347 entropy_right : 1.56128 -> 0 93 -idx: 87 entropy_left: 1.33826 entropy_right : 1 -> 0 93 -idx: 90 entropy_left: 1.40118 entropy_right : 0 -> 0 93 -cut: 3.1 index: 90 -start: 0 cut: 90 end: 93 -k=3 k1=3 k2=1 ent=1.40005 ent1=1.40118 ent2=0 -ig=0.0440748 delta=4.64723 N 93 term 0.120116 -idx: 3 entropy_left: 0 entropy_right : 1.41415 -> 0 90 -idx: 4 entropy_left: 0.811278 entropy_right : 1.41468 -> 0 90 -idx: 5 entropy_left: 0.721928 entropy_right : 1.41906 -> 0 90 -idx: 6 entropy_left: 1.25163 entropy_right : 1.40013 -> 0 90 -idx: 11 entropy_left: 0.865857 entropy_right : 1.42022 -> 0 90 -idx: 15 entropy_left: 1.23096 entropy_right : 1.42591 -> 0 90 -idx: 20 entropy_left: 1.0763 entropy_right : 1.44813 -> 0 90 -idx: 22 entropy_left: 1.14332 entropy_right : 1.45244 -> 0 90 -idx: 24 entropy_left: 1.09948 entropy_right : 1.46132 -> 0 90 -idx: 26 entropy_left: 1.14162 entropy_right : 1.46567 -> 0 90 -idx: 27 entropy_left: 1.12466 entropy_right : 1.47059 -> 0 90 -idx: 28 entropy_left: 1.13928 entropy_right : 1.47251 -> 0 90 -idx: 30 entropy_left: 1.10923 entropy_right : 1.48239 -> 0 90 -idx: 31 entropy_left: 1.12309 entropy_right : 1.4848 -> 0 90 -idx: 33 entropy_left: 1.09614 entropy_right : 1.49429 -> 0 90 -idx: 36 entropy_left: 1.1271 entropy_right : 1.50124 -> 0 90 -idx: 38 entropy_left: 1.10727 entropy_right : 1.51264 -> 0 90 -idx: 39 entropy_left: 1.11501 entropy_right : 1.51483 -> 0 90 -idx: 40 entropy_left: 1.10587 entropy_right : 1.52048 -> 0 90 -idx: 41 entropy_left: 1.1127 entropy_right : 1.52253 -> 0 90 -idx: 42 entropy_left: 1.10431 entropy_right : 1.52837 -> 0 90 -idx: 44 entropy_left: 1.115 entropy_right : 1.531 -> 0 90 -idx: 46 entropy_left: 1.10094 entropy_right : 1.54402 -> 0 90 -idx: 47 entropy_left: 1.10581 entropy_right : 1.5453 -> 0 90 -idx: 48 entropy_left: 1.1872 entropy_right : 1.53062 -> 0 90 -idx: 54 entropy_left: 1.14052 entropy_right : 1.55459 -> 0 90 -idx: 56 entropy_left: 1.15193 entropy_right : 1.56821 -> 0 90 -idx: 57 entropy_left: 1.14495 entropy_right : 1.56898 -> 0 90 -idx: 60 entropy_left: 1.15668 entropy_right : 1.58015 -> 0 90 -idx: 62 entropy_left: 1.14522 entropy_right : 1.58314 -> 0 90 -idx: 63 entropy_left: 1.14849 entropy_right : 1.58496 -> 0 90 -idx: 64 entropy_left: 1.20362 entropy_right : 1.5828 -> 0 90 -idx: 66 entropy_left: 1.20721 entropy_right : 1.57743 -> 0 90 -idx: 67 entropy_left: 1.20211 entropy_right : 1.58219 -> 0 90 -idx: 68 entropy_left: 1.20348 entropy_right : 1.57262 -> 0 90 -idx: 69 entropy_left: 1.2483 entropy_right : 1.57511 -> 0 90 -idx: 70 entropy_left: 1.24884 entropy_right : 1.55887 -> 0 90 -idx: 72 entropy_left: 1.32074 entropy_right : 1.54663 -> 0 90 -idx: 76 entropy_left: 1.31734 entropy_right : 1.26381 -> 0 90 -idx: 77 entropy_left: 1.34645 entropy_right : 1.2389 -> 0 90 -idx: 78 entropy_left: 1.34261 entropy_right : 1.28067 -> 0 90 -idx: 79 entropy_left: 1.36851 entropy_right : 1.24067 -> 0 90 -idx: 84 entropy_left: 1.34715 entropy_right : 1.45915 -> 0 90 -idx: 85 entropy_left: 1.347 entropy_right : 0.970951 -> 0 90 -idx: 87 entropy_left: 1.33826 entropy_right : 0 -> 0 90 -cut: 3.1 index: 87 -start: 0 cut: 87 end: 90 -k=3 k1=3 k2=1 ent=1.40118 ent1=1.33826 ent2=0 -ig=0.107522 delta=4.45512 N 90 term 0.121454 -idx: 3 entropy_left: 0 entropy_right : 1.35123 -> 0 87 -idx: 4 entropy_left: 0.811278 entropy_right : 1.35164 -> 0 87 -idx: 5 entropy_left: 0.721928 entropy_right : 1.35603 -> 0 87 -idx: 6 entropy_left: 1.25163 entropy_right : 1.33027 -> 0 87 -idx: 11 entropy_left: 0.865857 entropy_right : 1.35011 -> 0 87 -idx: 15 entropy_left: 1.23096 entropy_right : 1.35534 -> 0 87 -idx: 20 entropy_left: 1.0763 entropy_right : 1.37784 -> 0 87 -idx: 22 entropy_left: 1.14332 entropy_right : 1.38216 -> 0 87 -idx: 24 entropy_left: 1.09948 entropy_right : 1.39133 -> 0 87 -idx: 26 entropy_left: 1.14162 entropy_right : 1.39583 -> 0 87 -idx: 27 entropy_left: 1.12466 entropy_right : 1.40099 -> 0 87 -idx: 28 entropy_left: 1.13928 entropy_right : 1.40304 -> 0 87 -idx: 30 entropy_left: 1.10923 entropy_right : 1.41356 -> 0 87 -idx: 31 entropy_left: 1.12309 entropy_right : 1.4162 -> 0 87 -idx: 33 entropy_left: 1.09614 entropy_right : 1.42651 -> 0 87 -idx: 36 entropy_left: 1.1271 entropy_right : 1.4346 -> 0 87 -idx: 38 entropy_left: 1.10727 entropy_right : 1.44741 -> 0 87 -idx: 39 entropy_left: 1.11501 entropy_right : 1.45018 -> 0 87 -idx: 40 entropy_left: 1.10587 entropy_right : 1.4567 -> 0 87 -idx: 41 entropy_left: 1.1127 entropy_right : 1.45946 -> 0 87 -idx: 42 entropy_left: 1.10431 entropy_right : 1.46633 -> 0 87 -idx: 44 entropy_left: 1.115 entropy_right : 1.47068 -> 0 87 -idx: 46 entropy_left: 1.10094 entropy_right : 1.48657 -> 0 87 -idx: 47 entropy_left: 1.10581 entropy_right : 1.48909 -> 0 87 -idx: 48 entropy_left: 1.1872 entropy_right : 1.46048 -> 0 87 -idx: 54 entropy_left: 1.14052 entropy_right : 1.49492 -> 0 87 -idx: 56 entropy_left: 1.15193 entropy_right : 1.51436 -> 0 87 -idx: 57 entropy_left: 1.14495 entropy_right : 1.51792 -> 0 87 -idx: 60 entropy_left: 1.15668 entropy_right : 1.54071 -> 0 87 -idx: 62 entropy_left: 1.14522 entropy_right : 1.55352 -> 0 87 -idx: 63 entropy_left: 1.14849 entropy_right : 1.56128 -> 0 87 -idx: 64 entropy_left: 1.20362 entropy_right : 1.53798 -> 0 87 -idx: 66 entropy_left: 1.20721 entropy_right : 1.54515 -> 0 87 -idx: 67 entropy_left: 1.20211 entropy_right : 1.55887 -> 0 87 -idx: 68 entropy_left: 1.20348 entropy_right : 1.55743 -> 0 87 -idx: 69 entropy_left: 1.2483 entropy_right : 1.53049 -> 0 87 -idx: 70 entropy_left: 1.24884 entropy_right : 1.52219 -> 0 87 -idx: 72 entropy_left: 1.32074 entropy_right : 1.39958 -> 0 87 -idx: 76 entropy_left: 1.31734 entropy_right : 1.0958 -> 0 87 -idx: 77 entropy_left: 1.34645 entropy_right : 0.921928 -> 0 87 -idx: 78 entropy_left: 1.34261 entropy_right : 0.986427 -> 0 87 -idx: 79 entropy_left: 1.36851 entropy_right : 0.543564 -> 0 87 -idx: 84 entropy_left: 1.34715 entropy_right : 0.918296 -> 0 87 -idx: 85 entropy_left: 1.347 entropy_right : 0 -> 0 87 -cut: 3.1 index: 85 -start: 0 cut: 85 end: 87 -k=3 k1=3 k2=1 ent=1.33826 ent1=1.347 ent2=0 -ig=0.0222281 delta=4.67007 N 87 term 0.127544 -idx: 3 entropy_left: 0 entropy_right : 1.35937 -> 0 85 -idx: 4 entropy_left: 0.811278 entropy_right : 1.36032 -> 0 85 -idx: 5 entropy_left: 0.721928 entropy_right : 1.36448 -> 0 85 -idx: 6 entropy_left: 1.25163 entropy_right : 1.33863 -> 0 85 -idx: 11 entropy_left: 0.865857 entropy_right : 1.35688 -> 0 85 -idx: 15 entropy_left: 1.23096 entropy_right : 1.3649 -> 0 85 -idx: 20 entropy_left: 1.0763 entropy_right : 1.38522 -> 0 85 -idx: 22 entropy_left: 1.14332 entropy_right : 1.39133 -> 0 85 -idx: 24 entropy_left: 1.09948 entropy_right : 1.39934 -> 0 85 -idx: 26 entropy_left: 1.14162 entropy_right : 1.40587 -> 0 85 -idx: 27 entropy_left: 1.12466 entropy_right : 1.41041 -> 0 85 -idx: 28 entropy_left: 1.13928 entropy_right : 1.41356 -> 0 85 -idx: 30 entropy_left: 1.10923 entropy_right : 1.42264 -> 0 85 -idx: 31 entropy_left: 1.12309 entropy_right : 1.42651 -> 0 85 -idx: 33 entropy_left: 1.09614 entropy_right : 1.43504 -> 0 85 -idx: 36 entropy_left: 1.1271 entropy_right : 1.44741 -> 0 85 -idx: 38 entropy_left: 1.10727 entropy_right : 1.45824 -> 0 85 -idx: 39 entropy_left: 1.11501 entropy_right : 1.46268 -> 0 85 -idx: 40 entropy_left: 1.10587 entropy_right : 1.46801 -> 0 85 -idx: 41 entropy_left: 1.1127 entropy_right : 1.4726 -> 0 85 -idx: 42 entropy_left: 1.10431 entropy_right : 1.47815 -> 0 85 -idx: 44 entropy_left: 1.115 entropy_right : 1.48657 -> 0 85 -idx: 46 entropy_left: 1.10094 entropy_right : 1.49947 -> 0 85 -idx: 47 entropy_left: 1.10581 entropy_right : 1.50438 -> 0 85 -idx: 48 entropy_left: 1.1872 entropy_right : 1.47667 -> 0 85 -idx: 54 entropy_left: 1.14052 entropy_right : 1.49186 -> 0 85 -idx: 56 entropy_left: 1.15193 entropy_right : 1.51885 -> 0 85 -idx: 57 entropy_left: 1.14495 entropy_right : 1.51647 -> 0 85 -idx: 60 entropy_left: 1.15668 entropy_right : 1.55352 -> 0 85 -idx: 62 entropy_left: 1.14522 entropy_right : 1.55049 -> 0 85 -idx: 63 entropy_left: 1.14849 entropy_right : 1.5644 -> 0 85 -idx: 64 entropy_left: 1.20362 entropy_right : 1.54515 -> 0 85 -idx: 66 entropy_left: 1.20721 entropy_right : 1.56832 -> 0 85 -idx: 67 entropy_left: 1.20211 entropy_right : 1.57154 -> 0 85 -idx: 68 entropy_left: 1.20348 entropy_right : 1.57986 -> 0 85 -idx: 69 entropy_left: 1.2483 entropy_right : 1.56128 -> 0 85 -idx: 70 entropy_left: 1.24884 entropy_right : 1.5656 -> 0 85 -idx: 72 entropy_left: 1.32074 entropy_right : 1.46048 -> 0 85 -idx: 76 entropy_left: 1.31734 entropy_right : 1.22439 -> 0 85 -idx: 77 entropy_left: 1.34645 entropy_right : 1.06128 -> 0 85 -idx: 78 entropy_left: 1.34261 entropy_right : 1.14883 -> 0 85 -idx: 79 entropy_left: 1.36851 entropy_right : 0.650022 -> 0 85 -idx: 84 entropy_left: 1.34715 entropy_right : 0 -> 0 85 -cut: 3.1 index: 84 -start: 0 cut: 84 end: 85 -k=3 k1=3 k2=1 ent=1.347 ent1=1.34715 ent2=0 -ig=0.0157042 delta=4.64429 N 85 term 0.129842 -idx: 3 entropy_left: 0 entropy_right : 1.36032 -> 0 84 -idx: 4 entropy_left: 0.811278 entropy_right : 1.36096 -> 0 84 -idx: 5 entropy_left: 0.721928 entropy_right : 1.36542 -> 0 84 -idx: 6 entropy_left: 1.25163 entropy_right : 1.33948 -> 0 84 -idx: 11 entropy_left: 0.865857 entropy_right : 1.35934 -> 0 84 -idx: 15 entropy_left: 1.23096 entropy_right : 1.36604 -> 0 84 -idx: 20 entropy_left: 1.0763 entropy_right : 1.38846 -> 0 84 -idx: 22 entropy_left: 1.14332 entropy_right : 1.3938 -> 0 84 -idx: 24 entropy_left: 1.09948 entropy_right : 1.40281 -> 0 84 -idx: 26 entropy_left: 1.14162 entropy_right : 1.40845 -> 0 84 -idx: 27 entropy_left: 1.12466 entropy_right : 1.41356 -> 0 84 -idx: 28 entropy_left: 1.13928 entropy_right : 1.4162 -> 0 84 -idx: 30 entropy_left: 1.10923 entropy_right : 1.42651 -> 0 84 -idx: 31 entropy_left: 1.12309 entropy_right : 1.42984 -> 0 84 -idx: 33 entropy_left: 1.09614 entropy_right : 1.43975 -> 0 84 -idx: 36 entropy_left: 1.1271 entropy_right : 1.45018 -> 0 84 -idx: 38 entropy_left: 1.10727 entropy_right : 1.46268 -> 0 84 -idx: 39 entropy_left: 1.11501 entropy_right : 1.46633 -> 0 84 -idx: 40 entropy_left: 1.10587 entropy_right : 1.4726 -> 0 84 -idx: 41 entropy_left: 1.1127 entropy_right : 1.47629 -> 0 84 -idx: 42 entropy_left: 1.10431 entropy_right : 1.48286 -> 0 84 -idx: 44 entropy_left: 1.115 entropy_right : 1.48909 -> 0 84 -idx: 46 entropy_left: 1.10094 entropy_right : 1.50438 -> 0 84 -idx: 47 entropy_left: 1.10581 entropy_right : 1.50798 -> 0 84 -idx: 48 entropy_left: 1.1872 entropy_right : 1.48068 -> 0 84 -idx: 54 entropy_left: 1.14052 entropy_right : 1.50582 -> 0 84 -idx: 56 entropy_left: 1.15193 entropy_right : 1.53062 -> 0 84 -idx: 57 entropy_left: 1.14495 entropy_right : 1.53049 -> 0 84 -idx: 60 entropy_left: 1.15668 entropy_right : 1.56128 -> 0 84 -idx: 62 entropy_left: 1.14522 entropy_right : 1.5644 -> 0 84 -idx: 63 entropy_left: 1.14849 entropy_right : 1.57511 -> 0 84 -idx: 64 entropy_left: 1.20362 entropy_right : 1.55887 -> 0 84 -idx: 66 entropy_left: 1.20721 entropy_right : 1.57154 -> 0 84 -idx: 67 entropy_left: 1.20211 entropy_right : 1.57986 -> 0 84 -idx: 68 entropy_left: 1.20348 entropy_right : 1.57943 -> 0 84 -idx: 69 entropy_left: 1.2483 entropy_right : 1.5656 -> 0 84 -idx: 70 entropy_left: 1.24884 entropy_right : 1.55666 -> 0 84 -idx: 72 entropy_left: 1.32074 entropy_right : 1.45915 -> 0 84 -idx: 76 entropy_left: 1.31734 entropy_right : 0.811278 -> 0 84 -idx: 77 entropy_left: 1.34645 entropy_right : 0.591673 -> 0 84 -idx: 78 entropy_left: 1.34261 entropy_right : 0.650022 -> 0 84 -idx: 79 entropy_left: 1.36851 entropy_right : 0 -> 0 84 -cut: 2.2 index: 3 -start: 0 cut: 3 end: 84 -k=3 k1=1 k2=3 ent=1.34715 ent1=0 ent2=1.36032 -ig=0.0354114 delta=4.68337 N 84 term 0.131648 -idx: 4 entropy_left: 0 entropy_right : 1.36096 -> 3 84 -idx: 5 entropy_left: 1 entropy_right : 1.36542 -> 3 84 -idx: 6 entropy_left: 1.58496 entropy_right : 1.33948 -> 3 84 -idx: 11 entropy_left: 1.06128 entropy_right : 1.35934 -> 3 84 -idx: 15 entropy_left: 1.32501 entropy_right : 1.36604 -> 3 84 -idx: 20 entropy_left: 1.16609 entropy_right : 1.38846 -> 3 84 -idx: 22 entropy_left: 1.21081 entropy_right : 1.3938 -> 3 84 -idx: 24 entropy_left: 1.16578 entropy_right : 1.40281 -> 3 84 -idx: 26 entropy_left: 1.1916 entropy_right : 1.40845 -> 3 84 -idx: 27 entropy_left: 1.17528 entropy_right : 1.41356 -> 3 84 -idx: 28 entropy_left: 1.18297 entropy_right : 1.4162 -> 3 84 -idx: 30 entropy_left: 1.15417 entropy_right : 1.42651 -> 3 84 -idx: 31 entropy_left: 1.16258 entropy_right : 1.42984 -> 3 84 -idx: 33 entropy_left: 1.13648 entropy_right : 1.43975 -> 3 84 -idx: 36 entropy_left: 1.15465 entropy_right : 1.45018 -> 3 84 -idx: 38 entropy_left: 1.13667 entropy_right : 1.46268 -> 3 84 -idx: 39 entropy_left: 1.14098 entropy_right : 1.46633 -> 3 84 -idx: 40 entropy_left: 1.13264 entropy_right : 1.4726 -> 3 84 -idx: 41 entropy_left: 1.13638 entropy_right : 1.47629 -> 3 84 -idx: 42 entropy_left: 1.1288 entropy_right : 1.48286 -> 3 84 -idx: 44 entropy_left: 1.13399 entropy_right : 1.48909 -> 3 84 -idx: 46 entropy_left: 1.12167 entropy_right : 1.50438 -> 3 84 -idx: 47 entropy_left: 1.12421 entropy_right : 1.50798 -> 3 84 -idx: 48 entropy_left: 1.20853 entropy_right : 1.48068 -> 3 84 -idx: 54 entropy_left: 1.16424 entropy_right : 1.50582 -> 3 84 -idx: 56 entropy_left: 1.17235 entropy_right : 1.53062 -> 3 84 -idx: 57 entropy_left: 1.16565 entropy_right : 1.53049 -> 3 84 -idx: 60 entropy_left: 1.1729 entropy_right : 1.56128 -> 3 84 -idx: 62 entropy_left: 1.16223 entropy_right : 1.5644 -> 3 84 -idx: 63 entropy_left: 1.1642 entropy_right : 1.57511 -> 3 84 -idx: 64 entropy_left: 1.22063 entropy_right : 1.55887 -> 3 84 -idx: 66 entropy_left: 1.22169 entropy_right : 1.57154 -> 3 84 -idx: 67 entropy_left: 1.21702 entropy_right : 1.57986 -> 3 84 -idx: 68 entropy_left: 1.21722 entropy_right : 1.57943 -> 3 84 -idx: 69 entropy_left: 1.26288 entropy_right : 1.5656 -> 3 84 -idx: 70 entropy_left: 1.26228 entropy_right : 1.55666 -> 3 84 -idx: 72 entropy_left: 1.33512 entropy_right : 1.45915 -> 3 84 -idx: 76 entropy_left: 1.32752 entropy_right : 0.811278 -> 3 84 -idx: 77 entropy_left: 1.35688 entropy_right : 0.591673 -> 3 84 -idx: 78 entropy_left: 1.3536 entropy_right : 0.650022 -> 3 84 -idx: 79 entropy_left: 1.37964 entropy_right : 0 -> 3 84 -cut: 2.25 index: 4 -start: 3 cut: 4 end: 84 -k=3 k1=1 k2=3 ent=1.36032 ent1=0 ent2=1.36096 -ig=0.0161555 delta=4.6458 N 81 term 0.135404 -idx: 5 entropy_left: 0 entropy_right : 1.36542 -> 4 84 -idx: 6 entropy_left: 1 entropy_right : 1.33948 -> 4 84 -idx: 11 entropy_left: 0.591673 entropy_right : 1.35934 -> 4 84 -idx: 15 entropy_left: 1.32218 entropy_right : 1.36604 -> 4 84 -idx: 20 entropy_left: 1.12164 entropy_right : 1.38846 -> 4 84 -idx: 22 entropy_left: 1.19417 entropy_right : 1.3938 -> 4 84 -idx: 24 entropy_left: 1.14115 entropy_right : 1.40281 -> 4 84 -idx: 26 entropy_left: 1.1819 entropy_right : 1.40845 -> 4 84 -idx: 27 entropy_left: 1.16256 entropy_right : 1.41356 -> 4 84 -idx: 28 entropy_left: 1.17528 entropy_right : 1.4162 -> 4 84 -idx: 30 entropy_left: 1.14162 entropy_right : 1.42651 -> 4 84 -idx: 31 entropy_left: 1.15417 entropy_right : 1.42984 -> 4 84 -idx: 33 entropy_left: 1.12426 entropy_right : 1.43975 -> 4 84 -idx: 36 entropy_left: 1.15111 entropy_right : 1.45018 -> 4 84 -idx: 38 entropy_left: 1.13028 entropy_right : 1.46268 -> 4 84 -idx: 39 entropy_left: 1.13667 entropy_right : 1.46633 -> 4 84 -idx: 40 entropy_left: 1.1271 entropy_right : 1.4726 -> 4 84 -idx: 41 entropy_left: 1.13264 entropy_right : 1.47629 -> 4 84 -idx: 42 entropy_left: 1.12396 entropy_right : 1.48286 -> 4 84 -idx: 44 entropy_left: 1.13207 entropy_right : 1.48909 -> 4 84 -idx: 46 entropy_left: 1.11789 entropy_right : 1.50438 -> 4 84 -idx: 47 entropy_left: 1.12167 entropy_right : 1.50798 -> 4 84 -idx: 48 entropy_left: 1.20721 entropy_right : 1.48068 -> 4 84 -idx: 54 entropy_left: 1.15855 entropy_right : 1.50582 -> 4 84 -idx: 56 entropy_left: 1.1688 entropy_right : 1.53062 -> 4 84 -idx: 57 entropy_left: 1.16153 entropy_right : 1.53049 -> 4 84 -idx: 60 entropy_left: 1.17125 entropy_right : 1.56128 -> 4 84 -idx: 62 entropy_left: 1.15959 entropy_right : 1.5644 -> 4 84 -idx: 63 entropy_left: 1.16223 entropy_right : 1.57511 -> 4 84 -idx: 64 entropy_left: 1.21924 entropy_right : 1.55887 -> 4 84 -idx: 66 entropy_left: 1.22143 entropy_right : 1.57154 -> 4 84 -idx: 67 entropy_left: 1.21633 entropy_right : 1.57986 -> 4 84 -idx: 68 entropy_left: 1.21702 entropy_right : 1.57943 -> 4 84 -idx: 69 entropy_left: 1.26305 entropy_right : 1.5656 -> 4 84 -idx: 70 entropy_left: 1.26288 entropy_right : 1.55666 -> 4 84 -idx: 72 entropy_left: 1.33615 entropy_right : 1.45915 -> 4 84 -idx: 76 entropy_left: 1.32988 entropy_right : 0.811278 -> 4 84 -idx: 77 entropy_left: 1.35934 entropy_right : 0.591673 -> 4 84 -idx: 78 entropy_left: 1.35572 entropy_right : 0.650022 -> 4 84 -idx: 79 entropy_left: 1.38182 entropy_right : 0 -> 4 84 -cut: 2.3 index: 5 -start: 4 cut: 5 end: 84 -k=3 k1=1 k2=3 ent=1.36096 ent1=0 ent2=1.36542 -ig=0.0126143 delta=4.65722 N 80 term 0.137012 -idx: 6 entropy_left: 0 entropy_right : 1.33948 -> 5 84 -idx: 11 entropy_left: 0.650022 entropy_right : 1.35934 -> 5 84 -idx: 15 entropy_left: 1.36096 entropy_right : 1.36604 -> 5 84 -idx: 20 entropy_left: 1.15894 entropy_right : 1.38846 -> 5 84 -idx: 22 entropy_left: 1.22105 entropy_right : 1.3938 -> 5 84 -idx: 24 entropy_left: 1.16744 entropy_right : 1.40281 -> 5 84 -idx: 26 entropy_left: 1.20091 entropy_right : 1.40845 -> 5 84 -idx: 27 entropy_left: 1.1819 entropy_right : 1.41356 -> 5 84 -idx: 28 entropy_left: 1.1916 entropy_right : 1.4162 -> 5 84 -idx: 30 entropy_left: 1.15855 entropy_right : 1.42651 -> 5 84 -idx: 31 entropy_left: 1.1688 entropy_right : 1.42984 -> 5 84 -idx: 33 entropy_left: 1.13928 entropy_right : 1.43975 -> 5 84 -idx: 36 entropy_left: 1.16089 entropy_right : 1.45018 -> 5 84 -idx: 38 entropy_left: 1.14087 entropy_right : 1.46268 -> 5 84 -idx: 39 entropy_left: 1.14589 entropy_right : 1.46633 -> 5 84 -idx: 40 entropy_left: 1.13667 entropy_right : 1.4726 -> 5 84 -idx: 41 entropy_left: 1.14098 entropy_right : 1.47629 -> 5 84 -idx: 42 entropy_left: 1.13264 entropy_right : 1.48286 -> 5 84 -idx: 44 entropy_left: 1.13859 entropy_right : 1.48909 -> 5 84 -idx: 46 entropy_left: 1.12514 entropy_right : 1.50438 -> 5 84 -idx: 47 entropy_left: 1.12802 entropy_right : 1.50798 -> 5 84 -idx: 48 entropy_left: 1.21462 entropy_right : 1.48068 -> 5 84 -idx: 54 entropy_left: 1.16695 entropy_right : 1.50582 -> 5 84 -idx: 56 entropy_left: 1.17595 entropy_right : 1.53062 -> 5 84 -idx: 57 entropy_left: 1.1688 entropy_right : 1.53049 -> 5 84 -idx: 60 entropy_left: 1.17684 entropy_right : 1.56128 -> 5 84 -idx: 62 entropy_left: 1.16549 entropy_right : 1.5644 -> 5 84 -idx: 63 entropy_left: 1.16765 entropy_right : 1.57511 -> 5 84 -idx: 64 entropy_left: 1.22512 entropy_right : 1.55887 -> 5 84 -idx: 66 entropy_left: 1.22637 entropy_right : 1.57154 -> 5 84 -idx: 67 entropy_left: 1.22143 entropy_right : 1.57986 -> 5 84 -idx: 68 entropy_left: 1.22169 entropy_right : 1.57943 -> 5 84 -idx: 69 entropy_left: 1.26802 entropy_right : 1.5656 -> 5 84 -idx: 70 entropy_left: 1.26743 entropy_right : 1.55666 -> 5 84 -idx: 72 entropy_left: 1.341 entropy_right : 1.45915 -> 5 84 -idx: 76 entropy_left: 1.3332 entropy_right : 0.811278 -> 5 84 -idx: 77 entropy_left: 1.36275 entropy_right : 0.591673 -> 5 84 -idx: 78 entropy_left: 1.35934 entropy_right : 0.650022 -> 5 84 -idx: 79 entropy_left: 1.38548 entropy_right : 0 -> 5 84 -cut: 2.3 index: 6 -start: 5 cut: 6 end: 84 -k=3 k1=1 k2=3 ent=1.36542 ent1=0 ent2=1.33948 -ig=0.042896 delta=4.56603 N 79 term 0.13736 -idx: 11 entropy_left: 0 entropy_right : 1.35934 -> 6 84 -idx: 15 entropy_left: 0.991076 entropy_right : 1.36604 -> 6 84 -idx: 20 entropy_left: 0.863121 entropy_right : 1.38846 -> 6 84 -idx: 22 entropy_left: 0.954434 entropy_right : 1.3938 -> 6 84 -idx: 24 entropy_left: 0.918296 entropy_right : 1.40281 -> 6 84 -idx: 26 entropy_left: 0.970951 entropy_right : 1.40845 -> 6 84 -idx: 27 entropy_left: 0.958712 entropy_right : 1.41356 -> 6 84 -idx: 28 entropy_left: 0.976021 entropy_right : 1.4162 -> 6 84 -idx: 30 entropy_left: 0.954434 entropy_right : 1.42651 -> 6 84 -idx: 31 entropy_left: 0.970951 entropy_right : 1.42984 -> 6 84 -idx: 33 entropy_left: 0.950956 entropy_right : 1.43975 -> 6 84 -idx: 36 entropy_left: 0.987138 entropy_right : 1.45018 -> 6 84 -idx: 38 entropy_left: 0.974489 entropy_right : 1.46268 -> 6 84 -idx: 39 entropy_left: 0.983376 entropy_right : 1.46633 -> 6 84 -idx: 40 entropy_left: 0.977418 entropy_right : 1.4726 -> 6 84 -idx: 41 entropy_left: 0.985228 entropy_right : 1.47629 -> 6 84 -idx: 42 entropy_left: 0.979869 entropy_right : 1.48286 -> 6 84 -idx: 44 entropy_left: 0.991992 entropy_right : 1.48909 -> 6 84 -idx: 46 entropy_left: 0.983708 entropy_right : 1.50438 -> 6 84 -idx: 47 entropy_left: 0.989245 entropy_right : 1.50798 -> 6 84 -idx: 48 entropy_left: 1.12802 entropy_right : 1.48068 -> 6 84 -idx: 54 entropy_left: 1.08621 entropy_right : 1.50582 -> 6 84 -idx: 56 entropy_left: 1.09746 entropy_right : 1.53062 -> 6 84 -idx: 57 entropy_left: 1.09115 entropy_right : 1.53049 -> 6 84 -idx: 60 entropy_left: 1.10213 entropy_right : 1.56128 -> 6 84 -idx: 62 entropy_left: 1.09232 entropy_right : 1.5644 -> 6 84 -idx: 63 entropy_left: 1.09536 entropy_right : 1.57511 -> 6 84 -idx: 64 entropy_left: 1.16765 entropy_right : 1.55887 -> 6 84 -idx: 66 entropy_left: 1.17003 entropy_right : 1.57154 -> 6 84 -idx: 67 entropy_left: 1.16555 entropy_right : 1.57986 -> 6 84 -idx: 68 entropy_left: 1.16634 entropy_right : 1.57943 -> 6 84 -idx: 69 entropy_left: 1.22169 entropy_right : 1.5656 -> 6 84 -idx: 70 entropy_left: 1.22147 entropy_right : 1.55666 -> 6 84 -idx: 72 entropy_left: 1.30681 entropy_right : 1.45915 -> 6 84 -idx: 76 entropy_left: 1.29965 entropy_right : 0.811278 -> 6 84 -idx: 77 entropy_left: 1.3332 entropy_right : 0.591673 -> 6 84 -idx: 78 entropy_left: 1.32988 entropy_right : 0.650022 -> 6 84 -idx: 79 entropy_left: 1.35934 entropy_right : 0 -> 6 84 -cut: 2.45 index: 11 -start: 6 cut: 11 end: 84 -k=3 k1=1 k2=3 ent=1.33948 ent1=0 ent2=1.35934 -ig=0.0672722 delta=4.70345 N 78 term 0.140644 -idx: 15 entropy_left: 0 entropy_right : 1.36604 -> 11 84 -idx: 20 entropy_left: 0.991076 entropy_right : 1.38846 -> 11 84 -idx: 22 entropy_left: 0.99403 entropy_right : 1.3938 -> 11 84 -idx: 24 entropy_left: 0.995727 entropy_right : 1.40281 -> 11 84 -idx: 26 entropy_left: 0.996792 entropy_right : 1.40845 -> 11 84 -idx: 27 entropy_left: 1 entropy_right : 1.41356 -> 11 84 -idx: 28 entropy_left: 0.997502 entropy_right : 1.4162 -> 11 84 -idx: 30 entropy_left: 0.998001 entropy_right : 1.42651 -> 11 84 -idx: 31 entropy_left: 1 entropy_right : 1.42984 -> 11 84 -idx: 33 entropy_left: 0.99403 entropy_right : 1.43975 -> 11 84 -idx: 36 entropy_left: 0.998846 entropy_right : 1.45018 -> 11 84 -idx: 38 entropy_left: 0.99901 entropy_right : 1.46268 -> 11 84 -idx: 39 entropy_left: 1 entropy_right : 1.46633 -> 11 84 -idx: 40 entropy_left: 0.999142 entropy_right : 1.4726 -> 11 84 -idx: 41 entropy_left: 1 entropy_right : 1.47629 -> 11 84 -idx: 42 entropy_left: 0.999249 entropy_right : 1.48286 -> 11 84 -idx: 44 entropy_left: 0.999338 entropy_right : 1.48909 -> 11 84 -idx: 46 entropy_left: 0.999411 entropy_right : 1.50438 -> 11 84 -idx: 47 entropy_left: 1 entropy_right : 1.50798 -> 11 84 -idx: 48 entropy_left: 1.15223 entropy_right : 1.48068 -> 11 84 -idx: 54 entropy_left: 1.12167 entropy_right : 1.50582 -> 11 84 -idx: 56 entropy_left: 1.12568 entropy_right : 1.53062 -> 11 84 -idx: 57 entropy_left: 1.12063 entropy_right : 1.53049 -> 11 84 -idx: 60 entropy_left: 1.12209 entropy_right : 1.56128 -> 11 84 -idx: 62 entropy_left: 1.11509 entropy_right : 1.5644 -> 11 84 -idx: 63 entropy_left: 1.11542 entropy_right : 1.57511 -> 11 84 -idx: 64 entropy_left: 1.19167 entropy_right : 1.55887 -> 11 84 -idx: 66 entropy_left: 1.18875 entropy_right : 1.57154 -> 11 84 -idx: 67 entropy_left: 1.18562 entropy_right : 1.57986 -> 11 84 -idx: 68 entropy_left: 1.18398 entropy_right : 1.57943 -> 11 84 -idx: 69 entropy_left: 1.24173 entropy_right : 1.5656 -> 11 84 -idx: 70 entropy_left: 1.23914 entropy_right : 1.55666 -> 11 84 -idx: 72 entropy_left: 1.32711 entropy_right : 1.45915 -> 11 84 -idx: 76 entropy_left: 1.31136 entropy_right : 0.811278 -> 11 84 -idx: 77 entropy_left: 1.34567 entropy_right : 0.591673 -> 11 84 -idx: 78 entropy_left: 1.34383 entropy_right : 0.650022 -> 11 84 -idx: 79 entropy_left: 1.37374 entropy_right : 0 -> 11 84 -cut: 2.5 index: 15 -start: 11 cut: 15 end: 84 -k=3 k1=1 k2=3 ent=1.35934 ent1=0 ent2=1.36604 -ig=0.06815 delta=4.66396 N 73 term 0.148409 -idx: 20 entropy_left: 0 entropy_right : 1.38846 -> 15 84 -idx: 22 entropy_left: 0.863121 entropy_right : 1.3938 -> 15 84 -idx: 24 entropy_left: 0.764205 entropy_right : 1.40281 -> 15 84 -idx: 26 entropy_left: 0.94566 entropy_right : 1.40845 -> 15 84 -idx: 27 entropy_left: 0.918296 entropy_right : 1.41356 -> 15 84 -idx: 28 entropy_left: 0.961237 entropy_right : 1.4162 -> 15 84 -idx: 30 entropy_left: 0.918296 entropy_right : 1.42651 -> 15 84 -idx: 31 entropy_left: 0.954434 entropy_right : 1.42984 -> 15 84 -idx: 33 entropy_left: 0.918296 entropy_right : 1.43975 -> 15 84 -idx: 36 entropy_left: 0.985228 entropy_right : 1.45018 -> 15 84 -idx: 38 entropy_left: 0.965636 entropy_right : 1.46268 -> 15 84 -idx: 39 entropy_left: 0.979869 entropy_right : 1.46633 -> 15 84 -idx: 40 entropy_left: 0.970951 entropy_right : 1.4726 -> 15 84 -idx: 41 entropy_left: 0.982859 entropy_right : 1.47629 -> 15 84 -idx: 42 entropy_left: 0.975119 entropy_right : 1.48286 -> 15 84 -idx: 44 entropy_left: 0.992267 entropy_right : 1.48909 -> 15 84 -idx: 46 entropy_left: 0.981152 entropy_right : 1.50438 -> 15 84 -idx: 47 entropy_left: 0.988699 entropy_right : 1.50798 -> 15 84 -idx: 48 entropy_left: 1.15465 entropy_right : 1.48068 -> 15 84 -idx: 54 entropy_left: 1.09714 entropy_right : 1.50582 -> 15 84 -idx: 56 entropy_left: 1.1127 entropy_right : 1.53062 -> 15 84 -idx: 57 entropy_left: 1.10431 entropy_right : 1.53049 -> 15 84 -idx: 60 entropy_left: 1.11836 entropy_right : 1.56128 -> 15 84 -idx: 62 entropy_left: 1.10581 entropy_right : 1.5644 -> 15 84 -idx: 63 entropy_left: 1.10953 entropy_right : 1.57511 -> 15 84 -idx: 64 entropy_left: 1.1898 entropy_right : 1.55887 -> 15 84 -idx: 66 entropy_left: 1.19224 entropy_right : 1.57154 -> 15 84 -idx: 67 entropy_left: 1.18672 entropy_right : 1.57986 -> 15 84 -idx: 68 entropy_left: 1.18739 entropy_right : 1.57943 -> 15 84 -idx: 69 entropy_left: 1.24743 entropy_right : 1.5656 -> 15 84 -idx: 70 entropy_left: 1.24682 entropy_right : 1.55666 -> 15 84 -idx: 72 entropy_left: 1.33719 entropy_right : 1.45915 -> 15 84 -idx: 76 entropy_left: 1.32711 entropy_right : 0.811278 -> 15 84 -idx: 77 entropy_left: 1.36191 entropy_right : 0.591673 -> 15 84 -idx: 78 entropy_left: 1.35828 entropy_right : 0.650022 -> 15 84 -idx: 79 entropy_left: 1.38846 entropy_right : 0 -> 15 84 -cut: 2.6 index: 20 -start: 15 cut: 20 end: 84 -k=3 k1=1 k2=3 ent=1.36604 ent1=0 ent2=1.38846 -ig=0.0782013 delta=4.71109 N 69 term 0.156501 -idx: 22 entropy_left: 0 entropy_right : 1.3938 -> 20 84 -idx: 24 entropy_left: 1 entropy_right : 1.40281 -> 20 84 -idx: 26 entropy_left: 0.918296 entropy_right : 1.40845 -> 20 84 -idx: 27 entropy_left: 0.985228 entropy_right : 1.41356 -> 20 84 -idx: 28 entropy_left: 0.954434 entropy_right : 1.4162 -> 20 84 -idx: 30 entropy_left: 1 entropy_right : 1.42651 -> 20 84 -idx: 31 entropy_left: 0.99403 entropy_right : 1.42984 -> 20 84 -idx: 33 entropy_left: 0.995727 entropy_right : 1.43975 -> 20 84 -idx: 36 entropy_left: 0.988699 entropy_right : 1.45018 -> 20 84 -idx: 38 entropy_left: 1 entropy_right : 1.46268 -> 20 84 -idx: 39 entropy_left: 0.998001 entropy_right : 1.46633 -> 20 84 -idx: 40 entropy_left: 1 entropy_right : 1.4726 -> 20 84 -idx: 41 entropy_left: 0.998364 entropy_right : 1.47629 -> 20 84 -idx: 42 entropy_left: 1 entropy_right : 1.48286 -> 20 84 -idx: 44 entropy_left: 0.994985 entropy_right : 1.48909 -> 20 84 -idx: 46 entropy_left: 1 entropy_right : 1.50438 -> 20 84 -idx: 47 entropy_left: 0.99901 entropy_right : 1.50798 -> 20 84 -idx: 48 entropy_left: 1.18562 entropy_right : 1.48068 -> 20 84 -idx: 54 entropy_left: 1.14589 entropy_right : 1.50582 -> 20 84 -idx: 56 entropy_left: 1.15019 entropy_right : 1.53062 -> 20 84 -idx: 57 entropy_left: 1.14355 entropy_right : 1.53049 -> 20 84 -idx: 60 entropy_left: 1.1432 entropy_right : 1.56128 -> 20 84 -idx: 62 entropy_left: 1.13474 entropy_right : 1.5644 -> 20 84 -idx: 63 entropy_left: 1.1345 entropy_right : 1.57511 -> 20 84 -idx: 64 entropy_left: 1.21975 entropy_right : 1.55887 -> 20 84 -idx: 66 entropy_left: 1.21454 entropy_right : 1.57154 -> 20 84 -idx: 67 entropy_left: 1.21098 entropy_right : 1.57986 -> 20 84 -idx: 68 entropy_left: 1.20822 entropy_right : 1.57943 -> 20 84 -idx: 69 entropy_left: 1.27106 entropy_right : 1.5656 -> 20 84 -idx: 70 entropy_left: 1.26714 entropy_right : 1.55666 -> 20 84 -idx: 72 entropy_left: 1.36023 entropy_right : 1.45915 -> 20 84 -idx: 76 entropy_left: 1.33847 entropy_right : 0.811278 -> 20 84 -idx: 77 entropy_left: 1.37398 entropy_right : 0.591673 -> 20 84 -idx: 78 entropy_left: 1.37255 entropy_right : 0.650022 -> 20 84 -idx: 79 entropy_left: 1.40304 entropy_right : 0 -> 20 84 -cut: 2.6 index: 22 -start: 20 cut: 22 end: 84 -k=3 k1=1 k2=3 ent=1.38846 ent1=0 ent2=1.3938 -ig=0.0382081 delta=4.6599 N 64 term 0.166206 -idx: 24 entropy_left: 0 entropy_right : 1.40281 -> 22 84 -idx: 26 entropy_left: 1 entropy_right : 1.40845 -> 22 84 -idx: 27 entropy_left: 0.970951 entropy_right : 1.41356 -> 22 84 -idx: 28 entropy_left: 1 entropy_right : 1.4162 -> 22 84 -idx: 30 entropy_left: 0.954434 entropy_right : 1.42651 -> 22 84 -idx: 31 entropy_left: 0.991076 entropy_right : 1.42984 -> 22 84 -idx: 33 entropy_left: 0.94566 entropy_right : 1.43975 -> 22 84 -idx: 36 entropy_left: 1 entropy_right : 1.45018 -> 22 84 -idx: 38 entropy_left: 0.988699 entropy_right : 1.46268 -> 22 84 -idx: 39 entropy_left: 0.997502 entropy_right : 1.46633 -> 22 84 -idx: 40 entropy_left: 0.991076 entropy_right : 1.4726 -> 22 84 -idx: 41 entropy_left: 0.998001 entropy_right : 1.47629 -> 22 84 -idx: 42 entropy_left: 0.992774 entropy_right : 1.48286 -> 22 84 -idx: 44 entropy_left: 1 entropy_right : 1.48909 -> 22 84 -idx: 46 entropy_left: 0.994985 entropy_right : 1.50438 -> 22 84 -idx: 47 entropy_left: 0.998846 entropy_right : 1.50798 -> 22 84 -idx: 48 entropy_left: 1.19562 entropy_right : 1.48068 -> 22 84 -idx: 54 entropy_left: 1.13343 entropy_right : 1.50582 -> 22 84 -idx: 56 entropy_left: 1.14589 entropy_right : 1.53062 -> 22 84 -idx: 57 entropy_left: 1.13667 entropy_right : 1.53049 -> 22 84 -idx: 60 entropy_left: 1.14463 entropy_right : 1.56128 -> 22 84 -idx: 62 entropy_left: 1.13207 entropy_right : 1.5644 -> 22 84 -idx: 63 entropy_left: 1.13399 entropy_right : 1.57511 -> 22 84 -idx: 64 entropy_left: 1.22169 entropy_right : 1.55887 -> 22 84 -idx: 66 entropy_left: 1.21975 entropy_right : 1.57154 -> 22 84 -idx: 67 entropy_left: 1.21451 entropy_right : 1.57986 -> 22 84 -idx: 68 entropy_left: 1.21311 entropy_right : 1.57943 -> 22 84 -idx: 69 entropy_left: 1.27724 entropy_right : 1.5656 -> 22 84 -idx: 70 entropy_left: 1.27446 entropy_right : 1.55666 -> 22 84 -idx: 72 entropy_left: 1.36867 entropy_right : 1.45915 -> 22 84 -idx: 76 entropy_left: 1.35002 entropy_right : 0.811278 -> 22 84 -idx: 77 entropy_left: 1.38567 entropy_right : 0.591673 -> 22 84 -idx: 78 entropy_left: 1.38306 entropy_right : 0.650022 -> 22 84 -idx: 79 entropy_left: 1.41356 entropy_right : 0 -> 22 84 -cut: 2.65 index: 24 -start: 22 cut: 24 end: 84 -k=3 k1=1 k2=3 ent=1.3938 ent1=0 ent2=1.40281 -ig=0.0362459 delta=4.67087 N 62 term 0.170994 -idx: 26 entropy_left: 0 entropy_right : 1.40845 -> 24 84 -idx: 27 entropy_left: 0.918296 entropy_right : 1.41356 -> 24 84 -idx: 28 entropy_left: 0.811278 entropy_right : 1.4162 -> 24 84 -idx: 30 entropy_left: 1 entropy_right : 1.42651 -> 24 84 -idx: 31 entropy_left: 0.985228 entropy_right : 1.42984 -> 24 84 -idx: 33 entropy_left: 0.991076 entropy_right : 1.43975 -> 24 84 -idx: 36 entropy_left: 0.979869 entropy_right : 1.45018 -> 24 84 -idx: 38 entropy_left: 1 entropy_right : 1.46268 -> 24 84 -idx: 39 entropy_left: 0.996792 entropy_right : 1.46633 -> 24 84 -idx: 40 entropy_left: 1 entropy_right : 1.4726 -> 24 84 -idx: 41 entropy_left: 0.997502 entropy_right : 1.47629 -> 24 84 -idx: 42 entropy_left: 1 entropy_right : 1.48286 -> 24 84 -idx: 44 entropy_left: 0.992774 entropy_right : 1.48909 -> 24 84 -idx: 46 entropy_left: 1 entropy_right : 1.50438 -> 24 84 -idx: 47 entropy_left: 0.998636 entropy_right : 1.50798 -> 24 84 -idx: 48 entropy_left: 1.20691 entropy_right : 1.48068 -> 24 84 -idx: 54 entropy_left: 1.15668 entropy_right : 1.50582 -> 24 84 -idx: 56 entropy_left: 1.16282 entropy_right : 1.53062 -> 24 84 -idx: 57 entropy_left: 1.15465 entropy_right : 1.53049 -> 24 84 -idx: 60 entropy_left: 1.15477 entropy_right : 1.56128 -> 24 84 -idx: 62 entropy_left: 1.14463 entropy_right : 1.5644 -> 24 84 -idx: 63 entropy_left: 1.14445 entropy_right : 1.57511 -> 24 84 -idx: 64 entropy_left: 1.2345 entropy_right : 1.55887 -> 24 84 -idx: 66 entropy_left: 1.22858 entropy_right : 1.57154 -> 24 84 -idx: 67 entropy_left: 1.22447 entropy_right : 1.57986 -> 24 84 -idx: 68 entropy_left: 1.22131 entropy_right : 1.57943 -> 24 84 -idx: 69 entropy_left: 1.28669 entropy_right : 1.5656 -> 24 84 -idx: 70 entropy_left: 1.28223 entropy_right : 1.55666 -> 24 84 -idx: 72 entropy_left: 1.37755 entropy_right : 1.45915 -> 24 84 -idx: 76 entropy_left: 1.35314 entropy_right : 0.811278 -> 24 84 -idx: 77 entropy_left: 1.38905 entropy_right : 0.591673 -> 24 84 -idx: 78 entropy_left: 1.38769 entropy_right : 0.650022 -> 24 84 -idx: 79 entropy_left: 1.41826 entropy_right : 0 -> 24 84 -cut: 2.7 index: 26 -start: 24 cut: 26 end: 84 -k=3 k1=1 k2=3 ent=1.40281 ent1=0 ent2=1.40845 -ig=0.0413035 delta=4.66079 N 60 term 0.175724 -idx: 27 entropy_left: 0 entropy_right : 1.41356 -> 26 84 -idx: 28 entropy_left: 1 entropy_right : 1.4162 -> 26 84 -idx: 30 entropy_left: 0.811278 entropy_right : 1.42651 -> 26 84 -idx: 31 entropy_left: 0.970951 entropy_right : 1.42984 -> 26 84 -idx: 33 entropy_left: 0.863121 entropy_right : 1.43975 -> 26 84 -idx: 36 entropy_left: 1 entropy_right : 1.45018 -> 26 84 -idx: 38 entropy_left: 0.979869 entropy_right : 1.46268 -> 26 84 -idx: 39 entropy_left: 0.995727 entropy_right : 1.46633 -> 26 84 -idx: 40 entropy_left: 0.985228 entropy_right : 1.4726 -> 26 84 -idx: 41 entropy_left: 0.996792 entropy_right : 1.47629 -> 26 84 -idx: 42 entropy_left: 0.988699 entropy_right : 1.48286 -> 26 84 -idx: 44 entropy_left: 1 entropy_right : 1.48909 -> 26 84 -idx: 46 entropy_left: 0.992774 entropy_right : 1.50438 -> 26 84 -idx: 47 entropy_left: 0.998364 entropy_right : 1.50798 -> 26 84 -idx: 48 entropy_left: 1.21975 entropy_right : 1.48068 -> 26 84 -idx: 54 entropy_left: 1.13928 entropy_right : 1.50582 -> 26 84 -idx: 56 entropy_left: 1.15668 entropy_right : 1.53062 -> 26 84 -idx: 57 entropy_left: 1.14522 entropy_right : 1.53049 -> 26 84 -idx: 60 entropy_left: 1.15623 entropy_right : 1.56128 -> 26 84 -idx: 62 entropy_left: 1.14098 entropy_right : 1.5644 -> 26 84 -idx: 63 entropy_left: 1.14355 entropy_right : 1.57511 -> 26 84 -idx: 64 entropy_left: 1.23639 entropy_right : 1.55887 -> 26 84 -idx: 66 entropy_left: 1.2345 entropy_right : 1.57154 -> 26 84 -idx: 67 entropy_left: 1.22835 entropy_right : 1.57986 -> 26 84 -idx: 68 entropy_left: 1.22686 entropy_right : 1.57943 -> 26 84 -idx: 69 entropy_left: 1.29361 entropy_right : 1.5656 -> 26 84 -idx: 70 entropy_left: 1.29052 entropy_right : 1.55666 -> 26 84 -idx: 72 entropy_left: 1.38689 entropy_right : 1.45915 -> 26 84 -idx: 76 entropy_left: 1.36611 entropy_right : 0.811278 -> 26 84 -idx: 77 entropy_left: 1.40208 entropy_right : 0.591673 -> 26 84 -idx: 78 entropy_left: 1.39936 entropy_right : 0.650022 -> 26 84 -idx: 79 entropy_left: 1.42984 entropy_right : 0 -> 26 84 -cut: 2.7 index: 27 -start: 26 cut: 27 end: 84 -k=3 k1=1 k2=3 ent=1.40845 ent1=0 ent2=1.41356 -ig=0.0192697 delta=4.65916 N 58 term 0.180897 -idx: 28 entropy_left: 0 entropy_right : 1.4162 -> 27 84 -idx: 30 entropy_left: 0.918296 entropy_right : 1.42651 -> 27 84 -idx: 31 entropy_left: 1 entropy_right : 1.42984 -> 27 84 -idx: 33 entropy_left: 0.918296 entropy_right : 1.43975 -> 27 84 -idx: 36 entropy_left: 0.991076 entropy_right : 1.45018 -> 27 84 -idx: 38 entropy_left: 0.99403 entropy_right : 1.46268 -> 27 84 -idx: 39 entropy_left: 1 entropy_right : 1.46633 -> 27 84 -idx: 40 entropy_left: 0.995727 entropy_right : 1.4726 -> 27 84 -idx: 41 entropy_left: 1 entropy_right : 1.47629 -> 27 84 -idx: 42 entropy_left: 0.996792 entropy_right : 1.48286 -> 27 84 -idx: 44 entropy_left: 0.997502 entropy_right : 1.48909 -> 27 84 -idx: 46 entropy_left: 0.998001 entropy_right : 1.50438 -> 27 84 -idx: 47 entropy_left: 1 entropy_right : 1.50798 -> 27 84 -idx: 48 entropy_left: 1.22858 entropy_right : 1.48068 -> 27 84 -idx: 54 entropy_left: 1.15417 entropy_right : 1.50582 -> 27 84 -idx: 56 entropy_left: 1.16765 entropy_right : 1.53062 -> 27 84 -idx: 57 entropy_left: 1.15668 entropy_right : 1.53049 -> 27 84 -idx: 60 entropy_left: 1.16287 entropy_right : 1.56128 -> 27 84 -idx: 62 entropy_left: 1.14888 entropy_right : 1.5644 -> 27 84 -idx: 63 entropy_left: 1.15019 entropy_right : 1.57511 -> 27 84 -idx: 64 entropy_left: 1.2443 entropy_right : 1.55887 -> 27 84 -idx: 66 entropy_left: 1.24004 entropy_right : 1.57154 -> 27 84 -idx: 67 entropy_left: 1.2345 entropy_right : 1.57986 -> 27 84 -idx: 68 entropy_left: 1.23196 entropy_right : 1.57943 -> 27 84 -idx: 69 entropy_left: 1.29936 entropy_right : 1.5656 -> 27 84 -idx: 70 entropy_left: 1.29529 entropy_right : 1.55666 -> 27 84 -idx: 72 entropy_left: 1.39215 entropy_right : 1.45915 -> 27 84 -idx: 76 entropy_left: 1.36803 entropy_right : 0.811278 -> 27 84 -idx: 77 entropy_left: 1.40411 entropy_right : 0.591673 -> 27 84 -idx: 78 entropy_left: 1.40208 entropy_right : 0.650022 -> 27 84 -idx: 79 entropy_left: 1.43257 entropy_right : 0 -> 27 84 -cut: 2.7 index: 28 -start: 27 cut: 28 end: 84 -k=3 k1=1 k2=3 ent=1.41356 ent1=0 ent2=1.4162 -ig=0.0222048 delta=4.65178 N 57 term 0.183494 -idx: 30 entropy_left: 0 entropy_right : 1.42651 -> 28 84 -idx: 31 entropy_left: 0.918296 entropy_right : 1.42984 -> 28 84 -idx: 33 entropy_left: 0.721928 entropy_right : 1.43975 -> 28 84 -idx: 36 entropy_left: 1 entropy_right : 1.45018 -> 28 84 -idx: 38 entropy_left: 0.970951 entropy_right : 1.46268 -> 28 84 -idx: 39 entropy_left: 0.99403 entropy_right : 1.46633 -> 28 84 -idx: 40 entropy_left: 0.979869 entropy_right : 1.4726 -> 28 84 -idx: 41 entropy_left: 0.995727 entropy_right : 1.47629 -> 28 84 -idx: 42 entropy_left: 0.985228 entropy_right : 1.48286 -> 28 84 -idx: 44 entropy_left: 1 entropy_right : 1.48909 -> 28 84 -idx: 46 entropy_left: 0.991076 entropy_right : 1.50438 -> 28 84 -idx: 47 entropy_left: 0.998001 entropy_right : 1.50798 -> 28 84 -idx: 48 entropy_left: 1.2345 entropy_right : 1.48068 -> 28 84 -idx: 54 entropy_left: 1.14162 entropy_right : 1.50582 -> 28 84 -idx: 56 entropy_left: 1.16258 entropy_right : 1.53062 -> 28 84 -idx: 57 entropy_left: 1.14968 entropy_right : 1.53049 -> 28 84 -idx: 60 entropy_left: 1.16282 entropy_right : 1.56128 -> 28 84 -idx: 62 entropy_left: 1.14589 entropy_right : 1.5644 -> 28 84 -idx: 63 entropy_left: 1.14888 entropy_right : 1.57511 -> 28 84 -idx: 64 entropy_left: 1.24454 entropy_right : 1.55887 -> 28 84 -idx: 66 entropy_left: 1.24273 entropy_right : 1.57154 -> 28 84 -idx: 67 entropy_left: 1.23603 entropy_right : 1.57986 -> 28 84 -idx: 68 entropy_left: 1.2345 entropy_right : 1.57943 -> 28 84 -idx: 69 entropy_left: 1.30262 entropy_right : 1.5656 -> 28 84 -idx: 70 entropy_left: 1.29936 entropy_right : 1.55666 -> 28 84 -idx: 72 entropy_left: 1.39673 entropy_right : 1.45915 -> 28 84 -idx: 76 entropy_left: 1.37475 entropy_right : 0.811278 -> 28 84 -idx: 77 entropy_left: 1.41083 entropy_right : 0.591673 -> 28 84 -idx: 78 entropy_left: 1.40805 entropy_right : 0.650022 -> 28 84 -idx: 79 entropy_left: 1.43846 entropy_right : 0 -> 28 84 -cut: 2.7 index: 30 -start: 28 cut: 30 end: 84 -k=3 k1=1 k2=3 ent=1.4162 ent1=0 ent2=1.42651 -ig=0.0406361 delta=4.67479 N 56 term 0.186717 -idx: 31 entropy_left: 0 entropy_right : 1.42984 -> 30 84 -idx: 33 entropy_left: 0.918296 entropy_right : 1.43975 -> 30 84 -idx: 36 entropy_left: 0.918296 entropy_right : 1.45018 -> 30 84 -idx: 38 entropy_left: 1 entropy_right : 1.46268 -> 30 84 -idx: 39 entropy_left: 0.991076 entropy_right : 1.46633 -> 30 84 -idx: 40 entropy_left: 1 entropy_right : 1.4726 -> 30 84 -idx: 41 entropy_left: 0.99403 entropy_right : 1.47629 -> 30 84 -idx: 42 entropy_left: 1 entropy_right : 1.48286 -> 30 84 -idx: 44 entropy_left: 0.985228 entropy_right : 1.48909 -> 30 84 -idx: 46 entropy_left: 1 entropy_right : 1.50438 -> 30 84 -idx: 47 entropy_left: 0.997502 entropy_right : 1.50798 -> 30 84 -idx: 48 entropy_left: 1.25163 entropy_right : 1.48068 -> 30 84 -idx: 54 entropy_left: 1.17528 entropy_right : 1.50582 -> 30 84 -idx: 56 entropy_left: 1.18672 entropy_right : 1.53062 -> 30 84 -idx: 57 entropy_left: 1.17499 entropy_right : 1.53049 -> 30 84 -idx: 60 entropy_left: 1.17668 entropy_right : 1.56128 -> 30 84 -idx: 62 entropy_left: 1.16282 entropy_right : 1.5644 -> 30 84 -idx: 63 entropy_left: 1.16287 entropy_right : 1.57511 -> 30 84 -idx: 64 entropy_left: 1.26128 entropy_right : 1.55887 -> 30 84 -idx: 66 entropy_left: 1.25399 entropy_right : 1.57154 -> 30 84 -idx: 67 entropy_left: 1.24876 entropy_right : 1.57986 -> 30 84 -idx: 68 entropy_left: 1.24484 entropy_right : 1.57943 -> 30 84 -idx: 69 entropy_left: 1.31432 entropy_right : 1.5656 -> 30 84 -idx: 70 entropy_left: 1.30882 entropy_right : 1.55666 -> 30 84 -idx: 72 entropy_left: 1.40711 entropy_right : 1.45915 -> 30 84 -idx: 76 entropy_left: 1.37769 entropy_right : 0.811278 -> 30 84 -idx: 77 entropy_left: 1.41394 entropy_right : 0.591673 -> 30 84 -idx: 78 entropy_left: 1.41283 entropy_right : 0.650022 -> 30 84 -idx: 79 entropy_left: 1.4432 entropy_right : 0 -> 30 84 -cut: 2.7 index: 31 -start: 30 cut: 31 end: 84 -k=3 k1=1 k2=3 ent=1.42651 ent1=0 ent2=1.42984 -ig=0.0231429 delta=4.65386 N 54 term 0.192255 -idx: 33 entropy_left: 0 entropy_right : 1.43975 -> 31 84 -idx: 36 entropy_left: 0.970951 entropy_right : 1.45018 -> 31 84 -idx: 38 entropy_left: 0.985228 entropy_right : 1.46268 -> 31 84 -idx: 39 entropy_left: 1 entropy_right : 1.46633 -> 31 84 -idx: 40 entropy_left: 0.991076 entropy_right : 1.4726 -> 31 84 -idx: 41 entropy_left: 1 entropy_right : 1.47629 -> 31 84 -idx: 42 entropy_left: 0.99403 entropy_right : 1.48286 -> 31 84 -idx: 44 entropy_left: 0.995727 entropy_right : 1.48909 -> 31 84 -idx: 46 entropy_left: 0.996792 entropy_right : 1.50438 -> 31 84 -idx: 47 entropy_left: 1 entropy_right : 1.50798 -> 31 84 -idx: 48 entropy_left: 1.26393 entropy_right : 1.48068 -> 31 84 -idx: 54 entropy_left: 1.16256 entropy_right : 1.50582 -> 31 84 -idx: 56 entropy_left: 1.18297 entropy_right : 1.53062 -> 31 84 -idx: 57 entropy_left: 1.1688 entropy_right : 1.53049 -> 31 84 -idx: 60 entropy_left: 1.17836 entropy_right : 1.56128 -> 31 84 -idx: 62 entropy_left: 1.16089 entropy_right : 1.5644 -> 31 84 -idx: 63 entropy_left: 1.16282 entropy_right : 1.57511 -> 31 84 -idx: 64 entropy_left: 1.26288 entropy_right : 1.55887 -> 31 84 -idx: 66 entropy_left: 1.25823 entropy_right : 1.57154 -> 31 84 -idx: 67 entropy_left: 1.25163 entropy_right : 1.57986 -> 31 84 -idx: 68 entropy_left: 1.24876 entropy_right : 1.57943 -> 31 84 -idx: 69 entropy_left: 1.31897 entropy_right : 1.5656 -> 31 84 -idx: 70 entropy_left: 1.31432 entropy_right : 1.55666 -> 31 84 -idx: 72 entropy_left: 1.41299 entropy_right : 1.45915 -> 31 84 -idx: 76 entropy_left: 1.38572 entropy_right : 0.811278 -> 31 84 -idx: 77 entropy_left: 1.42191 entropy_right : 0.591673 -> 31 84 -idx: 78 entropy_left: 1.41995 entropy_right : 0.650022 -> 31 84 -idx: 79 entropy_left: 1.45018 entropy_right : 0 -> 31 84 -cut: 2.75 index: 33 -start: 31 cut: 33 end: 84 -k=3 k1=1 k2=3 ent=1.42984 ent1=0 ent2=1.43975 -ig=0.0444243 delta=4.67357 N 53 term 0.195736 -idx: 36 entropy_left: 0 entropy_right : 1.45018 -> 33 84 -idx: 38 entropy_left: 0.970951 entropy_right : 1.46268 -> 33 84 -idx: 39 entropy_left: 0.918296 entropy_right : 1.46633 -> 33 84 -idx: 40 entropy_left: 0.985228 entropy_right : 1.4726 -> 33 84 -idx: 41 entropy_left: 0.954434 entropy_right : 1.47629 -> 33 84 -idx: 42 entropy_left: 0.991076 entropy_right : 1.48286 -> 33 84 -idx: 44 entropy_left: 0.94566 entropy_right : 1.48909 -> 33 84 -idx: 46 entropy_left: 0.995727 entropy_right : 1.50438 -> 33 84 -idx: 47 entropy_left: 0.985228 entropy_right : 1.50798 -> 33 84 -idx: 48 entropy_left: 1.27291 entropy_right : 1.48068 -> 33 84 -idx: 54 entropy_left: 1.20091 entropy_right : 1.50582 -> 33 84 -idx: 56 entropy_left: 1.20883 entropy_right : 1.53062 -> 33 84 -idx: 57 entropy_left: 1.19642 entropy_right : 1.53049 -> 33 84 -idx: 60 entropy_left: 1.1915 entropy_right : 1.56128 -> 33 84 -idx: 62 entropy_left: 1.17836 entropy_right : 1.5644 -> 33 84 -idx: 63 entropy_left: 1.17668 entropy_right : 1.57511 -> 33 84 -idx: 64 entropy_left: 1.2798 entropy_right : 1.55887 -> 33 84 -idx: 66 entropy_left: 1.26853 entropy_right : 1.57154 -> 33 84 -idx: 67 entropy_left: 1.26393 entropy_right : 1.57986 -> 33 84 -idx: 68 entropy_left: 1.25823 entropy_right : 1.57943 -> 33 84 -idx: 69 entropy_left: 1.32988 entropy_right : 1.5656 -> 33 84 -idx: 70 entropy_left: 1.3226 entropy_right : 1.55666 -> 33 84 -idx: 72 entropy_left: 1.42211 entropy_right : 1.45915 -> 33 84 -idx: 76 entropy_left: 1.38633 entropy_right : 0.811278 -> 33 84 -idx: 77 entropy_left: 1.42268 entropy_right : 0.591673 -> 33 84 -idx: 78 entropy_left: 1.42287 entropy_right : 0.650022 -> 33 84 -idx: 79 entropy_left: 1.453 entropy_right : 0 -> 33 84 -cut: 2.8 index: 36 -start: 33 cut: 36 end: 84 -k=3 k1=1 k2=3 ent=1.43975 ent1=0 ent2=1.45018 -ig=0.0748749 delta=4.67515 N 51 term 0.202333 -idx: 38 entropy_left: 0 entropy_right : 1.46268 -> 36 84 -idx: 39 entropy_left: 0.918296 entropy_right : 1.46633 -> 36 84 -idx: 40 entropy_left: 0.811278 entropy_right : 1.4726 -> 36 84 -idx: 41 entropy_left: 0.970951 entropy_right : 1.47629 -> 36 84 -idx: 42 entropy_left: 0.918296 entropy_right : 1.48286 -> 36 84 -idx: 44 entropy_left: 1 entropy_right : 1.48909 -> 36 84 -idx: 46 entropy_left: 0.970951 entropy_right : 1.50438 -> 36 84 -idx: 47 entropy_left: 0.99403 entropy_right : 1.50798 -> 36 84 -idx: 48 entropy_left: 1.32501 entropy_right : 1.48068 -> 36 84 -idx: 54 entropy_left: 1.13497 entropy_right : 1.50582 -> 36 84 -idx: 56 entropy_left: 1.18838 entropy_right : 1.53062 -> 36 84 -idx: 57 entropy_left: 1.16578 entropy_right : 1.53049 -> 36 84 -idx: 60 entropy_left: 1.19642 entropy_right : 1.56128 -> 36 84 -idx: 62 entropy_left: 1.1688 entropy_right : 1.5644 -> 36 84 -idx: 63 entropy_left: 1.17499 entropy_right : 1.57511 -> 36 84 -idx: 64 entropy_left: 1.28389 entropy_right : 1.55887 -> 36 84 -idx: 66 entropy_left: 1.28325 entropy_right : 1.57154 -> 36 84 -idx: 67 entropy_left: 1.27337 entropy_right : 1.57986 -> 36 84 -idx: 68 entropy_left: 1.27178 entropy_right : 1.57943 -> 36 84 -idx: 69 entropy_left: 1.34567 entropy_right : 1.5656 -> 36 84 -idx: 70 entropy_left: 1.34163 entropy_right : 1.55666 -> 36 84 -idx: 72 entropy_left: 1.44179 entropy_right : 1.45915 -> 36 84 -idx: 76 entropy_left: 1.41392 entropy_right : 0.811278 -> 36 84 -idx: 77 entropy_left: 1.44974 entropy_right : 0.591673 -> 36 84 -idx: 78 entropy_left: 1.44691 entropy_right : 0.650022 -> 36 84 -idx: 79 entropy_left: 1.47629 entropy_right : 0 -> 36 84 -cut: 2.8 index: 38 -start: 36 cut: 38 end: 84 -k=3 k1=1 k2=3 ent=1.45018 ent1=0 ent2=1.46268 -ig=0.0484463 delta=4.68135 N 48 term 0.213249 -idx: 39 entropy_left: 0 entropy_right : 1.46633 -> 38 84 -idx: 40 entropy_left: 1 entropy_right : 1.4726 -> 38 84 -idx: 41 entropy_left: 0.918296 entropy_right : 1.47629 -> 38 84 -idx: 42 entropy_left: 1 entropy_right : 1.48286 -> 38 84 -idx: 44 entropy_left: 0.918296 entropy_right : 1.48909 -> 38 84 -idx: 46 entropy_left: 1 entropy_right : 1.50438 -> 38 84 -idx: 47 entropy_left: 0.991076 entropy_right : 1.50798 -> 38 84 -idx: 48 entropy_left: 1.36096 entropy_right : 1.48068 -> 38 84 -idx: 54 entropy_left: 1.19819 entropy_right : 1.50582 -> 38 84 -idx: 56 entropy_left: 1.23266 entropy_right : 1.53062 -> 38 84 -idx: 57 entropy_left: 1.21081 entropy_right : 1.53049 -> 38 84 -idx: 60 entropy_left: 1.21975 entropy_right : 1.56128 -> 38 84 -idx: 62 entropy_left: 1.19642 entropy_right : 1.5644 -> 38 84 -idx: 63 entropy_left: 1.19748 entropy_right : 1.57511 -> 38 84 -idx: 64 entropy_left: 1.30969 entropy_right : 1.55887 -> 38 84 -idx: 66 entropy_left: 1.2998 entropy_right : 1.57154 -> 38 84 -idx: 67 entropy_left: 1.29216 entropy_right : 1.57986 -> 38 84 -idx: 68 entropy_left: 1.28669 entropy_right : 1.57943 -> 38 84 -idx: 69 entropy_left: 1.36191 entropy_right : 1.5656 -> 38 84 -idx: 70 entropy_left: 1.35434 entropy_right : 1.55666 -> 38 84 -idx: 72 entropy_left: 1.45464 entropy_right : 1.45915 -> 38 84 -idx: 76 entropy_left: 1.41574 entropy_right : 0.811278 -> 38 84 -idx: 77 entropy_left: 1.45147 entropy_right : 0.591673 -> 38 84 -idx: 78 entropy_left: 1.45133 entropy_right : 0.650022 -> 38 84 -idx: 79 entropy_left: 1.48035 entropy_right : 0 -> 38 84 -cut: 2.8 index: 39 -start: 38 cut: 39 end: 84 -k=3 k1=1 k2=3 ent=1.46268 ent1=0 ent2=1.46633 -ig=0.0282279 delta=4.6548 N 46 term 0.220579 -idx: 40 entropy_left: 0 entropy_right : 1.4726 -> 39 84 -idx: 41 entropy_left: 1 entropy_right : 1.47629 -> 39 84 -idx: 42 entropy_left: 0.918296 entropy_right : 1.48286 -> 39 84 -idx: 44 entropy_left: 0.970951 entropy_right : 1.48909 -> 39 84 -idx: 46 entropy_left: 0.985228 entropy_right : 1.50438 -> 39 84 -idx: 47 entropy_left: 1 entropy_right : 1.50798 -> 39 84 -idx: 48 entropy_left: 1.39215 entropy_right : 1.48068 -> 39 84 -idx: 54 entropy_left: 1.15894 entropy_right : 1.50582 -> 39 84 -idx: 56 entropy_left: 1.22105 entropy_right : 1.53062 -> 39 84 -idx: 57 entropy_left: 1.19417 entropy_right : 1.53049 -> 39 84 -idx: 60 entropy_left: 1.22169 entropy_right : 1.56128 -> 39 84 -idx: 62 entropy_left: 1.1916 entropy_right : 1.5644 -> 39 84 -idx: 63 entropy_left: 1.19642 entropy_right : 1.57511 -> 39 84 -idx: 64 entropy_left: 1.31086 entropy_right : 1.55887 -> 39 84 -idx: 66 entropy_left: 1.3058 entropy_right : 1.57154 -> 39 84 -idx: 67 entropy_left: 1.29584 entropy_right : 1.57986 -> 39 84 -idx: 68 entropy_left: 1.29216 entropy_right : 1.57943 -> 39 84 -idx: 69 entropy_left: 1.3681 entropy_right : 1.5656 -> 39 84 -idx: 70 entropy_left: 1.36191 entropy_right : 1.55666 -> 39 84 -idx: 72 entropy_left: 1.4621 entropy_right : 1.45915 -> 39 84 -idx: 76 entropy_left: 1.42645 entropy_right : 0.811278 -> 39 84 -idx: 77 entropy_left: 1.46184 entropy_right : 0.591673 -> 39 84 -idx: 78 entropy_left: 1.46048 entropy_right : 0.650022 -> 39 84 -idx: 79 entropy_left: 1.48909 entropy_right : 0 -> 39 84 -cut: 2.8 index: 40 -start: 39 cut: 40 end: 84 -k=3 k1=1 k2=3 ent=1.46633 ent1=0 ent2=1.4726 -ig=0.0264546 delta=4.66267 N 45 term 0.224936 -idx: 41 entropy_left: 0 entropy_right : 1.47629 -> 40 84 -idx: 42 entropy_left: 1 entropy_right : 1.48286 -> 40 84 -idx: 44 entropy_left: 0.811278 entropy_right : 1.48909 -> 40 84 -idx: 46 entropy_left: 1 entropy_right : 1.50438 -> 40 84 -idx: 47 entropy_left: 0.985228 entropy_right : 1.50798 -> 40 84 -idx: 48 entropy_left: 1.40564 entropy_right : 1.48068 -> 40 84 -idx: 54 entropy_left: 1.19812 entropy_right : 1.50582 -> 40 84 -idx: 56 entropy_left: 1.24756 entropy_right : 1.53062 -> 40 84 -idx: 57 entropy_left: 1.22105 entropy_right : 1.53049 -> 40 84 -idx: 60 entropy_left: 1.2345 entropy_right : 1.56128 -> 40 84 -idx: 62 entropy_left: 1.20721 entropy_right : 1.5644 -> 40 84 -idx: 63 entropy_left: 1.20883 entropy_right : 1.57511 -> 40 84 -idx: 64 entropy_left: 1.32501 entropy_right : 1.55887 -> 40 84 -idx: 66 entropy_left: 1.31432 entropy_right : 1.57154 -> 40 84 -idx: 67 entropy_left: 1.3058 entropy_right : 1.57986 -> 40 84 -idx: 68 entropy_left: 1.2998 entropy_right : 1.57943 -> 40 84 -idx: 69 entropy_left: 1.37638 entropy_right : 1.5656 -> 40 84 -idx: 70 entropy_left: 1.3681 entropy_right : 1.55666 -> 40 84 -idx: 72 entropy_left: 1.46818 entropy_right : 1.45915 -> 40 84 -idx: 76 entropy_left: 1.4262 entropy_right : 0.811278 -> 40 84 -idx: 77 entropy_left: 1.4615 entropy_right : 0.591673 -> 40 84 -idx: 78 entropy_left: 1.46184 entropy_right : 0.650022 -> 40 84 -idx: 79 entropy_left: 1.49019 entropy_right : 0 -> 40 84 -cut: 2.8 index: 41 -start: 40 cut: 41 end: 84 -k=3 k1=1 k2=3 ent=1.4726 ent1=0 ent2=1.47629 -ig=0.0298597 delta=4.65493 N 44 term 0.229118 -idx: 42 entropy_left: 0 entropy_right : 1.48286 -> 41 84 -idx: 44 entropy_left: 0.918296 entropy_right : 1.48909 -> 41 84 -idx: 46 entropy_left: 0.970951 entropy_right : 1.50438 -> 41 84 -idx: 47 entropy_left: 1 entropy_right : 1.50798 -> 41 84 -idx: 48 entropy_left: 1.44882 entropy_right : 1.48068 -> 41 84 -idx: 54 entropy_left: 1.14012 entropy_right : 1.50582 -> 41 84 -idx: 56 entropy_left: 1.23096 entropy_right : 1.53062 -> 41 84 -idx: 57 entropy_left: 1.19819 entropy_right : 1.53049 -> 41 84 -idx: 60 entropy_left: 1.23639 entropy_right : 1.56128 -> 41 84 -idx: 62 entropy_left: 1.20091 entropy_right : 1.5644 -> 41 84 -idx: 63 entropy_left: 1.20721 entropy_right : 1.57511 -> 41 84 -idx: 64 entropy_left: 1.32578 entropy_right : 1.55887 -> 41 84 -idx: 66 entropy_left: 1.32092 entropy_right : 1.57154 -> 41 84 -idx: 67 entropy_left: 1.30969 entropy_right : 1.57986 -> 41 84 -idx: 68 entropy_left: 1.3058 entropy_right : 1.57943 -> 41 84 -idx: 69 entropy_left: 1.38306 entropy_right : 1.5656 -> 41 84 -idx: 70 entropy_left: 1.37638 entropy_right : 1.55666 -> 41 84 -idx: 72 entropy_left: 1.4761 entropy_right : 1.45915 -> 41 84 -idx: 76 entropy_left: 1.43779 entropy_right : 0.811278 -> 41 84 -idx: 77 entropy_left: 1.47264 entropy_right : 0.591673 -> 41 84 -idx: 78 entropy_left: 1.47163 entropy_right : 0.650022 -> 41 84 -idx: 79 entropy_left: 1.49947 entropy_right : 0 -> 41 84 -cut: 2.8 index: 42 -start: 41 cut: 42 end: 84 -k=3 k1=1 k2=3 ent=1.47629 ent1=0 ent2=1.48286 -ig=0.0279088 delta=4.66359 N 43 term 0.233858 -idx: 44 entropy_left: 0 entropy_right : 1.48909 -> 42 84 -idx: 46 entropy_left: 1 entropy_right : 1.50438 -> 42 84 -idx: 47 entropy_left: 0.970951 entropy_right : 1.50798 -> 42 84 -idx: 48 entropy_left: 1.45915 entropy_right : 1.48068 -> 42 84 -idx: 54 entropy_left: 1.18872 entropy_right : 1.50582 -> 42 84 -idx: 56 entropy_left: 1.26381 entropy_right : 1.53062 -> 42 84 -idx: 57 entropy_left: 1.23096 entropy_right : 1.53049 -> 42 84 -idx: 60 entropy_left: 1.25163 entropy_right : 1.56128 -> 42 84 -idx: 62 entropy_left: 1.21924 entropy_right : 1.5644 -> 42 84 -idx: 63 entropy_left: 1.22169 entropy_right : 1.57511 -> 42 84 -idx: 64 entropy_left: 1.34202 entropy_right : 1.55887 -> 42 84 -idx: 66 entropy_left: 1.33048 entropy_right : 1.57154 -> 42 84 -idx: 67 entropy_left: 1.32092 entropy_right : 1.57986 -> 42 84 -idx: 68 entropy_left: 1.31432 entropy_right : 1.57943 -> 42 84 -idx: 69 entropy_left: 1.39215 entropy_right : 1.5656 -> 42 84 -idx: 70 entropy_left: 1.38306 entropy_right : 1.55666 -> 42 84 -idx: 72 entropy_left: 1.48239 entropy_right : 1.45915 -> 42 84 -idx: 76 entropy_left: 1.43699 entropy_right : 0.811278 -> 42 84 -idx: 77 entropy_left: 1.47168 entropy_right : 0.591673 -> 42 84 -idx: 78 entropy_left: 1.47264 entropy_right : 0.650022 -> 42 84 -idx: 79 entropy_left: 1.50015 entropy_right : 0 -> 42 84 -cut: 2.8 index: 44 -start: 42 cut: 44 end: 84 -k=3 k1=1 k2=3 ent=1.48286 ent1=0 ent2=1.48909 -ig=0.0646833 delta=4.66253 N 42 term 0.238573 -idx: 46 entropy_left: 0 entropy_right : 1.50438 -> 44 84 -idx: 47 entropy_left: 0.918296 entropy_right : 1.50798 -> 44 84 -idx: 48 entropy_left: 1.5 entropy_right : 1.48068 -> 44 84 -idx: 54 entropy_left: 0.921928 entropy_right : 1.50582 -> 44 84 -idx: 56 entropy_left: 1.18872 entropy_right : 1.53062 -> 44 84 -idx: 57 entropy_left: 1.14012 entropy_right : 1.53049 -> 44 84 -idx: 60 entropy_left: 1.24756 entropy_right : 1.56128 -> 44 84 -idx: 62 entropy_left: 1.19417 entropy_right : 1.5644 -> 44 84 -idx: 63 entropy_left: 1.21081 entropy_right : 1.57511 -> 44 84 -idx: 64 entropy_left: 1.33667 entropy_right : 1.55887 -> 44 84 -idx: 66 entropy_left: 1.34202 entropy_right : 1.57154 -> 44 84 -idx: 67 entropy_left: 1.32578 entropy_right : 1.57986 -> 44 84 -idx: 68 entropy_left: 1.32501 entropy_right : 1.57943 -> 44 84 -idx: 69 entropy_left: 1.40411 entropy_right : 1.5656 -> 44 84 -idx: 70 entropy_left: 1.39936 entropy_right : 1.55666 -> 44 84 -idx: 72 entropy_left: 1.49725 entropy_right : 1.45915 -> 44 84 -idx: 76 entropy_left: 1.46148 entropy_right : 0.811278 -> 44 84 -idx: 77 entropy_left: 1.49492 entropy_right : 0.591673 -> 44 84 -idx: 78 entropy_left: 1.49279 entropy_right : 0.650022 -> 44 84 -idx: 79 entropy_left: 1.51898 entropy_right : 0 -> 44 84 -cut: 2.8 index: 46 -start: 44 cut: 46 end: 84 -k=3 k1=1 k2=3 ent=1.48909 ent1=0 ent2=1.50438 -ig=0.0599306 delta=4.68972 N 40 term 0.249378 -idx: 47 entropy_left: 0 entropy_right : 1.50798 -> 46 84 -idx: 48 entropy_left: 1 entropy_right : 1.48068 -> 46 84 -idx: 54 entropy_left: 1.06128 entropy_right : 1.50582 -> 46 84 -idx: 56 entropy_left: 1.29546 entropy_right : 1.53062 -> 46 84 -idx: 57 entropy_left: 1.24067 entropy_right : 1.53049 -> 46 84 -idx: 60 entropy_left: 1.29584 entropy_right : 1.56128 -> 46 84 -idx: 62 entropy_left: 1.24756 entropy_right : 1.5644 -> 46 84 -idx: 63 entropy_left: 1.2533 entropy_right : 1.57511 -> 46 84 -idx: 64 entropy_left: 1.3821 entropy_right : 1.55887 -> 46 84 -idx: 66 entropy_left: 1.369 entropy_right : 1.57154 -> 46 84 -idx: 67 entropy_left: 1.35667 entropy_right : 1.57986 -> 46 84 -idx: 68 entropy_left: 1.34859 entropy_right : 1.57943 -> 46 84 -idx: 69 entropy_left: 1.42819 entropy_right : 1.5656 -> 46 84 -idx: 70 entropy_left: 1.41713 entropy_right : 1.55666 -> 46 84 -idx: 72 entropy_left: 1.51264 entropy_right : 1.45915 -> 46 84 -idx: 76 entropy_left: 1.45915 entropy_right : 0.811278 -> 46 84 -idx: 77 entropy_left: 1.49186 entropy_right : 0.591673 -> 46 84 -idx: 78 entropy_left: 1.49478 entropy_right : 0.650022 -> 46 84 -idx: 79 entropy_left: 1.51989 entropy_right : 0 -> 46 84 -cut: 2.85 index: 47 -start: 46 cut: 47 end: 84 -k=3 k1=1 k2=3 ent=1.50438 ent1=0 ent2=1.50798 -ig=0.0360812 delta=4.65466 N 38 term 0.259582 -idx: 48 entropy_left: 0 entropy_right : 1.48068 -> 47 84 -idx: 54 entropy_left: 0.591673 entropy_right : 1.50582 -> 47 84 -idx: 56 entropy_left: 1.22439 entropy_right : 1.53062 -> 47 84 -idx: 57 entropy_left: 1.15678 entropy_right : 1.53049 -> 47 84 -idx: 60 entropy_left: 1.29574 entropy_right : 1.56128 -> 47 84 -idx: 62 entropy_left: 1.23096 entropy_right : 1.5644 -> 47 84 -idx: 63 entropy_left: 1.24756 entropy_right : 1.57511 -> 47 84 -idx: 64 entropy_left: 1.37928 entropy_right : 1.55887 -> 47 84 -idx: 66 entropy_left: 1.37796 entropy_right : 1.57154 -> 47 84 -idx: 67 entropy_left: 1.36096 entropy_right : 1.57986 -> 47 84 -idx: 68 entropy_left: 1.35667 entropy_right : 1.57943 -> 47 84 -idx: 69 entropy_left: 1.43655 entropy_right : 1.5656 -> 47 84 -idx: 70 entropy_left: 1.42819 entropy_right : 1.55666 -> 47 84 -idx: 72 entropy_left: 1.52193 entropy_right : 1.45915 -> 47 84 -idx: 76 entropy_left: 1.47412 entropy_right : 0.811278 -> 47 84 -idx: 77 entropy_left: 1.50582 entropy_right : 0.591673 -> 47 84 -idx: 78 entropy_left: 1.50689 entropy_right : 0.650022 -> 47 84 -idx: 79 entropy_left: 1.53099 entropy_right : 0 -> 47 84 -cut: 2.9 index: 48 -start: 47 cut: 48 end: 84 -k=3 k1=1 k2=3 ent=1.50798 ent1=0 ent2=1.48068 -ig=0.0673178 delta=4.56196 N 37 term 0.263024 -idx: 54 entropy_left: 0 entropy_right : 1.50582 -> 48 84 -idx: 56 entropy_left: 0.811278 entropy_right : 1.53062 -> 48 84 -idx: 57 entropy_left: 0.764205 entropy_right : 1.53049 -> 48 84 -idx: 60 entropy_left: 0.979869 entropy_right : 1.56128 -> 48 84 -idx: 62 entropy_left: 0.940286 entropy_right : 1.5644 -> 48 84 -idx: 63 entropy_left: 0.970951 entropy_right : 1.57511 -> 48 84 -idx: 64 entropy_left: 1.24756 entropy_right : 1.55887 -> 48 84 -idx: 66 entropy_left: 1.25163 entropy_right : 1.57154 -> 48 84 -idx: 67 entropy_left: 1.23639 entropy_right : 1.57986 -> 48 84 -idx: 68 entropy_left: 1.2345 entropy_right : 1.57943 -> 48 84 -idx: 69 entropy_left: 1.35667 entropy_right : 1.5656 -> 48 84 -idx: 70 entropy_left: 1.34859 entropy_right : 1.55666 -> 48 84 -idx: 72 entropy_left: 1.48336 entropy_right : 1.45915 -> 48 84 -idx: 76 entropy_left: 1.43156 entropy_right : 0.811278 -> 48 84 -idx: 77 entropy_left: 1.47412 entropy_right : 0.591673 -> 48 84 -idx: 78 entropy_left: 1.47468 entropy_right : 0.650022 -> 48 84 -idx: 79 entropy_left: 1.50689 entropy_right : 0 -> 48 84 -cut: 2.9 index: 54 -start: 48 cut: 54 end: 84 -k=3 k1=1 k2=3 ent=1.48068 ent1=0 ent2=1.50582 -ig=0.225829 delta=4.71928 N 36 term 0.273571 -idx: 56 entropy_left: 0 entropy_right : 1.53062 -> 54 84 -idx: 57 entropy_left: 0.918296 entropy_right : 1.53049 -> 54 84 -idx: 60 entropy_left: 0.650022 entropy_right : 1.56128 -> 54 84 -idx: 62 entropy_left: 0.954434 entropy_right : 1.5644 -> 54 84 -idx: 63 entropy_left: 0.918296 entropy_right : 1.57511 -> 54 84 -idx: 64 entropy_left: 1.29546 entropy_right : 1.55887 -> 54 84 -idx: 66 entropy_left: 1.18872 entropy_right : 1.57154 -> 54 84 -idx: 67 entropy_left: 1.2389 entropy_right : 1.57986 -> 54 84 -idx: 68 entropy_left: 1.19812 entropy_right : 1.57943 -> 54 84 -idx: 69 entropy_left: 1.33827 entropy_right : 1.5656 -> 54 84 -idx: 70 entropy_left: 1.29879 entropy_right : 1.55666 -> 54 84 -idx: 72 entropy_left: 1.43552 entropy_right : 1.45915 -> 54 84 -idx: 76 entropy_left: 1.3093 entropy_right : 0.811278 -> 54 84 -idx: 77 entropy_left: 1.35345 entropy_right : 0.591673 -> 54 84 -idx: 78 entropy_left: 1.39654 entropy_right : 0.650022 -> 54 84 -idx: 79 entropy_left: 1.42696 entropy_right : 0 -> 54 84 -cut: 3 index: 79 -start: 54 cut: 79 end: 84 -k=3 k1=3 k2=1 ent=1.50582 ent1=1.42696 ent2=0 -ig=0.316689 delta=4.40727 N 30 term 0.308842 -¡Ding! 3 79 -idx: 56 entropy_left: 0 entropy_right : 1.47404 -> 54 79 -idx: 57 entropy_left: 0.918296 entropy_right : 1.43537 -> 54 79 -idx: 60 entropy_left: 0.650022 entropy_right : 1.50903 -> 54 79 -idx: 62 entropy_left: 0.954434 entropy_right : 1.37928 -> 54 79 -idx: 63 entropy_left: 0.918296 entropy_right : 1.40564 -> 54 79 -idx: 64 entropy_left: 1.29546 entropy_right : 1.39958 -> 54 79 -idx: 66 entropy_left: 1.18872 entropy_right : 1.46048 -> 54 79 -idx: 67 entropy_left: 1.2389 entropy_right : 1.32501 -> 54 79 -idx: 68 entropy_left: 1.19812 entropy_right : 1.34859 -> 54 79 -idx: 69 entropy_left: 1.33827 entropy_right : 1.36096 -> 54 79 -idx: 70 entropy_left: 1.29879 entropy_right : 1.39215 -> 54 79 -idx: 72 entropy_left: 1.43552 entropy_right : 1.37878 -> 54 79 -idx: 76 entropy_left: 1.3093 entropy_right : 0.918296 -> 54 79 -idx: 77 entropy_left: 1.35345 entropy_right : 1 -> 54 79 -idx: 78 entropy_left: 1.39654 entropy_right : 0 -> 54 79 -cut: 3 index: 78 -start: 54 cut: 78 end: 79 -k=3 k1=3 k2=1 ent=1.42696 ent1=1.39654 ent2=0 -ig=0.0862868 delta=4.55258 N 25 term 0.365502 -idx: 56 entropy_left: 0 entropy_right : 1.44858 -> 54 78 -idx: 57 entropy_left: 0.918296 entropy_right : 1.40998 -> 54 78 -idx: 60 entropy_left: 0.650022 entropy_right : 1.49554 -> 54 78 -idx: 62 entropy_left: 0.954434 entropy_right : 1.36631 -> 54 78 -idx: 63 entropy_left: 0.918296 entropy_right : 1.39958 -> 54 78 -idx: 64 entropy_left: 1.29546 entropy_right : 1.37878 -> 54 78 -idx: 66 entropy_left: 1.18872 entropy_right : 1.45915 -> 54 78 -idx: 67 entropy_left: 1.2389 entropy_right : 1.32218 -> 54 78 -idx: 68 entropy_left: 1.19812 entropy_right : 1.36096 -> 54 78 -idx: 69 entropy_left: 1.33827 entropy_right : 1.35164 -> 54 78 -idx: 70 entropy_left: 1.29879 entropy_right : 1.40564 -> 54 78 -idx: 72 entropy_left: 1.43552 entropy_right : 1.25163 -> 54 78 -idx: 76 entropy_left: 1.3093 entropy_right : 1 -> 54 78 -idx: 77 entropy_left: 1.35345 entropy_right : 0 -> 54 78 -cut: 3 index: 77 -start: 54 cut: 77 end: 78 -k=3 k1=3 k2=1 ent=1.39654 ent1=1.35345 ent2=0 -ig=0.0994805 delta=4.5146 N 24 term 0.37659 -idx: 56 entropy_left: 0 entropy_right : 1.40998 -> 54 77 -idx: 57 entropy_left: 0.918296 entropy_right : 1.35272 -> 54 77 -idx: 60 entropy_left: 0.650022 entropy_right : 1.44665 -> 54 77 -idx: 62 entropy_left: 0.954434 entropy_right : 1.23096 -> 54 77 -idx: 63 entropy_left: 0.918296 entropy_right : 1.26381 -> 54 77 -idx: 64 entropy_left: 1.29546 entropy_right : 1.2389 -> 54 77 -idx: 66 entropy_left: 1.18872 entropy_right : 1.32218 -> 54 77 -idx: 67 entropy_left: 1.2389 entropy_right : 0.970951 -> 54 77 -idx: 68 entropy_left: 1.19812 entropy_right : 0.991076 -> 54 77 -idx: 69 entropy_left: 1.33827 entropy_right : 0.954434 -> 54 77 -idx: 70 entropy_left: 1.29879 entropy_right : 0.985228 -> 54 77 -idx: 72 entropy_left: 1.43552 entropy_right : 0.721928 -> 54 77 -idx: 76 entropy_left: 1.3093 entropy_right : 0 -> 54 77 -cut: 3 index: 76 -start: 54 cut: 76 end: 77 -k=3 k1=3 k2=1 ent=1.35345 ent1=1.3093 ent2=0 -ig=0.101078 delta=4.5114 N 23 term 0.390036 -idx: 56 entropy_left: 0 entropy_right : 1.37095 -> 54 76 -idx: 57 entropy_left: 0.918296 entropy_right : 1.31243 -> 54 76 -idx: 60 entropy_left: 0.650022 entropy_right : 1.41974 -> 54 76 -idx: 62 entropy_left: 0.954434 entropy_right : 1.19812 -> 54 76 -idx: 63 entropy_left: 0.918296 entropy_right : 1.2389 -> 54 76 -idx: 64 entropy_left: 1.29546 entropy_right : 1.18872 -> 54 76 -idx: 66 entropy_left: 1.18872 entropy_right : 1.29546 -> 54 76 -idx: 67 entropy_left: 1.2389 entropy_right : 0.918296 -> 54 76 -idx: 68 entropy_left: 1.19812 entropy_right : 0.954434 -> 54 76 -idx: 69 entropy_left: 1.33827 entropy_right : 0.863121 -> 54 76 -idx: 70 entropy_left: 1.29879 entropy_right : 0.918296 -> 54 76 -idx: 72 entropy_left: 1.43552 entropy_right : 0 -> 54 76 -cut: 2.9 index: 56 -start: 54 cut: 56 end: 76 -k=3 k1=1 k2=3 ent=1.3093 ent1=0 ent2=1.37095 -ig=0.062978 delta=4.82882 N 22 term 0.419142 -idx: 57 entropy_left: 0 entropy_right : 1.31243 -> 56 76 -idx: 60 entropy_left: 0.811278 entropy_right : 1.41974 -> 56 76 -idx: 62 entropy_left: 1 entropy_right : 1.19812 -> 56 76 -idx: 63 entropy_left: 0.985228 entropy_right : 1.2389 -> 56 76 -idx: 64 entropy_left: 1.40564 entropy_right : 1.18872 -> 56 76 -idx: 66 entropy_left: 1.29546 entropy_right : 1.29546 -> 56 76 -idx: 67 entropy_left: 1.32218 entropy_right : 0.918296 -> 56 76 -idx: 68 entropy_left: 1.28067 entropy_right : 0.954434 -> 56 76 -idx: 69 entropy_left: 1.41956 entropy_right : 0.863121 -> 56 76 -idx: 70 entropy_left: 1.37878 entropy_right : 0.918296 -> 56 76 -idx: 72 entropy_left: 1.5 entropy_right : 0 -> 56 76 -cut: 2.95 index: 57 -start: 56 cut: 57 end: 76 -k=3 k1=1 k2=3 ent=1.37095 ent1=0 ent2=1.31243 -ig=0.124141 delta=4.4683 N 20 term 0.435811 -idx: 60 entropy_left: 0 entropy_right : 1.41974 -> 57 76 -idx: 62 entropy_left: 0.970951 entropy_right : 1.19812 -> 57 76 -idx: 63 entropy_left: 0.918296 entropy_right : 1.2389 -> 57 76 -idx: 64 entropy_left: 1.37878 entropy_right : 1.18872 -> 57 76 -idx: 66 entropy_left: 1.22439 entropy_right : 1.29546 -> 57 76 -idx: 67 entropy_left: 1.29546 entropy_right : 0.918296 -> 57 76 -idx: 68 entropy_left: 1.24067 entropy_right : 0.954434 -> 57 76 -idx: 69 entropy_left: 1.38443 entropy_right : 0.863121 -> 57 76 -idx: 70 entropy_left: 1.33468 entropy_right : 0.918296 -> 57 76 -idx: 72 entropy_left: 1.45656 entropy_right : 0 -> 57 76 -cut: 3 index: 60 -start: 57 cut: 60 end: 76 -k=3 k1=1 k2=3 ent=1.31243 ent1=0 ent2=1.41974 -ig=0.116863 delta=4.96577 N 19 term 0.480826 -idx: 62 entropy_left: 0 entropy_right : 1.19812 -> 60 76 -idx: 63 entropy_left: 0.918296 entropy_right : 1.2389 -> 60 76 -idx: 64 entropy_left: 1.5 entropy_right : 1.18872 -> 60 76 -idx: 66 entropy_left: 1.45915 entropy_right : 1.29546 -> 60 76 -idx: 67 entropy_left: 1.44882 entropy_right : 0.918296 -> 60 76 -idx: 68 entropy_left: 1.40564 entropy_right : 0.954434 -> 60 76 -idx: 69 entropy_left: 1.53049 entropy_right : 0.863121 -> 60 76 -idx: 70 entropy_left: 1.48548 entropy_right : 0.918296 -> 60 76 -idx: 72 entropy_left: 1.55459 entropy_right : 0 -> 60 76 -cut: 3 index: 62 -start: 60 cut: 62 end: 76 -k=3 k1=1 k2=3 ent=1.41974 ent1=0 ent2=1.19812 -ig=0.371384 delta=3.979 N 16 term 0.492868 -idx: 63 entropy_left: 0 entropy_right : 1.2389 -> 62 76 -idx: 64 entropy_left: 1 entropy_right : 1.18872 -> 62 76 -idx: 66 entropy_left: 0.811278 entropy_right : 1.29546 -> 62 76 -idx: 67 entropy_left: 1.37095 entropy_right : 0.918296 -> 62 76 -idx: 68 entropy_left: 1.25163 entropy_right : 0.954434 -> 62 76 -idx: 69 entropy_left: 1.37878 entropy_right : 0.863121 -> 62 76 -idx: 70 entropy_left: 1.29879 entropy_right : 0.918296 -> 62 76 -idx: 72 entropy_left: 1.36096 entropy_right : 0 -> 62 76 -cut: 3 index: 63 -start: 62 cut: 63 end: 76 -k=3 k1=1 k2=3 ent=1.19812 ent1=0 ent2=1.2389 -ig=0.0477091 delta=4.76621 N 14 term 0.604761 -idx: 64 entropy_left: 0 entropy_right : 1.18872 -> 63 76 -idx: 66 entropy_left: 0.918296 entropy_right : 1.29546 -> 63 76 -idx: 67 entropy_left: 1.5 entropy_right : 0.918296 -> 63 76 -idx: 68 entropy_left: 1.37095 entropy_right : 0.954434 -> 63 76 -idx: 69 entropy_left: 1.45915 entropy_right : 0.863121 -> 63 76 -idx: 70 entropy_left: 1.37878 entropy_right : 0.918296 -> 63 76 -idx: 72 entropy_left: 1.39215 entropy_right : 0 -> 63 76 -cut: 3 index: 64 -start: 63 cut: 64 end: 76 -k=3 k1=1 k2=3 ent=1.2389 ent1=0 ent2=1.18872 -ig=0.14162 delta=4.49332 N 13 term 0.621406 -idx: 66 entropy_left: 0 entropy_right : 1.29546 -> 64 76 -idx: 67 entropy_left: 0.918296 entropy_right : 0.918296 -> 64 76 -idx: 68 entropy_left: 0.811278 entropy_right : 0.954434 -> 64 76 -idx: 69 entropy_left: 1.37095 entropy_right : 0.863121 -> 64 76 -idx: 70 entropy_left: 1.25163 entropy_right : 0.918296 -> 64 76 -idx: 72 entropy_left: 1.40564 entropy_right : 0 -> 64 76 -cut: 3 index: 66 -start: 64 cut: 66 end: 76 -k=3 k1=1 k2=3 ent=1.18872 ent1=0 ent2=1.29546 -ig=0.10917 delta=4.96408 N 12 term 0.701959 -idx: 67 entropy_left: 0 entropy_right : 0.918296 -> 66 76 -idx: 68 entropy_left: 1 entropy_right : 0.954434 -> 66 76 -idx: 69 entropy_left: 1.58496 entropy_right : 0.863121 -> 66 76 -idx: 70 entropy_left: 1.5 entropy_right : 0.918296 -> 66 76 -idx: 72 entropy_left: 1.45915 entropy_right : 0 -> 66 76 -cut: 3 index: 67 -start: 66 cut: 67 end: 76 -k=3 k1=1 k2=2 ent=1.29546 ent1=0 ent2=0.918296 -ig=0.468996 delta=2.59406 N 10 term 0.576399 -idx: 68 entropy_left: 0 entropy_right : 0.954434 -> 67 76 -idx: 69 entropy_left: 1 entropy_right : 0.863121 -> 67 76 -idx: 70 entropy_left: 0.918296 entropy_right : 0.918296 -> 67 76 -idx: 72 entropy_left: 0.970951 entropy_right : 0 -> 67 76 -cut: 3 index: 68 -start: 67 cut: 68 end: 76 -k=2 k1=1 k2=2 ent=0.918296 ent1=0 ent2=0.954434 -ig=0.06991 delta=2.87963 N 9 term 0.653292 -idx: 69 entropy_left: 0 entropy_right : 0.863121 -> 68 76 -idx: 70 entropy_left: 1 entropy_right : 0.918296 -> 68 76 -idx: 72 entropy_left: 0.811278 entropy_right : 0 -> 68 76 -cut: 3 index: 72 -start: 68 cut: 72 end: 76 -k=2 k1=2 k2=1 ent=0.954434 ent1=0.811278 ent2=0 -ig=0.548795 delta=2.52104 N 8 term 0.66605 -idx: 69 entropy_left: 0 entropy_right : 0.918296 -> 68 72 -idx: 70 entropy_left: 1 entropy_right : 0 -> 68 72 -cut: 3 index: 69 -start: 68 cut: 69 end: 72 -k=2 k1=1 k2=2 ent=0.811278 ent1=0 ent2=0.918296 -ig=0.122556 delta=3.02139 N 4 term 1.15159 -idx: 70 entropy_left: 0 entropy_right : 0 -> 69 72 -cut: 3 index: 70 -start: 69 cut: 70 end: 72 -k=2 k1=1 k2=1 ent=0.918296 ent1=0 ent2=0 -ig=0.918296 delta=0.970763 N 3 term 0.656921 -¡Ding! 3 70 -idx: 50 entropy_left: 0 entropy_right : 1 -> 0 150 -idx: 86 entropy_left: 0.980798 entropy_right : 0.757878 -> 0 150 -idx: 87 entropy_left: 1.06007 entropy_right : 0.764205 -> 0 150 -idx: 96 entropy_left: 1.07115 entropy_right : 0.445065 -> 0 150 -idx: 97 entropy_left: 1.12232 entropy_right : 0.450791 -> 0 150 -idx: 98 entropy_left: 1.12209 entropy_right : 0.391244 -> 0 150 -idx: 99 entropy_left: 1.16439 entropy_right : 0.396628 -> 0 150 -idx: 100 entropy_left: 1.16372 entropy_right : 0.327445 -> 0 150 -idx: 101 entropy_left: 1.20021 entropy_right : 0.332287 -> 0 150 -idx: 102 entropy_left: 1.19918 entropy_right : 0.249882 -> 0 150 -idx: 106 entropy_left: 1.31027 entropy_right : 0.266765 -> 0 150 -idx: 107 entropy_left: 1.30863 entropy_right : 0.15935 -> 0 150 -idx: 111 entropy_left: 1.38601 entropy_right : 0.172037 -> 0 150 -idx: 112 entropy_left: 1.38409 entropy_right : 0 -> 0 150 -cut: 2.45 index: 50 -start: 0 cut: 50 end: 150 -k=3 k1=1 k2=2 ent=1.58496 ent1=0 ent2=1 -ig=0.918296 delta=1.88897 N 150 term 0.0607209 -¡Ding! 2.45 50 -idx: 86 entropy_left: 0 entropy_right : 0.757878 -> 50 150 -idx: 87 entropy_left: 0.179256 entropy_right : 0.764205 -> 50 150 -idx: 96 entropy_left: 0.151097 entropy_right : 0.445065 -> 50 150 -idx: 97 entropy_left: 0.253878 entropy_right : 0.450791 -> 50 150 -idx: 98 entropy_left: 0.249882 entropy_right : 0.391244 -> 50 150 -idx: 99 entropy_left: 0.332287 entropy_right : 0.396628 -> 50 150 -idx: 100 entropy_left: 0.327445 entropy_right : 0.327445 -> 50 150 -idx: 101 entropy_left: 0.396628 entropy_right : 0.332287 -> 50 150 -idx: 102 entropy_left: 0.391244 entropy_right : 0.249882 -> 50 150 -idx: 106 entropy_left: 0.591673 entropy_right : 0.266765 -> 50 150 -idx: 107 entropy_left: 0.585157 entropy_right : 0.15935 -> 50 150 -idx: 111 entropy_left: 0.715322 entropy_right : 0.172037 -> 50 150 -idx: 112 entropy_left: 0.708836 entropy_right : 0 -> 50 150 -cut: 4.8 index: 96 -start: 50 cut: 96 end: 150 -k=2 k1=2 k2=2 ent=1 ent1=0.151097 ent2=0.445065 -ig=0.69016 delta=1.99968 N 100 term 0.0862903 -¡Ding! 4.8 96 -idx: 86 entropy_left: 0 entropy_right : 0.468996 -> 50 96 -idx: 87 entropy_left: 0.179256 entropy_right : 0 -> 50 96 -cut: 4.55 index: 87 -start: 50 cut: 87 end: 96 -k=2 k1=2 k2=1 ent=0.151097 ent1=0.179256 ent2=0 -ig=0.00691275 delta=2.86367 N 46 term 0.181642 -idx: 86 entropy_left: 0 entropy_right : 0 -> 50 87 -cut: 4.5 index: 86 -start: 50 cut: 86 end: 87 -k=2 k1=1 k2=1 ent=0.179256 ent1=0 ent2=0 -ig=0.179256 delta=2.44884 N 37 term 0.205913 -idx: 97 entropy_left: 0 entropy_right : 0.450791 -> 96 150 -idx: 98 entropy_left: 1 entropy_right : 0.391244 -> 96 150 -idx: 99 entropy_left: 0.918296 entropy_right : 0.396628 -> 96 150 -idx: 100 entropy_left: 1 entropy_right : 0.327445 -> 96 150 -idx: 101 entropy_left: 0.970951 entropy_right : 0.332287 -> 96 150 -idx: 102 entropy_left: 1 entropy_right : 0.249882 -> 96 150 -idx: 106 entropy_left: 0.881291 entropy_right : 0.266765 -> 96 150 -idx: 107 entropy_left: 0.94566 entropy_right : 0.15935 -> 96 150 -idx: 111 entropy_left: 0.836641 entropy_right : 0.172037 -> 96 150 -idx: 112 entropy_left: 0.896038 entropy_right : 0 -> 96 150 -cut: 4.8 index: 97 -start: 96 cut: 97 end: 150 -k=2 k1=1 k2=2 ent=0.445065 ent1=0 ent2=0.450791 -ig=0.00262153 delta=2.81881 N 54 term 0.158273 -idx: 98 entropy_left: 0 entropy_right : 0.391244 -> 97 150 -idx: 99 entropy_left: 1 entropy_right : 0.396628 -> 97 150 -idx: 100 entropy_left: 0.918296 entropy_right : 0.327445 -> 97 150 -idx: 101 entropy_left: 1 entropy_right : 0.332287 -> 97 150 -idx: 102 entropy_left: 0.970951 entropy_right : 0.249882 -> 97 150 -idx: 106 entropy_left: 0.918296 entropy_right : 0.266765 -> 97 150 -idx: 107 entropy_left: 0.970951 entropy_right : 0.15935 -> 97 150 -idx: 111 entropy_left: 0.863121 entropy_right : 0.172037 -> 97 150 -idx: 112 entropy_left: 0.918296 entropy_right : 0 -> 97 150 -cut: 4.8 index: 98 -start: 97 cut: 98 end: 150 -k=2 k1=1 k2=2 ent=0.450791 ent1=0 ent2=0.391244 -ig=0.0669298 delta=2.68826 N 53 term 0.158277 -idx: 99 entropy_left: 0 entropy_right : 0.396628 -> 98 150 -idx: 100 entropy_left: 1 entropy_right : 0.327445 -> 98 150 -idx: 101 entropy_left: 0.918296 entropy_right : 0.332287 -> 98 150 -idx: 102 entropy_left: 1 entropy_right : 0.249882 -> 98 150 -idx: 106 entropy_left: 0.811278 entropy_right : 0.266765 -> 98 150 -idx: 107 entropy_left: 0.918296 entropy_right : 0.15935 -> 98 150 -idx: 111 entropy_left: 0.77935 entropy_right : 0.172037 -> 98 150 -idx: 112 entropy_left: 0.863121 entropy_right : 0 -> 98 150 -cut: 4.85 index: 99 -start: 98 cut: 99 end: 150 -k=2 k1=1 k2=2 ent=0.391244 ent1=0 ent2=0.396628 -ig=0.00224322 delta=2.81812 N 52 term 0.16328 -idx: 100 entropy_left: 0 entropy_right : 0.327445 -> 99 150 -idx: 101 entropy_left: 1 entropy_right : 0.332287 -> 99 150 -idx: 102 entropy_left: 0.918296 entropy_right : 0.249882 -> 99 150 -idx: 106 entropy_left: 0.863121 entropy_right : 0.266765 -> 99 150 -idx: 107 entropy_left: 0.954434 entropy_right : 0.15935 -> 99 150 -idx: 111 entropy_left: 0.811278 entropy_right : 0.172037 -> 99 150 -idx: 112 entropy_left: 0.890492 entropy_right : 0 -> 99 150 -cut: 4.9 index: 100 -start: 99 cut: 100 end: 150 -k=2 k1=1 k2=2 ent=0.396628 ent1=0 ent2=0.327445 -ig=0.0756034 delta=2.66899 N 51 term 0.162997 -idx: 101 entropy_left: 0 entropy_right : 0.332287 -> 100 150 -idx: 102 entropy_left: 1 entropy_right : 0.249882 -> 100 150 -idx: 106 entropy_left: 0.650022 entropy_right : 0.266765 -> 100 150 -idx: 107 entropy_left: 0.863121 entropy_right : 0.15935 -> 100 150 -idx: 111 entropy_left: 0.684038 entropy_right : 0.172037 -> 100 150 -idx: 112 entropy_left: 0.811278 entropy_right : 0 -> 100 150 -cut: 4.9 index: 101 -start: 100 cut: 101 end: 150 -k=2 k1=1 k2=2 ent=0.327445 ent1=0 ent2=0.332287 -ig=0.00180405 delta=2.81704 N 50 term 0.168635 -idx: 102 entropy_left: 0 entropy_right : 0.249882 -> 101 150 -idx: 106 entropy_left: 0.721928 entropy_right : 0.266765 -> 101 150 -idx: 107 entropy_left: 0.918296 entropy_right : 0.15935 -> 101 150 -idx: 111 entropy_left: 0.721928 entropy_right : 0.172037 -> 101 150 -idx: 112 entropy_left: 0.845351 entropy_right : 0 -> 101 150 -cut: 4.9 index: 102 -start: 101 cut: 102 end: 150 -k=2 k1=1 k2=2 ent=0.332287 ent1=0 ent2=0.249882 -ig=0.0875039 delta=2.64255 N 49 term 0.167908 -idx: 106 entropy_left: 0 entropy_right : 0.266765 -> 102 150 -idx: 107 entropy_left: 0.721928 entropy_right : 0.15935 -> 102 150 -idx: 111 entropy_left: 0.503258 entropy_right : 0.172037 -> 102 150 -idx: 112 entropy_left: 0.721928 entropy_right : 0 -> 102 150 -cut: 5 index: 106 -start: 102 cut: 106 end: 150 -k=2 k1=1 k2=2 ent=0.249882 ent1=0 ent2=0.266765 -ig=0.0053477 delta=2.84112 N 48 term 0.174911 -idx: 107 entropy_left: 0 entropy_right : 0.15935 -> 106 150 -idx: 111 entropy_left: 0.721928 entropy_right : 0.172037 -> 106 150 -idx: 112 entropy_left: 0.918296 entropy_right : 0 -> 106 150 -cut: 5 index: 107 -start: 106 cut: 107 end: 150 -k=2 k1=1 k2=2 ent=0.266765 ent1=0 ent2=0.15935 -ig=0.111037 delta=2.59253 N 44 term 0.182245 -idx: 111 entropy_left: 0 entropy_right : 0.172037 -> 107 150 -idx: 112 entropy_left: 0.721928 entropy_right : 0 -> 107 150 -cut: 5.1 index: 111 -start: 107 cut: 111 end: 150 -k=2 k1=1 k2=2 ent=0.15935 ent1=0 ent2=0.172037 -ig=0.00331657 delta=2.83273 N 43 term 0.19128 -idx: 112 entropy_left: 0 entropy_right : 0 -> 111 150 -cut: 5.1 index: 112 -start: 111 cut: 112 end: 150 -k=2 k1=1 k2=1 ent=0.172037 ent1=0 ent2=0 -ig=0.172037 delta=2.46328 N 39 term 0.197723 -idx: 50 entropy_left: 0 entropy_right : 1 -> 0 150 -idx: 80 entropy_left: 0.954434 entropy_right : 0.863121 -> 0 150 -idx: 81 entropy_left: 1.03862 entropy_right : 0.868534 -> 0 150 -idx: 96 entropy_left: 1.07115 entropy_right : 0.445065 -> 0 150 -idx: 98 entropy_left: 1.1649 entropy_right : 0.456684 -> 0 150 -idx: 101 entropy_left: 1.16291 entropy_right : 0.246023 -> 0 150 -idx: 102 entropy_left: 1.19918 entropy_right : 0.249882 -> 0 150 -idx: 103 entropy_left: 1.19802 entropy_right : 0.148549 -> 0 150 -idx: 112 entropy_left: 1.40183 entropy_right : 0.175565 -> 0 150 -idx: 113 entropy_left: 1.3999 entropy_right : 0 -> 0 150 -cut: 0.8 index: 50 -start: 0 cut: 50 end: 150 -k=3 k1=1 k2=2 ent=1.58496 ent1=0 ent2=1 -ig=0.918296 delta=1.88897 N 150 term 0.0607209 -¡Ding! 0.8 50 -idx: 80 entropy_left: 0 entropy_right : 0.863121 -> 50 150 -idx: 81 entropy_left: 0.205593 entropy_right : 0.868534 -> 50 150 -idx: 96 entropy_left: 0.151097 entropy_right : 0.445065 -> 50 150 -idx: 98 entropy_left: 0.33729 entropy_right : 0.456684 -> 50 150 -idx: 101 entropy_left: 0.322757 entropy_right : 0.246023 -> 50 150 -idx: 102 entropy_left: 0.391244 entropy_right : 0.249882 -> 50 150 -idx: 103 entropy_left: 0.386019 entropy_right : 0.148549 -> 50 150 -idx: 112 entropy_left: 0.740866 entropy_right : 0.175565 -> 50 150 -idx: 113 entropy_left: 0.734446 entropy_right : 0 -> 50 150 -cut: 1.7 index: 103 -start: 50 cut: 103 end: 150 -k=2 k1=2 k2=2 ent=1 ent1=0.386019 ent2=0.148549 -ig=0.725592 delta=1.87649 N 100 term 0.0850585 -¡Ding! 1.7 103 -idx: 80 entropy_left: 0 entropy_right : 0.666578 -> 50 103 -idx: 81 entropy_left: 0.205593 entropy_right : 0.574636 -> 50 103 -idx: 96 entropy_left: 0.151097 entropy_right : 0.985228 -> 50 103 -idx: 98 entropy_left: 0.33729 entropy_right : 0.721928 -> 50 103 -idx: 101 entropy_left: 0.322757 entropy_right : 1 -> 50 103 -idx: 102 entropy_left: 0.391244 entropy_right : 0 -> 50 103 -cut: 1.65 index: 102 -start: 50 cut: 102 end: 103 -k=2 k1=2 k2=1 ent=0.386019 ent1=0.391244 ent2=0 -ig=0.0021573 delta=2.8178 N 53 term 0.160722 -idx: 80 entropy_left: 0 entropy_right : 0.684038 -> 50 102 -idx: 81 entropy_left: 0.205593 entropy_right : 0.591673 -> 50 102 -idx: 96 entropy_left: 0.151097 entropy_right : 1 -> 50 102 -idx: 98 entropy_left: 0.33729 entropy_right : 0.811278 -> 50 102 -idx: 101 entropy_left: 0.322757 entropy_right : 0 -> 50 102 -cut: 1.6 index: 101 -start: 50 cut: 101 end: 102 -k=2 k1=2 k2=1 ent=0.391244 ent1=0.322757 ent2=0 -ig=0.0746935 delta=2.67038 N 52 term 0.160439 -idx: 80 entropy_left: 0 entropy_right : 0.591673 -> 50 101 -idx: 81 entropy_left: 0.205593 entropy_right : 0.468996 -> 50 101 -idx: 96 entropy_left: 0.151097 entropy_right : 0.970951 -> 50 101 -idx: 98 entropy_left: 0.33729 entropy_right : 0 -> 50 101 -cut: 1.55 index: 98 -start: 50 cut: 98 end: 101 -k=2 k1=2 k2=1 ent=0.322757 ent1=0.33729 ent2=0 -ig=0.00530747 delta=2.83642 N 51 term 0.16628 -idx: 80 entropy_left: 0 entropy_right : 0.650022 -> 50 98 -idx: 81 entropy_left: 0.205593 entropy_right : 0.522559 -> 50 98 -idx: 96 entropy_left: 0.151097 entropy_right : 0 -> 50 98 -cut: 1.5 index: 96 -start: 50 cut: 96 end: 98 -k=2 k1=2 k2=1 ent=0.33729 ent1=0.151097 ent2=0 -ig=0.192489 delta=2.43497 N 48 term 0.166449 -¡Ding! 1.5 96 -idx: 80 entropy_left: 0 entropy_right : 0.33729 -> 50 96 -idx: 81 entropy_left: 0.205593 entropy_right : 0 -> 50 96 -cut: 1.4 index: 81 -start: 50 cut: 81 end: 96 -k=2 k1=2 k2=1 ent=0.151097 ent1=0.205593 ent2=0 -ig=0.0125455 delta=2.91635 N 46 term 0.182787 -idx: 80 entropy_left: 0 entropy_right : 0 -> 50 81 -cut: 1.4 index: 80 -start: 50 cut: 80 end: 81 -k=2 k1=1 k2=1 ent=0.205593 ent1=0 ent2=0 -ig=0.205593 delta=2.39617 N 31 term 0.235583 -idx: 112 entropy_left: 0 entropy_right : 0.175565 -> 103 150 -idx: 113 entropy_left: 0.468996 entropy_right : 0 -> 103 150 -cut: 1.8 index: 112 -start: 103 cut: 112 end: 150 -k=2 k1=1 k2=2 ent=0.148549 ent1=0 ent2=0.175565 -ig=0.00660326 delta=2.86139 N 47 term 0.178403 -idx: 113 entropy_left: 0 entropy_right : 0 -> 112 150 -cut: 1.8 index: 113 -start: 112 cut: 113 end: 150 -k=2 k1=1 k2=1 ent=0.175565 ent1=0 ent2=0 -ig=0.175565 delta=2.45622 N 38 term 0.201728 -[[4.900000095367432, 5.199999809265137, 5.400000095367432, 6.75]] diff --git a/feature0_ant.txt b/feature0_ant.txt deleted file mode 100644 index a1f74b8..0000000 --- a/feature0_ant.txt +++ /dev/null @@ -1,25 +0,0 @@ -Cut point: 4.95 //5 -> 0 yPrev= 2* (5, 4.9)=4.95idxPrev106 -Cut point: 5.05 //5.1 -> 0 yPrev= 1* (5.1, 5)=5.05idxPrev93 -Cut point: 5.15 //5.2 -> 0 yPrev= 1* (5.2, 5.1)=5.15idxPrev98 -Cut point: 5.25 //5.3 -> 0 yPrev= 1* (5.3, 5.2)=5.25idxPrev59 -Cut point: 5.45 //5.5 -> 0 yPrev= 1* (5.5, 5.4)=5.45idxPrev84 -Cut point: 5.65 //5.7 -> 0 yPrev= 2* (5.7, 5.6)=5.65idxPrev121 -Cut point: 5.75 //5.8 -> 0 yPrev= 2* (5.8, 5.7)=5.75idxPrev113 -Cut point: 5.85 //5.9 -> 1 yPrev= 2* (5.9, 5.8)=5.85idxPrev142 -Cut point: 5.95 //6 -> 1 yPrev= 2* (6, 5.9)=5.95idxPrev149 -Cut point: 6.05 //6.1 -> 1 yPrev= 2* (6.1, 6)=6.05idxPrev138 -Cut point: 6.15 //6.2 -> 1 yPrev= 2* (6.2, 6.1)=6.15idxPrev134 -Cut point: 6.25 //6.3 -> 1 yPrev= 2* (6.3, 6.2)=6.25idxPrev148 -Cut point: 6.35 //6.4 -> 1 yPrev= 2* (6.4, 6.3)=6.35idxPrev146 -Cut point: 6.45 //6.5 -> 1 yPrev= 2* (6.5, 6.4)=6.45idxPrev137 -Cut point: 6.55 //6.6 -> 1 yPrev= 2* (6.6, 6.5)=6.55idxPrev147 -Cut point: 6.75 //6.8 -> 1 yPrev= 2* (6.8, 6.7)=6.75idxPrev145 -Cut point: 6.85 //6.9 -> 1 yPrev= 2* (6.9, 6.8)=6.85idxPrev143 -Cut point: 6.95 //7 -> 1 yPrev= 2* (7, 6.9)=6.95idxPrev141 -Cut point: 7.05 //7.1 -> 2 yPrev= 1* (7.1, 7)=7.05idxPrev50 -[4.949999809265137, 5.050000190734863, 5.150000095367432, 5.25, 5.449999809265137, -5.650000095367432, 5.75, 5.850000858306885, 5.949999809265137, 6.050000190734863, -6.150000095367432, 6.25, 6.350000858306885, 6.449999809265137, 6.550000190734863, -6.75, 6.850000858306885, 6.949999809265137, 7.050000190734863] - -Cuts calculados en python: [4.85, 5.25, 5.35, 6.25, 6.55, 6.95, 7.05] \ No newline at end of file diff --git a/feature0_new.txt b/feature0_new.txt deleted file mode 100644 index 7675db2..0000000 --- a/feature0_new.txt +++ /dev/null @@ -1,212 +0,0 @@ -*idx=0 -> (-1, -1) Prev(4.3, 0) Elementos: 149 - Prev(4.3, 0) Pivot(4.3, 0) Cur(4.3, 0) ->idx=1 -> Prev(4.3, 0) Pivot(4.3, 0) Cur(4.4, 0) - Prev(4.3, 0) Pivot(4.4, 0) Cur(4.4, 0) ->idx=2 -> Prev(4.3, 0) Pivot(4.4, 0) Cur(4.4, 0) ->idx=3 -> Prev(4.3, 0) Pivot(4.4, 0) Cur(4.4, 0) ->idx=4 -> Prev(4.3, 0) Pivot(4.4, 0) Cur(4.5, 0) - Prev(4.4, 0) Pivot(4.5, 0) Cur(4.5, 0) ->idx=5 -> Prev(4.4, 0) Pivot(4.5, 0) Cur(4.6, 0) - Prev(4.5, 0) Pivot(4.6, 0) Cur(4.6, 0) ->idx=6 -> Prev(4.5, 0) Pivot(4.6, 0) Cur(4.6, 0) ->idx=7 -> Prev(4.5, 0) Pivot(4.6, 0) Cur(4.6, 0) ->idx=8 -> Prev(4.5, 0) Pivot(4.6, 0) Cur(4.6, 0) ->idx=9 -> Prev(4.5, 0) Pivot(4.6, 0) Cur(4.7, 0) - Prev(4.6, 0) Pivot(4.7, 0) Cur(4.7, 0) ->idx=10 -> Prev(4.6, 0) Pivot(4.7, 0) Cur(4.7, 0) ->idx=11 -> Prev(4.6, 0) Pivot(4.7, 0) Cur(4.8, 0) - Prev(4.7, 0) Pivot(4.8, 0) Cur(4.8, 0) ->idx=12 -> Prev(4.7, 0) Pivot(4.8, 0) Cur(4.8, 0) ->idx=13 -> Prev(4.7, 0) Pivot(4.8, 0) Cur(4.8, 0) ->idx=14 -> Prev(4.7, 0) Pivot(4.8, 0) Cur(4.8, 0) ->idx=15 -> Prev(4.7, 0) Pivot(4.8, 0) Cur(4.8, 0) ->idx=16 -> Prev(4.7, 0) Pivot(4.8, 0) Cur(4.9, 0) - Prev(4.8, 0) Pivot(4.9, 0) Cur(4.9, 0) ->idx=17 -> Prev(4.8, 0) Pivot(4.9, 0) Cur(4.9, 0) ->idx=18 -> Prev(4.8, 0) Pivot(4.9, 0) Cur(4.9, 0) ->idx=19 -> Prev(4.8, 0) Pivot(4.9, 0) Cur(4.9, 0) ->idx=20 -> Prev(4.8, 0) Pivot(4.9, -1) Cur(4.9, 1) ->idx=21 -> Prev(4.8, 0) Pivot(4.9, -1) Cur(4.9, 2) ->idx=22 -> Prev(4.8, 0) Pivot(4.9, -1) Cur(5.0, 0) -Cutpoint idx=22 Cur(5.0, 0) Prev(4.8, 0) Pivot(4.9, -1) = 4.9 - Prev(4.9, -1) Pivot(5.0, 0) Cur(5.0, 0) ->idx=23 -> Prev(4.9, -1) Pivot(5.0, 0) Cur(5.0, 0) ->idx=24 -> Prev(4.9, -1) Pivot(5.0, 0) Cur(5.0, 0) ->idx=25 -> Prev(4.9, -1) Pivot(5.0, 0) Cur(5.0, 0) ->idx=26 -> Prev(4.9, -1) Pivot(5.0, 0) Cur(5.0, 0) ->idx=27 -> Prev(4.9, -1) Pivot(5.0, 0) Cur(5.0, 0) ->idx=28 -> Prev(4.9, -1) Pivot(5.0, 0) Cur(5.0, 0) ->idx=29 -> Prev(4.9, -1) Pivot(5.0, 0) Cur(5.0, 0) ->idx=30 -> Prev(4.9, -1) Pivot(5.0, -1) Cur(5.0, 1) ->idx=31 -> Prev(4.9, -1) Pivot(5.0, -1) Cur(5.0, 1) ->idx=32 -> Prev(4.9, -1) Pivot(5.0, -1) Cur(5.1, 0) -Cutpoint idx=32 Cur(5.1, 0) Prev(4.9, -1) Pivot(5.0, -1) = 5.0 - Prev(5.0, -1) Pivot(5.1, 0) Cur(5.1, 0) ->idx=33 -> Prev(5.0, -1) Pivot(5.1, 0) Cur(5.1, 0) ->idx=34 -> Prev(5.0, -1) Pivot(5.1, 0) Cur(5.1, 0) ->idx=35 -> Prev(5.0, -1) Pivot(5.1, 0) Cur(5.1, 0) ->idx=36 -> Prev(5.0, -1) Pivot(5.1, 0) Cur(5.1, 0) ->idx=37 -> Prev(5.0, -1) Pivot(5.1, 0) Cur(5.1, 0) ->idx=38 -> Prev(5.0, -1) Pivot(5.1, 0) Cur(5.1, 0) ->idx=39 -> Prev(5.0, -1) Pivot(5.1, 0) Cur(5.1, 0) ->idx=40 -> Prev(5.0, -1) Pivot(5.1, -1) Cur(5.1, 1) ->idx=41 -> Prev(5.0, -1) Pivot(5.1, -1) Cur(5.2, 0) -Cutpoint idx=41 Cur(5.2, 0) Prev(5.0, -1) Pivot(5.1, -1) = 5.1 - Prev(5.1, -1) Pivot(5.2, 0) Cur(5.2, 0) ->idx=42 -> Prev(5.1, -1) Pivot(5.2, 0) Cur(5.2, 0) ->idx=43 -> Prev(5.1, -1) Pivot(5.2, 0) Cur(5.2, 0) ->idx=44 -> Prev(5.1, -1) Pivot(5.2, -1) Cur(5.2, 1) ->idx=45 -> Prev(5.1, -1) Pivot(5.2, -1) Cur(5.3, 0) -Cutpoint idx=45 Cur(5.3, 0) Prev(5.1, -1) Pivot(5.2, -1) = 5.2 - Prev(5.2, -1) Pivot(5.3, 0) Cur(5.3, 0) ->idx=46 -> Prev(5.2, -1) Pivot(5.3, 0) Cur(5.4, 0) -Cutpoint idx=46 Cur(5.4, 0) Prev(5.2, -1) Pivot(5.3, 0) = 5.3 - Prev(5.3, 0) Pivot(5.4, 0) Cur(5.4, 0) ->idx=47 -> Prev(5.3, 0) Pivot(5.4, 0) Cur(5.4, 0) ->idx=48 -> Prev(5.3, 0) Pivot(5.4, 0) Cur(5.4, 0) ->idx=49 -> Prev(5.3, 0) Pivot(5.4, 0) Cur(5.4, 0) ->idx=50 -> Prev(5.3, 0) Pivot(5.4, 0) Cur(5.4, 0) ->idx=51 -> Prev(5.3, 0) Pivot(5.4, -1) Cur(5.4, 1) ->idx=52 -> Prev(5.3, 0) Pivot(5.4, -1) Cur(5.5, 0) -Cutpoint idx=52 Cur(5.5, 0) Prev(5.3, 0) Pivot(5.4, -1) = 5.4 - Prev(5.4, -1) Pivot(5.5, 0) Cur(5.5, 0) ->idx=53 -> Prev(5.4, -1) Pivot(5.5, 0) Cur(5.5, 0) ->idx=54 -> Prev(5.4, -1) Pivot(5.5, -1) Cur(5.5, 1) ->idx=55 -> Prev(5.4, -1) Pivot(5.5, -1) Cur(5.5, 1) ->idx=56 -> Prev(5.4, -1) Pivot(5.5, -1) Cur(5.5, 1) ->idx=57 -> Prev(5.4, -1) Pivot(5.5, -1) Cur(5.5, 1) ->idx=58 -> Prev(5.4, -1) Pivot(5.5, -1) Cur(5.5, 1) ->idx=59 -> Prev(5.4, -1) Pivot(5.5, -1) Cur(5.6, 1) -Cutpoint idx=59 Cur(5.6, 1) Prev(5.4, -1) Pivot(5.5, -1) = 5.5 - Prev(5.5, -1) Pivot(5.6, 1) Cur(5.6, 1) ->idx=60 -> Prev(5.5, -1) Pivot(5.6, 1) Cur(5.6, 1) ->idx=61 -> Prev(5.5, -1) Pivot(5.6, 1) Cur(5.6, 1) ->idx=62 -> Prev(5.5, -1) Pivot(5.6, 1) Cur(5.6, 1) ->idx=63 -> Prev(5.5, -1) Pivot(5.6, 1) Cur(5.6, 1) ->idx=64 -> Prev(5.5, -1) Pivot(5.6, -1) Cur(5.6, 2) ->idx=65 -> Prev(5.5, -1) Pivot(5.6, -1) Cur(5.7, 0) -Cutpoint idx=65 Cur(5.7, 0) Prev(5.5, -1) Pivot(5.6, -1) = 5.6 - Prev(5.6, -1) Pivot(5.7, 0) Cur(5.7, 0) ->idx=66 -> Prev(5.6, -1) Pivot(5.7, 0) Cur(5.7, 0) ->idx=67 -> Prev(5.6, -1) Pivot(5.7, -1) Cur(5.7, 1) ->idx=68 -> Prev(5.6, -1) Pivot(5.7, -1) Cur(5.7, 1) ->idx=69 -> Prev(5.6, -1) Pivot(5.7, -1) Cur(5.7, 1) ->idx=70 -> Prev(5.6, -1) Pivot(5.7, -1) Cur(5.7, 1) ->idx=71 -> Prev(5.6, -1) Pivot(5.7, -1) Cur(5.7, 1) ->idx=72 -> Prev(5.6, -1) Pivot(5.7, -1) Cur(5.7, 2) ->idx=73 -> Prev(5.6, -1) Pivot(5.7, -1) Cur(5.8, 0) -Cutpoint idx=73 Cur(5.8, 0) Prev(5.6, -1) Pivot(5.7, -1) = 5.7 - Prev(5.7, -1) Pivot(5.8, 0) Cur(5.8, 0) ->idx=74 -> Prev(5.7, -1) Pivot(5.8, -1) Cur(5.8, 1) ->idx=75 -> Prev(5.7, -1) Pivot(5.8, -1) Cur(5.8, 1) ->idx=76 -> Prev(5.7, -1) Pivot(5.8, -1) Cur(5.8, 1) ->idx=77 -> Prev(5.7, -1) Pivot(5.8, -1) Cur(5.8, 2) ->idx=78 -> Prev(5.7, -1) Pivot(5.8, -1) Cur(5.8, 2) ->idx=79 -> Prev(5.7, -1) Pivot(5.8, -1) Cur(5.8, 2) ->idx=80 -> Prev(5.7, -1) Pivot(5.8, -1) Cur(5.9, 1) -Cutpoint idx=80 Cur(5.9, 1) Prev(5.7, -1) Pivot(5.8, -1) = 5.8 - Prev(5.8, -1) Pivot(5.9, 1) Cur(5.9, 1) ->idx=81 -> Prev(5.8, -1) Pivot(5.9, 1) Cur(5.9, 1) ->idx=82 -> Prev(5.8, -1) Pivot(5.9, -1) Cur(5.9, 2) ->idx=83 -> Prev(5.8, -1) Pivot(5.9, -1) Cur(6.0, 1) -Cutpoint idx=83 Cur(6.0, 1) Prev(5.8, -1) Pivot(5.9, -1) = 5.9 - Prev(5.9, -1) Pivot(6.0, 1) Cur(6.0, 1) ->idx=84 -> Prev(5.9, -1) Pivot(6.0, 1) Cur(6.0, 1) ->idx=85 -> Prev(5.9, -1) Pivot(6.0, 1) Cur(6.0, 1) ->idx=86 -> Prev(5.9, -1) Pivot(6.0, 1) Cur(6.0, 1) ->idx=87 -> Prev(5.9, -1) Pivot(6.0, -1) Cur(6.0, 2) ->idx=88 -> Prev(5.9, -1) Pivot(6.0, -1) Cur(6.0, 2) ->idx=89 -> Prev(5.9, -1) Pivot(6.0, -1) Cur(6.1, 1) -Cutpoint idx=89 Cur(6.1, 1) Prev(5.9, -1) Pivot(6.0, -1) = 6.0 - Prev(6.0, -1) Pivot(6.1, 1) Cur(6.1, 1) ->idx=90 -> Prev(6.0, -1) Pivot(6.1, 1) Cur(6.1, 1) ->idx=91 -> Prev(6.0, -1) Pivot(6.1, 1) Cur(6.1, 1) ->idx=92 -> Prev(6.0, -1) Pivot(6.1, 1) Cur(6.1, 1) ->idx=93 -> Prev(6.0, -1) Pivot(6.1, -1) Cur(6.1, 2) ->idx=94 -> Prev(6.0, -1) Pivot(6.1, -1) Cur(6.1, 2) ->idx=95 -> Prev(6.0, -1) Pivot(6.1, -1) Cur(6.2, 1) -Cutpoint idx=95 Cur(6.2, 1) Prev(6.0, -1) Pivot(6.1, -1) = 6.1 - Prev(6.1, -1) Pivot(6.2, 1) Cur(6.2, 1) ->idx=96 -> Prev(6.1, -1) Pivot(6.2, 1) Cur(6.2, 1) ->idx=97 -> Prev(6.1, -1) Pivot(6.2, -1) Cur(6.2, 2) ->idx=98 -> Prev(6.1, -1) Pivot(6.2, -1) Cur(6.2, 2) ->idx=99 -> Prev(6.1, -1) Pivot(6.2, -1) Cur(6.3, 1) -Cutpoint idx=99 Cur(6.3, 1) Prev(6.1, -1) Pivot(6.2, -1) = 6.2 - Prev(6.2, -1) Pivot(6.3, 1) Cur(6.3, 1) ->idx=100 -> Prev(6.2, -1) Pivot(6.3, 1) Cur(6.3, 1) ->idx=101 -> Prev(6.2, -1) Pivot(6.3, 1) Cur(6.3, 1) ->idx=102 -> Prev(6.2, -1) Pivot(6.3, -1) Cur(6.3, 2) ->idx=103 -> Prev(6.2, -1) Pivot(6.3, -1) Cur(6.3, 2) ->idx=104 -> Prev(6.2, -1) Pivot(6.3, -1) Cur(6.3, 2) ->idx=105 -> Prev(6.2, -1) Pivot(6.3, -1) Cur(6.3, 2) ->idx=106 -> Prev(6.2, -1) Pivot(6.3, -1) Cur(6.3, 2) ->idx=107 -> Prev(6.2, -1) Pivot(6.3, -1) Cur(6.3, 2) ->idx=108 -> Prev(6.2, -1) Pivot(6.3, -1) Cur(6.4, 1) -Cutpoint idx=108 Cur(6.4, 1) Prev(6.2, -1) Pivot(6.3, -1) = 6.3 - Prev(6.3, -1) Pivot(6.4, 1) Cur(6.4, 1) ->idx=109 -> Prev(6.3, -1) Pivot(6.4, 1) Cur(6.4, 1) ->idx=110 -> Prev(6.3, -1) Pivot(6.4, -1) Cur(6.4, 2) ->idx=111 -> Prev(6.3, -1) Pivot(6.4, -1) Cur(6.4, 2) ->idx=112 -> Prev(6.3, -1) Pivot(6.4, -1) Cur(6.4, 2) ->idx=113 -> Prev(6.3, -1) Pivot(6.4, -1) Cur(6.4, 2) ->idx=114 -> Prev(6.3, -1) Pivot(6.4, -1) Cur(6.4, 2) ->idx=115 -> Prev(6.3, -1) Pivot(6.4, -1) Cur(6.5, 1) -Cutpoint idx=115 Cur(6.5, 1) Prev(6.3, -1) Pivot(6.4, -1) = 6.4 - Prev(6.4, -1) Pivot(6.5, 1) Cur(6.5, 1) ->idx=116 -> Prev(6.4, -1) Pivot(6.5, -1) Cur(6.5, 2) ->idx=117 -> Prev(6.4, -1) Pivot(6.5, -1) Cur(6.5, 2) ->idx=118 -> Prev(6.4, -1) Pivot(6.5, -1) Cur(6.5, 2) ->idx=119 -> Prev(6.4, -1) Pivot(6.5, -1) Cur(6.5, 2) ->idx=120 -> Prev(6.4, -1) Pivot(6.5, -1) Cur(6.6, 1) -Cutpoint idx=120 Cur(6.6, 1) Prev(6.4, -1) Pivot(6.5, -1) = 6.5 - Prev(6.5, -1) Pivot(6.6, 1) Cur(6.6, 1) ->idx=121 -> Prev(6.5, -1) Pivot(6.6, 1) Cur(6.6, 1) ->idx=122 -> Prev(6.5, -1) Pivot(6.6, 1) Cur(6.7, 1) -Cutpoint idx=122 Cur(6.7, 1) Prev(6.5, -1) Pivot(6.6, 1) = 6.6 - Prev(6.6, 1) Pivot(6.7, 1) Cur(6.7, 1) ->idx=123 -> Prev(6.6, 1) Pivot(6.7, 1) Cur(6.7, 1) ->idx=124 -> Prev(6.6, 1) Pivot(6.7, 1) Cur(6.7, 1) ->idx=125 -> Prev(6.6, 1) Pivot(6.7, -1) Cur(6.7, 2) ->idx=126 -> Prev(6.6, 1) Pivot(6.7, -1) Cur(6.7, 2) ->idx=127 -> Prev(6.6, 1) Pivot(6.7, -1) Cur(6.7, 2) ->idx=128 -> Prev(6.6, 1) Pivot(6.7, -1) Cur(6.7, 2) ->idx=129 -> Prev(6.6, 1) Pivot(6.7, -1) Cur(6.7, 2) ->idx=130 -> Prev(6.6, 1) Pivot(6.7, -1) Cur(6.8, 1) -Cutpoint idx=130 Cur(6.8, 1) Prev(6.6, 1) Pivot(6.7, -1) = 6.7 - Prev(6.7, -1) Pivot(6.8, 1) Cur(6.8, 1) ->idx=131 -> Prev(6.7, -1) Pivot(6.8, -1) Cur(6.8, 2) ->idx=132 -> Prev(6.7, -1) Pivot(6.8, -1) Cur(6.8, 2) ->idx=133 -> Prev(6.7, -1) Pivot(6.8, -1) Cur(6.9, 1) -Cutpoint idx=133 Cur(6.9, 1) Prev(6.7, -1) Pivot(6.8, -1) = 6.8 - Prev(6.8, -1) Pivot(6.9, 1) Cur(6.9, 1) ->idx=134 -> Prev(6.8, -1) Pivot(6.9, -1) Cur(6.9, 2) ->idx=135 -> Prev(6.8, -1) Pivot(6.9, -1) Cur(6.9, 2) ->idx=136 -> Prev(6.8, -1) Pivot(6.9, -1) Cur(6.9, 2) ->idx=137 -> Prev(6.8, -1) Pivot(6.9, -1) Cur(7.0, 1) -Cutpoint idx=137 Cur(7.0, 1) Prev(6.8, -1) Pivot(6.9, -1) = 6.9 - Prev(6.9, -1) Pivot(7.0, 1) Cur(7.0, 1) ->idx=138 -> Prev(6.9, -1) Pivot(7.0, 1) Cur(7.1, 2) -Cutpoint idx=138 Cur(7.1, 2) Prev(6.9, -1) Pivot(7.0, 1) = 7.0 - Prev(7.0, 1) Pivot(7.1, 2) Cur(7.1, 2) ->idx=139 -> Prev(7.0, 1) Pivot(7.1, 2) Cur(7.2, 2) -Cutpoint idx=139 Cur(7.2, 2) Prev(7.0, 1) Pivot(7.1, 2) = 7.1 - Prev(7.1, 2) Pivot(7.2, 2) Cur(7.2, 2) ->idx=140 -> Prev(7.1, 2) Pivot(7.2, 2) Cur(7.2, 2) ->idx=141 -> Prev(7.1, 2) Pivot(7.2, 2) Cur(7.2, 2) ->idx=142 -> Prev(7.1, 2) Pivot(7.2, 2) Cur(7.3, 2) - Prev(7.2, 2) Pivot(7.3, 2) Cur(7.3, 2) ->idx=143 -> Prev(7.2, 2) Pivot(7.3, 2) Cur(7.4, 2) - Prev(7.3, 2) Pivot(7.4, 2) Cur(7.4, 2) ->idx=144 -> Prev(7.3, 2) Pivot(7.4, 2) Cur(7.6, 2) - Prev(7.4, 2) Pivot(7.6, 2) Cur(7.6, 2) ->idx=145 -> Prev(7.4, 2) Pivot(7.6, 2) Cur(7.7, 2) - Prev(7.6, 2) Pivot(7.7, 2) Cur(7.7, 2) ->idx=146 -> Prev(7.6, 2) Pivot(7.7, 2) Cur(7.7, 2) ->idx=147 -> Prev(7.6, 2) Pivot(7.7, 2) Cur(7.7, 2) ->idx=148 -> Prev(7.6, 2) Pivot(7.7, 2) Cur(7.7, 2) ->idx=149 -> Prev(7.6, 2) Pivot(7.7, 2) Cur(7.9, 2) -[4.900000095367432, 5.0, 5.099999904632568, 5.199999809265137, 5.300000190734863, -5.400000095367432, 5.5, 5.599999904632568, 5.699999809265137, 5.800000190734863, -5.900000095367432, 6.0, 6.099999904632568, 6.199999809265137, 6.300000190734863, -6.400000095367432, 6.5, 6.599999904632568, 6.699999809265137, 6.800000190734863, -6.900000095367432, 7.0, 7.099999904632568] \ No newline at end of file diff --git a/fimdlp/CPPFImdlp.cpp b/fimdlp/CPPFImdlp.cpp index e5b6c4e..56f8ea2 100644 --- a/fimdlp/CPPFImdlp.cpp +++ b/fimdlp/CPPFImdlp.cpp @@ -28,7 +28,8 @@ namespace mdlp { } indices = sortIndices(X_); metrics.setData(y, indices); - computeCutPoints(0, X.size()); + //computeCutPoints(0, X.size()); + computeCutPointsProposal(); return *this; } void CPPFImdlp::computeCutPoints(size_t start, size_t end) @@ -50,6 +51,64 @@ namespace mdlp { computeCutPoints(start, cut); computeCutPoints(cut, end); } + void CPPFImdlp::computeCutPointsOriginal(size_t start, size_t end) + { + size_t idx; + precision_t cut; + if (end - start < 2) + return; + cut = getCandidate(start, end); + if (cut == -1) + return; + if (mdlp(start, cut, end)) { + cutPoints.push_back((X[indices[cut]] + X[indices[cut - 1]]) / 2); + } + computeCutPointsOriginal(start, cut); + computeCutPointsOriginal(cut, end); + } + void CPPFImdlp::computeCutPointsProposal() + { + precision_t xPrev, xCur, xPivot, cutPoint; + int yPrev, yCur, yPivot; + size_t idx, numElements, start; + + xCur = xPrev = X[indices[0]]; + yCur = yPrev = y[indices[0]]; + numElements = indices.size() - 1; + idx = start = 0; + bool firstCutPoint = true; + if (debug) + printf("*idx=%lu -> (-1, -1) Prev(%3.1f, %d) Elementos: %lu\n", idx, xCur, yCur, numElements); + while (idx < numElements) { + xPivot = xCur; + yPivot = yCur; + if (debug) + printf(" Prev(%3.1f, %d) Pivot(%3.1f, %d) Cur(%3.1f, %d) \n", idx, xPrev, yPrev, xPivot, yPivot, xCur, yCur); + // Read the same values and check class changes + do { + idx++; + xCur = X[indices[idx]]; + yCur = y[indices[idx]]; + if (yCur != yPivot && xCur == xPivot) { + yPivot = -1; + } + if (debug) + printf(">idx=%lu -> Prev(%3.1f, %d) Pivot(%3.1f, %d) Cur(%3.1f, %d) \n", idx, xPrev, yPrev, xPivot, yPivot, xCur, yCur); + } + while (idx < numElements && xCur == xPivot); + // Check if the class changed and there are more than 1 element + if ((idx - start > 1) && (yPivot == -1 || yPrev != yCur) && mdlp(start, idx, indices.size())) { + start = idx; + cutPoint = (xPrev + xCur) / 2; + if (debug) { + printf("Cutpoint idx=%lu Cur(%3.1f, %d) Prev(%3.1f, %d) Pivot(%3.1f, %d) = %3.1g \n", idx, xCur, yCur, xPrev, yPrev, xPivot, yPivot, cutPoint); + } + cutPoints.push_back(cutPoint); + } + yPrev = yPivot; + xPrev = xPivot; + } + } long int CPPFImdlp::getCandidate(size_t start, size_t end) { long int candidate = -1, elements = end - start; diff --git a/fimdlp/CPPFImdlp.h b/fimdlp/CPPFImdlp.h index 7d467cc..bc4285f 100644 --- a/fimdlp/CPPFImdlp.h +++ b/fimdlp/CPPFImdlp.h @@ -19,6 +19,11 @@ namespace mdlp { long int getCandidate(size_t, size_t); bool mdlp(size_t, size_t, size_t); + // Original algorithm + void computeCutPointsOriginal(size_t, size_t); + bool goodCut(size_t, size_t, size_t); + void computeCutPointsProposal(); + public: CPPFImdlp(); CPPFImdlp(bool, bool debug = false); diff --git a/fimdlp/bak/CPPFImdlp.cpp b/fimdlp/bak/CPPFImdlp.cpp deleted file mode 100644 index 7f35562..0000000 --- a/fimdlp/bak/CPPFImdlp.cpp +++ /dev/null @@ -1,286 +0,0 @@ -#include "CPPFImdlp.h" -#include -#include -#include -#include "Metrics.h" - -namespace mdlp { - ostream& operator << (ostream& os, const cutPoint_t& cut) - { - os << cut.classNumber << " -> (" << cut.start << ", " << cut.end << - ") - (" << cut.fromValue << ", " << cut.toValue << ") " - << endl; - return os; - - } - CPPFImdlp::CPPFImdlp(): proposal(true), precision(6), debug(false) - { - divider = pow(10, precision); - numClasses = 0; - } - CPPFImdlp::CPPFImdlp(bool proposal, int precision, bool debug): proposal(proposal), precision(precision), debug(debug) - { - divider = pow(10, precision); - numClasses = 0; - } - CPPFImdlp::~CPPFImdlp() - = default; - samples CPPFImdlp::getCutPoints() - { - samples output(cutPoints.size()); - ::transform(cutPoints.begin(), cutPoints.end(), output.begin(), - [](cutPoint_t cut) { return cut.toValue; }); - return output; - } - labels CPPFImdlp::getDiscretizedValues() - { - return xDiscretized; - } - CPPFImdlp& CPPFImdlp::fit(samples& X_, labels& y_) - { - X = X_; - y = y_; - if (X.size() != y.size()) { - throw invalid_argument("X and y must have the same size"); - } - if (X.size() == 0 || y.size() == 0) { - throw invalid_argument("X and y must have at least one element"); - } - indices = sortIndices(X_); - xDiscretized = labels(X.size(), -1); - numClasses = Metrics::numClasses(y, indices, 0, X.size()); - - if (proposal) { - computeCutPointsProposal(); - } else { - computeCutPointsOriginal(); - } - filterCutPoints(); - // Apply cut points to the input vector - for (auto cut : cutPoints) { - for (size_t i = cut.start; i < cut.end; i++) { - xDiscretized[indices[i]] = cut.classNumber; - } - } - return *this; - } - bool CPPFImdlp::evaluateCutPoint(cutPoint_t rest, cutPoint_t candidate) - { - int k, k1, k2; - precision_t ig, delta; - precision_t ent, ent1, ent2; - auto N = precision_t(rest.end - rest.start); - if (N < 2) { - return false; - } - k = Metrics::numClasses(y, indices, rest.start, rest.end); - k1 = Metrics::numClasses(y, indices, rest.start, candidate.end); - k2 = Metrics::numClasses(y, indices, candidate.end, rest.end); - ent = Metrics::entropy(y, indices, rest.start, rest.end, numClasses); - ent1 = Metrics::entropy(y, indices, rest.start, candidate.end, numClasses); - ent2 = Metrics::entropy(y, indices, candidate.end, rest.end, numClasses); - ig = Metrics::informationGain(y, indices, rest.start, rest.end, candidate.end, numClasses); - delta = log2(pow(3, precision_t(k)) - 2) - (precision_t(k) * ent - precision_t(k1) * ent1 - precision_t(k2) * ent2); - precision_t term = 1 / N * (log2(N - 1) + delta); - if (debug) { - cout << "Rest: " << rest; - cout << "Candidate: " << candidate; - cout << "k=" << k << " k1=" << k1 << " k2=" << k2 << " ent=" << ent << " ent1=" << ent1 << " ent2=" << ent2 << endl; - cout << "ig=" << ig << " delta=" << delta << " N " << N << " term " << term << endl; - } - return (ig > term); - } - void CPPFImdlp::filterCutPoints() - { - cutPoints_t filtered; - cutPoint_t rest, item; - int classNumber = 0; - - rest.start = 0; - rest.end = X.size(); - rest.fromValue = numeric_limits::lowest(); - rest.toValue = numeric_limits::max(); - rest.classNumber = classNumber; - bool first = true; - for (size_t index = 0; index < size_t(cutPoints.size()); index++) { - item = cutPoints[index]; - if (evaluateCutPoint(rest, item)) { - if (debug) - cout << "Accepted: " << item << endl; - //Assign class number to the interval (cutpoint) - item.classNumber = classNumber++; - filtered.push_back(item); - first = false; - rest.start = item.end; - } else { - if (debug) - cout << "Rejected: " << item << endl; - if (index != size_t(cutPoints.size()) - 1) { - // Try to merge the rejected cutpoint with the next one - if (first) { - cutPoints[index + 1].fromValue = numeric_limits::lowest(); - cutPoints[index + 1].start = indices[0]; - } else { - cutPoints[index + 1].fromValue = item.fromValue; - cutPoints[index + 1].start = item.start; - } - } - } - } - if (!first) { - filtered.back().toValue = numeric_limits::max(); - filtered.back().end = X.size() - 1; - } else { - filtered.push_back(rest); - } - cutPoints = filtered; - } - void CPPFImdlp::computeCutPointsProposal() - { - cutPoints_t cutPts; - cutPoint_t cutPoint; - precision_t xPrev, xCur, xPivot; - int yPrev, yCur, yPivot; - size_t idx, numElements, start; - - xCur = xPrev = X[indices[0]]; - yCur = yPrev = y[indices[0]]; - numElements = indices.size() - 1; - idx = start = 0; - bool firstCutPoint = true; - if (debug) - printf("*idx=%lu -> (-1, -1) Prev(%3.1f, %d) Elementos: %lu\n", idx, xCur, yCur, numElements); - while (idx < numElements) { - xPivot = xCur; - yPivot = yCur; - if (debug) - printf(" Prev(%3.1f, %d) Pivot(%3.1f, %d) Cur(%3.1f, %d) \n", idx, xPrev, yPrev, xPivot, yPivot, xCur, yCur); - // Read the same values and check class changes - do { - idx++; - xCur = X[indices[idx]]; - yCur = y[indices[idx]]; - if (yCur != yPivot && xCur == xPivot) { - yPivot = -1; - } - if (debug) - printf(">idx=%lu -> Prev(%3.1f, %d) Pivot(%3.1f, %d) Cur(%3.1f, %d) \n", idx, xPrev, yPrev, xPivot, yPivot, xCur, yCur); - } - while (idx < numElements && xCur == xPivot); - // Check if the class changed and there are more than 1 element - if ((idx - start > 1) && (yPivot == -1 || yPrev != yCur) && goodCut(start, idx, numElements + 1)) { - // Must we add the entropy criteria here? - // if (totalEntropy - (entropyLeft + entropyRight) > 0) { Accept cut point } - cutPoint.start = start; - cutPoint.end = idx; - start = idx; - cutPoint.fromValue = firstCutPoint ? numeric_limits::lowest() : cutPts.back().toValue; - cutPoint.toValue = (xPrev + xCur) / 2; - cutPoint.classNumber = -1; - firstCutPoint = false; - if (debug) { - printf("Cutpoint idx=%lu Cur(%3.1f, %d) Prev(%3.1f, %d) Pivot(%3.1f, %d) = (%3.1g, %3.1g] \n", idx, xCur, yCur, xPrev, yPrev, xPivot, yPivot, cutPoint.fromValue, cutPoint.toValue); - } - cutPts.push_back(cutPoint); - } - yPrev = yPivot; - xPrev = xPivot; - } - if (idx == numElements) { - cutPoint.start = start; - cutPoint.end = numElements + 1; - cutPoint.fromValue = firstCutPoint ? numeric_limits::lowest() : cutPts.back().toValue; - cutPoint.toValue = numeric_limits::max(); - cutPoint.classNumber = -1; - if (debug) - printf("Final Cutpoint idx=%lu Cur(%3.1f, %d) Prev(%3.1f, %d) Pivot(%3.1f, %d) = (%3.1g, %3.1g] \n", idx, xCur, yCur, xPrev, yPrev, xPivot, yPivot, cutPoint.fromValue, cutPoint.toValue); - cutPts.push_back(cutPoint); - } - if (debug) { - cout << "Entropy of the dataset: " << Metrics::entropy(y, indices, 0, numElements + 1, numClasses) << endl; - for (auto cutPt : cutPts) - cout << "Entropy: " << Metrics::entropy(y, indices, cutPt.start, cutPt.end, numClasses) << " :Proposal: Cut point: " << cutPt; - } - cutPoints = cutPts; - } - void CPPFImdlp::computeCutPointsOriginal() - { - cutPoints_t cutPts; - cutPoint_t cutPoint; - precision_t xPrev; - int yPrev; - bool first = true; - // idxPrev is the index of the init instance of the cutPoint - size_t index, idxPrev = 0, last, idx = indices[0]; - xPrev = X[idx]; - yPrev = y[idx]; - last = indices.size() - 1; - for (index = 0; index < last; index++) { - idx = indices[index]; - // Definition 2 Cut points are always on class boundaries && - // there are more than 1 items in the interval - // if (entropy of interval) > (entropyLeft + entropyRight)) { Accept cut point } (goodCut) - if (y[idx] != yPrev && xPrev < X[idx] && idxPrev != index - 1 && goodCut(idxPrev, idx, last + 1)) { - // Must we add the entropy criteria here? - if (first) { - first = false; - cutPoint.fromValue = numeric_limits::lowest(); - } else { - cutPoint.fromValue = cutPts.back().toValue; - } - cutPoint.start = idxPrev; - cutPoint.end = index; - cutPoint.classNumber = -1; - cutPoint.toValue = round(divider * (X[idx] + xPrev) / 2) / divider; - idxPrev = index; - cutPts.push_back(cutPoint); - } - xPrev = X[idx]; - yPrev = y[idx]; - } - if (first) { - cutPoint.start = 0; - cutPoint.classNumber = -1; - cutPoint.fromValue = numeric_limits::lowest(); - cutPoint.toValue = numeric_limits::max(); - cutPts.push_back(cutPoint); - } else - cutPts.back().toValue = numeric_limits::max(); - cutPts.back().end = X.size(); - if (debug) { - cout << "Entropy of the dataset: " << Metrics::entropy(y, indices, 0, indices.size(), numClasses) << endl; - for (auto cutPt : cutPts) - cout << "Entropy: " << Metrics::entropy(y, indices, cutPt.start, cutPt.end, numClasses) << ": Original: Cut point: " << cutPt; - } - cutPoints = cutPts; - } - bool CPPFImdlp::goodCut(size_t start, size_t cut, size_t end) - { - /* - Meter las entropías en una matríz cuadrada dispersa (samples, samples) M[start, end] iniciada a -1 y si no se ha calculado calcularla y almacenarla - - - */ - precision_t entropyLeft = Metrics::entropy(y, indices, start, cut, numClasses); - precision_t entropyRight = Metrics::entropy(y, indices, cut, end, numClasses); - precision_t entropyInterval = Metrics::entropy(y, indices, start, end, numClasses); - if (debug) - printf("Entropy L, R, T: L(%5.3g) + R(%5.3g) - T(%5.3g) \t", entropyLeft, entropyRight, entropyInterval); - //return (entropyInterval - (entropyLeft + entropyRight) > 0); - return true; - } - // Argsort from https://stackoverflow.com/questions/1577475/c-sorting-and-keeping-track-of-indexes - indices_t CPPFImdlp::sortIndices(samples& X_) - { - indices_t idx(X_.size()); - iota(idx.begin(), idx.end(), 0); - for (size_t i = 0; i < X_.size(); i++) - stable_sort(idx.begin(), idx.end(), [&X_](size_t i1, size_t i2) - { return X_[i1] < X_[i2]; }); - return idx; - } - void CPPFImdlp::setCutPoints(cutPoints_t cutPoints_) - { - cutPoints = cutPoints_; - } -} diff --git a/fimdlp/bak/CPPFImdlp.h b/fimdlp/bak/CPPFImdlp.h deleted file mode 100644 index 608b817..0000000 --- a/fimdlp/bak/CPPFImdlp.h +++ /dev/null @@ -1,39 +0,0 @@ -#ifndef CPPFIMDLP_H -#define CPPFIMDLP_H -#include "typesFImdlp.h" -#include -namespace mdlp { - class CPPFImdlp { - protected: - bool proposal; // proposed algorithm or original algorithm - int precision; - bool debug; - precision_t divider; - indices_t indices; // sorted indices to use with X and y - samples X; - labels y; - labels xDiscretized; - int numClasses; - cutPoints_t cutPoints; - - void setCutPoints(cutPoints_t); - static indices_t sortIndices(samples&); - void computeCutPointsOriginal(); - void computeCutPointsProposal(); - bool evaluateCutPoint(cutPoint_t, cutPoint_t); - void filterCutPoints(); - bool goodCut(size_t, size_t, size_t); // if the cut candidate reduces entropy - - public: - CPPFImdlp(); - CPPFImdlp(bool, int, bool debug = false); - ~CPPFImdlp(); - samples getCutPoints(); - indices_t getIndices(); - labels getDiscretizedValues(); - void debugPoints(samples&, labels&); - CPPFImdlp& fit(samples&, labels&); - labels transform(samples&); - }; -} -#endif \ No newline at end of file diff --git a/fimdlp/bak/Metrics.cpp b/fimdlp/bak/Metrics.cpp deleted file mode 100644 index d43d314..0000000 --- a/fimdlp/bak/Metrics.cpp +++ /dev/null @@ -1,47 +0,0 @@ -#include "Metrics.h" -#include -namespace mdlp { - Metrics::Metrics() - = default; - int Metrics::numClasses(labels& y, indices_t indices, size_t start, size_t end) - { - std::set numClasses; - for (auto i = start; i < end; ++i) { - numClasses.insert(y[indices[i]]); - } - return numClasses.size(); - } - precision_t Metrics::entropy(labels& y, indices_t& indices, size_t start, size_t end, int nClasses) - { - precision_t entropy = 0; - int nElements = 0; - labels counts(nClasses + 1, 0); - for (auto i = &indices[start]; i != &indices[end]; ++i) { - counts[y[*i]]++; - nElements++; - } - for (auto count : counts) { - if (count > 0) { - precision_t p = (precision_t)count / nElements; - entropy -= p * log2(p); - } - } - return entropy < 0 ? 0 : entropy; - } - precision_t Metrics::informationGain(labels& y, indices_t& indices, size_t start, size_t end, size_t cutPoint, int nClasses) - { - precision_t iGain; - precision_t entropy, entropyLeft, entropyRight; - int nClassesLeft, nClassesRight; - int nElementsLeft = cutPoint - start, nElementsRight = end - cutPoint; - int nElements = end - start; - nClassesLeft = Metrics::numClasses(y, indices, start, cutPoint); - nClassesRight = Metrics::numClasses(y, indices, cutPoint, end); - entropy = Metrics::entropy(y, indices, start, end, nClasses); - entropyLeft = Metrics::entropy(y, indices, start, cutPoint, nClassesLeft); - entropyRight = Metrics::entropy(y, indices, cutPoint, end, nClassesRight); - iGain = entropy - ((precision_t)nElementsLeft * entropyLeft + (precision_t)nElementsRight * entropyRight) / nElements; - return iGain; - } - -} \ No newline at end of file diff --git a/fimdlp/bak/Metrics.h b/fimdlp/bak/Metrics.h deleted file mode 100644 index 5054998..0000000 --- a/fimdlp/bak/Metrics.h +++ /dev/null @@ -1,14 +0,0 @@ -#ifndef METRICS_H -#define METRICS_H -#include "typesFImdlp.h" -#include -namespace mdlp { - class Metrics { - public: - Metrics(); - static int numClasses(labels&, indices_t, size_t, size_t); - static precision_t entropy(labels&, indices_t&, size_t, size_t, int); - static precision_t informationGain(labels&, indices_t&, size_t, size_t, size_t, int); - }; -} -#endif \ No newline at end of file diff --git a/fimdlp/testcpp/main b/fimdlp/testcpp/main index 8159308..a1bfdfb 100755 Binary files a/fimdlp/testcpp/main and b/fimdlp/testcpp/main differ diff --git a/fimdlp/testcpp/main.cpp b/fimdlp/testcpp/main.cpp index 155a93f..201b930 100644 --- a/fimdlp/testcpp/main.cpp +++ b/fimdlp/testcpp/main.cpp @@ -22,9 +22,6 @@ int main(int argc, char** argv) return 1; } - //file.load("datasets/mfeat-factors.arff", true); - //file.load("/Users/rmontanana/Code/FImdlp/fimdlp/testcpp/datasets/kdd_JapaneseVowels.arff", false); - //file.load("/Users/rmontanana/Code/FImdlp/fimdlp/testcpp/datasets/iris.arff", true); file.load(path + argv[1] + ".arff", datasets[argv[1]]); auto attributes = file.getAttributes(); int items = file.getSize(); diff --git a/fimdlp/testcpp/xx/ArffFiles.cpp b/fimdlp/testcpp/xx/ArffFiles.cpp index a65576d..b8a8928 100644 --- a/fimdlp/testcpp/xx/ArffFiles.cpp +++ b/fimdlp/testcpp/xx/ArffFiles.cpp @@ -38,7 +38,7 @@ vector& ArffFiles::getY() { return y; } -void ArffFiles::load(string fileName) +void ArffFiles::load(string fileName, bool classLast) { ifstream file(fileName); string keyword, attribute, type; @@ -62,28 +62,34 @@ void ArffFiles::load(string fileName) file.close(); if (attributes.empty()) throw invalid_argument("No attributes found"); - className = get<0>(attributes.back()); - classType = get<1>(attributes.back()); - attributes.pop_back(); - generateDataset(); + if (classLast) { + className = get<0>(attributes.back()); + classType = get<1>(attributes.back()); + attributes.pop_back(); + } else { + className = get<0>(attributes.front()); + classType = get<1>(attributes.front()); + attributes.erase(attributes.begin()); + } + generateDataset(classLast); } else throw invalid_argument("Unable to open file"); } -void ArffFiles::generateDataset() +void ArffFiles::generateDataset(bool classLast) { - X = vector>(lines.size(), vector(attributes.size())); + X = vector>(attributes.size(), vector(lines.size())); vector yy = vector(lines.size(), ""); + int labelIndex = classLast ? attributes.size() : 0; for (int i = 0; i < lines.size(); i++) { stringstream ss(lines[i]); string value; - int j = 0; + int pos = 0, xIndex = 0; while (getline(ss, value, ',')) { - if (j == attributes.size()) { + if (pos++ == labelIndex) { yy[i] = value; - break; + } else { + X[xIndex++][i] = stof(value); } - X[i][j] = stof(value); - j++; } } y = factorize(yy); diff --git a/fimdlp/testcpp/xx/ArffFiles.h b/fimdlp/testcpp/xx/ArffFiles.h index 2788b84..317ebb5 100644 --- a/fimdlp/testcpp/xx/ArffFiles.h +++ b/fimdlp/testcpp/xx/ArffFiles.h @@ -11,10 +11,10 @@ private: string className, classType; vector> X; vector y; - void generateDataset(); + void generateDataset(bool); public: ArffFiles(); - void load(string); + void load(string, bool = true); vector getLines(); unsigned long int getSize(); string getClassName(); diff --git a/fimdlp/testcpp/xx/CMakeLists.txt b/fimdlp/testcpp/xx/CMakeLists.txt index ba62e67..5db4f6b 100644 --- a/fimdlp/testcpp/xx/CMakeLists.txt +++ b/fimdlp/testcpp/xx/CMakeLists.txt @@ -3,4 +3,4 @@ project(main) set(CMAKE_CXX_STANDARD 17) -add_executable(main main.cpp ArffFiles.cpp) +add_executable(main main.cpp ArffFiles.cpp ../../Metrics.cpp ../../CPPFImdlp.cpp) diff --git a/fimdlp/testcpp/xx/main.cpp b/fimdlp/testcpp/xx/main.cpp index b220199..b9e8cc5 100644 --- a/fimdlp/testcpp/xx/main.cpp +++ b/fimdlp/testcpp/xx/main.cpp @@ -2,29 +2,53 @@ #include #include #include +#include "../../CPPFImdlp.h" using namespace std; -int main(int argc, char **argv) { +int main(int argc, char** argv) +{ ArffFiles file; vector lines; - //file.load("datasets/mfeat-factors.arff"); - file.load("/Users/rmontanana/Code/FImdlp/fimdlp/testcpp/datasets/mfeat-factors.arff"); - cout << "Number of lines: " << file.getSize() << endl; + string path = "/Users/rmontanana/Code/FImdlp/fimdlp/testcpp/datasets/"; + map datasets = { + {"mfeat-factors", true}, + {"iris", true}, + {"letter", true}, + {"kdd_JapaneseVowels", false} + }; + if (argc != 2 || datasets.find(argv[1]) == datasets.end()) { + cout << "Usage: " << argv[0] << " {mfeat-factors, iris, letter, kdd_JapaneseVowels}" << endl; + return 1; + } + + file.load(path + argv[1] + ".arff", datasets[argv[1]]); + auto attributes = file.getAttributes(); + int items = file.getSize(); + cout << "Number of lines: " << items << endl; cout << "Attributes: " << endl; - for (auto attribute: file.getAttributes()) { + for (auto attribute : attributes) { cout << "Name: " << get<0>(attribute) << " Type: " << get<1>(attribute) << endl; } cout << "Class name: " << file.getClassName() << endl; cout << "Class type: " << file.getClassType() << endl; cout << "Data: " << endl; - vector> &X = file.getX(); - vector &y = file.getY(); - for (int i = 0; i < X.size(); i++) { - for (float value: X[i]) { - cout << fixed << setprecision(1) << value << " "; + vector>& X = file.getX(); + vector& y = file.getY(); + for (int i = 0; i < 50; i++) { + for (auto feature : X) { + cout << fixed << setprecision(1) << feature[i] << " "; } cout << y[i] << endl; } + mdlp::CPPFImdlp test = mdlp::CPPFImdlp(); + for (auto i = 0; i < attributes.size(); i++) { + cout << "Cut points for " << get<0>(attributes[i]) << endl; + cout << "--------------------------" << setprecision(3) << endl; + test.fit(X[i], y); + for (auto item : test.getCutPoints()) { + cout << item << endl; + } + } return 0; } diff --git a/p.txt b/p.txt deleted file mode 100644 index 830dabb..0000000 --- a/p.txt +++ /dev/null @@ -1,8557 +0,0 @@ -idx: 20 entropy_left: 0 entropy_right : 1.5485806065228545 -> 0 150 -idx: 21 entropy_left: 0.2761954276479391 entropy_right : 1.549829505666378 -> 0 150 -idx: 22 entropy_left: 0.5304060778306042 entropy_right : 1.5511852922535474 -> 0 150 -idx: 24 entropy_left: 0.4971501836369671 entropy_right : 1.5419822842863982 -> 0 150 -idx: 25 entropy_left: 0.6395563653739031 entropy_right : 1.5433449229510985 -> 0 150 -idx: 29 entropy_left: 0.574828144380386 entropy_right : 1.5202013991459298 -> 0 150 -idx: 30 entropy_left: 0.6746799231474564 entropy_right : 1.521677608876836 -> 0 150 -idx: 33 entropy_left: 0.6311718053929063 entropy_right : 1.4992098113026513 -> 0 150 -idx: 34 entropy_left: 0.7085966983474103 entropy_right : 1.5007111828980744 -> 0 150 -idx: 44 entropy_left: 0.5928251064639408 entropy_right : 1.3764263022492553 -> 0 150 -idx: 45 entropy_left: 0.6531791627726858 entropy_right : 1.3779796176519241 -> 0 150 -idx: 51 entropy_left: 0.5990326006132177 entropy_right : 1.2367928607774141 -> 0 150 -idx: 52 entropy_left: 0.6496096346956632 entropy_right : 1.2377158231343603 -> 0 150 -idx: 53 entropy_left: 0.6412482850735854 entropy_right : 1.2046986815511866 -> 0 150 -idx: 58 entropy_left: 0.8211258609270055 entropy_right : 1.2056112071736118 -> 0 150 -idx: 59 entropy_left: 0.8128223064150747 entropy_right : 1.167065448996099 -> 0 150 -idx: 61 entropy_left: 0.8623538561746379 entropy_right : 1.1653351793699953 -> 0 150 -idx: 62 entropy_left: 0.9353028851500502 entropy_right : 1.1687172769890006 -> 0 150 -idx: 68 entropy_left: 1.031929035599206 entropy_right : 1.1573913563403753 -> 0 150 -idx: 69 entropy_left: 1.0246284743137688 entropy_right : 1.109500797247481 -> 0 150 -idx: 70 entropy_left: 1.036186417911213 entropy_right : 1.105866621101474 -> 0 150 -idx: 71 entropy_left: 1.0895830429620594 entropy_right : 1.1104593064416028 -> 0 150 -idx: 72 entropy_left: 1.0822273380873693 entropy_right : 1.0511407586429597 -> 0 150 -idx: 74 entropy_left: 1.1015727511177442 entropy_right : 1.041722068095403 -> 0 150 -idx: 75 entropy_left: 1.1457749842070042 entropy_right : 1.0462881865460743 -> 0 150 -idx: 76 entropy_left: 1.1387129726704701 entropy_right : 0.9568886656798212 -> 0 150 -idx: 77 entropy_left: 1.1468549240968817 entropy_right : 0.9505668528932196 -> 0 150 -idx: 78 entropy_left: 1.1848333092150132 entropy_right : 0.9544340029249649 -> 0 150 -idx: 79 entropy_left: 1.1918623939938016 entropy_right : 0.9477073729342066 -> 0 150 -idx: 81 entropy_left: 1.2548698305334247 entropy_right : 0.9557589912150009 -> 0 150 -idx: 83 entropy_left: 1.2659342914094807 entropy_right : 0.9411864371816835 -> 0 150 -idx: 84 entropy_left: 1.2922669208691815 entropy_right : 0.9456603046006402 -> 0 150 -idx: 87 entropy_left: 1.3041589171425696 entropy_right : 0.9182958340544896 -> 0 150 -idx: 88 entropy_left: 1.327572716814381 entropy_right : 0.9235785996175947 -> 0 150 -idx: 89 entropy_left: 1.330465426809402 entropy_right : 0.9127341558073343 -> 0 150 -idx: 91 entropy_left: 1.3709454625942779 entropy_right : 0.9238422284571814 -> 0 150 -idx: 95 entropy_left: 1.378063041001916 entropy_right : 0.8698926856041563 -> 0 150 -idx: 97 entropy_left: 1.4115390027326744 entropy_right : 0.8835850861052532 -> 0 150 -idx: 99 entropy_left: 1.4130351465796736 entropy_right : 0.8478617451660526 -> 0 150 -idx: 101 entropy_left: 1.4412464483479606 entropy_right : 0.863120568566631 -> 0 150 -idx: 102 entropy_left: 1.4415827640191903 entropy_right : 0.8426578772022391 -> 0 150 -idx: 104 entropy_left: 1.4655411381577925 entropy_right : 0.8589810370425963 -> 0 150 -idx: 105 entropy_left: 1.465665295753282 entropy_right : 0.8366407419411673 -> 0 150 -idx: 106 entropy_left: 1.4762911618692924 entropy_right : 0.8453509366224365 -> 0 150 -idx: 107 entropy_left: 1.4762132849962355 entropy_right : 0.8203636429576732 -> 0 150 -idx: 109 entropy_left: 1.4951379218217782 entropy_right : 0.8390040613676977 -> 0 150 -idx: 110 entropy_left: 1.4949188482339508 entropy_right : 0.8112781244591328 -> 0 150 -idx: 113 entropy_left: 1.5183041104369397 entropy_right : 0.8418521897563207 -> 0 150 -idx: 114 entropy_left: 1.51802714866133 entropy_right : 0.8112781244591328 -> 0 150 -idx: 117 entropy_left: 1.5364854516368571 entropy_right : 0.8453509366224365 -> 0 150 -idx: 118 entropy_left: 1.5361890331151247 entropy_right : 0.8112781244591328 -> 0 150 -idx: 120 entropy_left: 1.5462566034163763 entropy_right : 0.8366407419411673 -> 0 150 -idx: 122 entropy_left: 1.545378825051491 entropy_right : 0.74959525725948 -> 0 150 -idx: 127 entropy_left: 1.5644893588382582 entropy_right : 0.828055725379504 -> 0 150 -idx: 130 entropy_left: 1.562956340286807 entropy_right : 0.6098403047164004 -> 0 150 -idx: 132 entropy_left: 1.5687623685201277 entropy_right : 0.6500224216483541 -> 0 150 -idx: 133 entropy_left: 1.5680951037987416 entropy_right : 0.5225593745369408 -> 0 150 -idx: 134 entropy_left: 1.5706540443736308 entropy_right : 0.5435644431995964 -> 0 150 -idx: 135 entropy_left: 1.5699201014782036 entropy_right : 0.35335933502142136 -> 0 150 -idx: 137 entropy_left: 1.5744201314186457 entropy_right : 0.39124356362925566 -> 0 150 -idx: 138 entropy_left: 1.5736921054134685 entropy_right : 0 -> 0 150 -cut: 4.9 index: 20 -start: 0 cut: 20 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.584962500721156 ent1= 0 ent2= 1.5485806065228545 -ig= 0.24285930840134884 delta= 4.5347105071798195 N 150 term 0.07835919351761322 -¡Ding! 4.9 20 -idx: 21 entropy_left: 0 entropy_right : 1.549829505666378 -> 20 150 -idx: 22 entropy_left: 1.0 entropy_right : 1.5511852922535474 -> 20 150 -idx: 24 entropy_left: 1.5 entropy_right : 1.5419822842863982 -> 20 150 -idx: 25 entropy_left: 1.5219280948873621 entropy_right : 1.5433449229510985 -> 20 150 -idx: 29 entropy_left: 1.224394445405986 entropy_right : 1.5202013991459298 -> 20 150 -idx: 30 entropy_left: 1.295461844238322 entropy_right : 1.521677608876836 -> 20 150 -idx: 33 entropy_left: 1.1401156785146092 entropy_right : 1.4992098113026513 -> 20 150 -idx: 34 entropy_left: 1.1981174211304033 entropy_right : 1.5007111828980744 -> 20 150 -idx: 44 entropy_left: 0.8886865525783176 entropy_right : 1.3764263022492553 -> 20 150 -idx: 45 entropy_left: 0.9510456605801272 entropy_right : 1.3779796176519241 -> 20 150 -idx: 51 entropy_left: 0.8346464646189744 entropy_right : 1.2367928607774141 -> 20 150 -idx: 52 entropy_left: 0.8873068828532795 entropy_right : 1.2377158231343603 -> 20 150 -idx: 53 entropy_left: 0.8710241897828374 entropy_right : 1.2046986815511866 -> 20 150 -idx: 58 entropy_left: 1.0304227640573047 entropy_right : 1.2056112071736118 -> 20 150 -idx: 59 entropy_left: 1.0178199018513787 entropy_right : 1.167065448996099 -> 20 150 -idx: 61 entropy_left: 1.0529744706120385 entropy_right : 1.1653351793699953 -> 20 150 -idx: 62 entropy_left: 1.142610782439526 entropy_right : 1.1687172769890006 -> 20 150 -idx: 68 entropy_left: 1.1872003066827859 entropy_right : 1.1573913563403753 -> 20 150 -idx: 69 entropy_left: 1.1796779956857995 entropy_right : 1.109500797247481 -> 20 150 -idx: 70 entropy_left: 1.1829661954675215 entropy_right : 1.105866621101474 -> 20 150 -idx: 71 entropy_left: 1.2449863769220126 entropy_right : 1.1104593064416028 -> 20 150 -idx: 72 entropy_left: 1.2374609054755092 entropy_right : 1.0511407586429597 -> 20 150 -idx: 74 entropy_left: 1.2411128360359944 entropy_right : 1.041722068095403 -> 20 150 -idx: 75 entropy_left: 1.2906516322752026 entropy_right : 1.0462881865460743 -> 20 150 -idx: 76 entropy_left: 1.2838868242312453 entropy_right : 0.9568886656798212 -> 20 150 -idx: 77 entropy_left: 1.2846682096460251 entropy_right : 0.9505668528932196 -> 20 150 -idx: 78 entropy_left: 1.3259416273344056 entropy_right : 0.9544340029249649 -> 20 150 -idx: 79 entropy_left: 1.325770873768619 entropy_right : 0.9477073729342066 -> 20 150 -idx: 81 entropy_left: 1.3914372992027793 entropy_right : 0.9557589912150009 -> 20 150 -idx: 83 entropy_left: 1.3888730188280565 entropy_right : 0.9411864371816835 -> 20 150 -idx: 84 entropy_left: 1.4153413978136884 entropy_right : 0.9456603046006402 -> 20 150 -idx: 87 entropy_left: 1.4080568512494867 entropy_right : 0.9182958340544896 -> 20 150 -idx: 88 entropy_left: 1.4313232568395167 entropy_right : 0.9235785996175947 -> 20 150 -idx: 89 entropy_left: 1.4281945908435036 entropy_right : 0.9127341558073343 -> 20 150 -idx: 91 entropy_left: 1.4671107315959304 entropy_right : 0.9238422284571814 -> 20 150 -idx: 95 entropy_left: 1.4523626601521826 entropy_right : 0.8698926856041563 -> 20 150 -idx: 97 entropy_left: 1.483849257492287 entropy_right : 0.8835850861052532 -> 20 150 -idx: 99 entropy_left: 1.475556263923774 entropy_right : 0.8478617451660526 -> 20 150 -idx: 101 entropy_left: 1.5012404120907166 entropy_right : 0.863120568566631 -> 20 150 -idx: 102 entropy_left: 1.497066012780834 entropy_right : 0.8426578772022391 -> 20 150 -idx: 104 entropy_left: 1.5179917001861118 entropy_right : 0.8589810370425963 -> 20 150 -idx: 105 entropy_left: 1.5139223281333773 entropy_right : 0.8366407419411673 -> 20 150 -idx: 106 entropy_left: 1.5229320406896163 entropy_right : 0.8453509366224365 -> 20 150 -idx: 107 entropy_left: 1.518850916195339 entropy_right : 0.8203636429576732 -> 20 150 -idx: 109 entropy_left: 1.5344304388132461 entropy_right : 0.8390040613676977 -> 20 150 -idx: 110 entropy_left: 1.5304930567574824 entropy_right : 0.8112781244591328 -> 20 150 -idx: 113 entropy_left: 1.5485591696772643 entropy_right : 0.8418521897563207 -> 20 150 -idx: 114 entropy_left: 1.5449263511786133 entropy_right : 0.8112781244591328 -> 20 150 -idx: 117 entropy_left: 1.5578738449782061 entropy_right : 0.8453509366224365 -> 20 150 -idx: 118 entropy_left: 1.554551861496516 entropy_right : 0.8112781244591328 -> 20 150 -idx: 120 entropy_left: 1.5609563153489605 entropy_right : 0.8366407419411673 -> 20 150 -idx: 122 entropy_left: 1.554507235050814 entropy_right : 0.74959525725948 -> 20 150 -idx: 127 entropy_left: 1.5649556310074497 entropy_right : 0.828055725379504 -> 20 150 -idx: 130 entropy_left: 1.556474260470719 entropy_right : 0.6098403047164004 -> 20 150 -idx: 132 entropy_left: 1.559164748038155 entropy_right : 0.6500224216483541 -> 20 150 -idx: 133 entropy_left: 1.556375214663463 entropy_right : 0.5225593745369408 -> 20 150 -idx: 134 entropy_left: 1.5574319619297041 entropy_right : 0.5435644431995964 -> 20 150 -idx: 135 entropy_left: 1.554665700667645 entropy_right : 0.35335933502142136 -> 20 150 -idx: 137 entropy_left: 1.5562728756453106 entropy_right : 0.39124356362925566 -> 20 150 -idx: 138 entropy_left: 1.553653448786858 entropy_right : 0 -> 20 150 -cut: 4.9 index: 21 -start: 20 cut: 21 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.5485806065228545 ent1= 0 ent2= 1.549829505666378 -ig= 0.010672866284679339 delta= 4.647602887205295 N 130 term 0.08968330878945038 -idx: 22 entropy_left: 0 entropy_right : 1.5511852922535474 -> 21 150 -idx: 24 entropy_left: 0.9182958340544896 entropy_right : 1.5419822842863982 -> 21 150 -idx: 25 entropy_left: 1.5 entropy_right : 1.5433449229510985 -> 21 150 -idx: 29 entropy_left: 1.061278124459133 entropy_right : 1.5202013991459298 -> 21 150 -idx: 30 entropy_left: 1.224394445405986 entropy_right : 1.521677608876836 -> 21 150 -idx: 33 entropy_left: 1.0408520829727552 entropy_right : 1.4992098113026513 -> 21 150 -idx: 34 entropy_left: 1.1401156785146092 entropy_right : 1.5007111828980744 -> 21 150 -idx: 44 entropy_left: 0.8076702057269436 entropy_right : 1.3764263022492553 -> 21 150 -idx: 45 entropy_left: 0.8886865525783176 entropy_right : 1.3779796176519241 -> 21 150 -idx: 51 entropy_left: 0.7703437707962479 entropy_right : 1.2367928607774141 -> 21 150 -idx: 52 entropy_left: 0.8346464646189744 entropy_right : 1.2377158231343603 -> 21 150 -idx: 53 entropy_left: 0.8180914641842123 entropy_right : 1.2046986815511866 -> 21 150 -idx: 58 entropy_left: 1.0086232677764626 entropy_right : 1.2056112071736118 -> 21 150 -idx: 59 entropy_left: 0.9952632106202363 entropy_right : 1.167065448996099 -> 21 150 -idx: 61 entropy_left: 1.0368902807106744 entropy_right : 1.1653351793699953 -> 21 150 -idx: 62 entropy_left: 1.1282468200554612 entropy_right : 1.1687172769890006 -> 21 150 -idx: 68 entropy_left: 1.1835119881802911 entropy_right : 1.1573913563403753 -> 21 150 -idx: 69 entropy_left: 1.1752835873133531 entropy_right : 1.109500797247481 -> 21 150 -idx: 70 entropy_left: 1.1796779956857995 entropy_right : 1.105866621101474 -> 21 150 -idx: 71 entropy_left: 1.2424272282706346 entropy_right : 1.1104593064416028 -> 21 150 -idx: 72 entropy_left: 1.2342496730246098 entropy_right : 1.0511407586429597 -> 21 150 -idx: 74 entropy_left: 1.23971286514401 entropy_right : 1.041722068095403 -> 21 150 -idx: 75 entropy_left: 1.2897001922180324 entropy_right : 1.0462881865460743 -> 21 150 -idx: 76 entropy_left: 1.2823527363135774 entropy_right : 0.9568886656798212 -> 21 150 -idx: 77 entropy_left: 1.2838868242312453 entropy_right : 0.9505668528932196 -> 21 150 -idx: 78 entropy_left: 1.3254539799066205 entropy_right : 0.9544340029249649 -> 21 150 -idx: 79 entropy_left: 1.3259416273344056 entropy_right : 0.9477073729342066 -> 21 150 -idx: 81 entropy_left: 1.3918884737423507 entropy_right : 0.9557589912150009 -> 21 150 -idx: 83 entropy_left: 1.3904123254348284 entropy_right : 0.9411864371816835 -> 21 150 -idx: 84 entropy_left: 1.4169128979027155 entropy_right : 0.9456603046006402 -> 21 150 -idx: 87 entropy_left: 1.410869033208931 entropy_right : 0.9182958340544896 -> 21 150 -idx: 88 entropy_left: 1.4341193292809176 entropy_right : 0.9235785996175947 -> 21 150 -idx: 89 entropy_left: 1.4313232568395167 entropy_right : 0.9127341558073343 -> 21 150 -idx: 91 entropy_left: 1.4701128093454605 entropy_right : 0.9238422284571814 -> 21 150 -idx: 95 entropy_left: 1.4564064519519933 entropy_right : 0.8698926856041563 -> 21 150 -idx: 97 entropy_left: 1.4876980378788656 entropy_right : 0.8835850861052532 -> 21 150 -idx: 99 entropy_left: 1.479795298385792 entropy_right : 0.8478617451660526 -> 21 150 -idx: 101 entropy_left: 1.5052408149441479 entropy_right : 0.863120568566631 -> 21 150 -idx: 102 entropy_left: 1.5012404120907166 entropy_right : 0.8426578772022391 -> 21 150 -idx: 104 entropy_left: 1.5218962238597613 entropy_right : 0.8589810370425963 -> 21 150 -idx: 105 entropy_left: 1.5179917001861118 entropy_right : 0.8366407419411673 -> 21 150 -idx: 106 entropy_left: 1.5268598488143097 entropy_right : 0.8453509366224365 -> 21 150 -idx: 107 entropy_left: 1.5229320406896163 entropy_right : 0.8203636429576732 -> 21 150 -idx: 109 entropy_left: 1.538221104127535 entropy_right : 0.8390040613676977 -> 21 150 -idx: 110 entropy_left: 1.5344304388132461 entropy_right : 0.8112781244591328 -> 21 150 -idx: 113 entropy_left: 1.5520475061309855 entropy_right : 0.8418521897563207 -> 21 150 -idx: 114 entropy_left: 1.5485591696772643 entropy_right : 0.8112781244591328 -> 21 150 -idx: 117 entropy_left: 1.5610533930605475 entropy_right : 0.8453509366224365 -> 21 150 -idx: 118 entropy_left: 1.5578738449782061 entropy_right : 0.8112781244591328 -> 21 150 -idx: 120 entropy_left: 1.5639799748754695 entropy_right : 0.8366407419411673 -> 21 150 -idx: 122 entropy_left: 1.5577952437611147 entropy_right : 0.74959525725948 -> 21 150 -idx: 127 entropy_left: 1.5675326407964567 entropy_right : 0.828055725379504 -> 21 150 -idx: 130 entropy_left: 1.559417592797962 entropy_right : 0.6098403047164004 -> 21 150 -idx: 132 entropy_left: 1.5618440335577457 entropy_right : 0.6500224216483541 -> 21 150 -idx: 133 entropy_left: 1.559164748038155 entropy_right : 0.5225593745369408 -> 21 150 -idx: 134 entropy_left: 1.5600931752556502 entropy_right : 0.5435644431995964 -> 21 150 -idx: 135 entropy_left: 1.5574319619297041 entropy_right : 0.35335933502142136 -> 21 150 -idx: 137 entropy_left: 1.55878993121613 entropy_right : 0.39124356362925566 -> 21 150 -idx: 138 entropy_left: 1.5562728756453106 entropy_right : 0 -> 21 150 -cut: 4.95 index: 22 -start: 21 cut: 22 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.549829505666378 ent1= 0 ent2= 1.5511852922535474 -ig= 0.01066890560084266 delta= 4.647923549536232 N 129 term 0.09029398100415684 -idx: 24 entropy_left: 0 entropy_right : 1.5419822842863982 -> 22 150 -idx: 25 entropy_left: 0.9182958340544896 entropy_right : 1.5433449229510985 -> 22 150 -idx: 29 entropy_left: 0.5916727785823275 entropy_right : 1.5202013991459298 -> 22 150 -idx: 30 entropy_left: 0.8112781244591328 entropy_right : 1.521677608876836 -> 22 150 -idx: 33 entropy_left: 0.6840384356390417 entropy_right : 1.4992098113026513 -> 22 150 -idx: 34 entropy_left: 0.8112781244591328 entropy_right : 1.5007111828980744 -> 22 150 -idx: 44 entropy_left: 0.5746356978376794 entropy_right : 1.3764263022492553 -> 22 150 -idx: 45 entropy_left: 0.6665783579949205 entropy_right : 1.3779796176519241 -> 22 150 -idx: 51 entropy_left: 0.5787946246321198 entropy_right : 1.2367928607774141 -> 22 150 -idx: 52 entropy_left: 0.6500224216483541 entropy_right : 1.2377158231343603 -> 22 150 -idx: 53 entropy_left: 0.6373874992221911 entropy_right : 1.2046986815511866 -> 22 150 -idx: 58 entropy_left: 0.8524051786494786 entropy_right : 1.2056112071736118 -> 22 150 -idx: 59 entropy_left: 0.8418521897563207 entropy_right : 1.167065448996099 -> 22 150 -idx: 61 entropy_left: 0.8904916402194913 entropy_right : 1.1653351793699953 -> 22 150 -idx: 62 entropy_left: 1.0368902807106744 entropy_right : 1.1687172769890006 -> 22 150 -idx: 68 entropy_left: 1.1009399433532026 entropy_right : 1.1573913563403753 -> 22 150 -idx: 69 entropy_left: 1.093640174154775 entropy_right : 1.109500797247481 -> 22 150 -idx: 70 entropy_left: 1.0992008221161345 entropy_right : 1.105866621101474 -> 22 150 -idx: 71 entropy_left: 1.1796779956857995 entropy_right : 1.1104593064416028 -> 22 150 -idx: 72 entropy_left: 1.1720147574921704 entropy_right : 1.0511407586429597 -> 22 150 -idx: 74 entropy_left: 1.1788990501208314 entropy_right : 1.041722068095403 -> 22 150 -idx: 75 entropy_left: 1.23971286514401 entropy_right : 1.0462881865460743 -> 22 150 -idx: 76 entropy_left: 1.2326602568158207 entropy_right : 0.9568886656798212 -> 22 150 -idx: 77 entropy_left: 1.2346487866075768 entropy_right : 0.9505668528932196 -> 22 150 -idx: 78 entropy_left: 1.2838868242312453 entropy_right : 0.9544340029249649 -> 22 150 -idx: 79 entropy_left: 1.2846682096460251 entropy_right : 0.9477073729342066 -> 22 150 -idx: 81 entropy_left: 1.3613139330585569 entropy_right : 0.9557589912150009 -> 22 150 -idx: 83 entropy_left: 1.3600340979407453 entropy_right : 0.9411864371816835 -> 22 150 -idx: 84 entropy_left: 1.3904123254348284 entropy_right : 0.9456603046006402 -> 22 150 -idx: 87 entropy_left: 1.3844579647165822 entropy_right : 0.9182958340544896 -> 22 150 -idx: 88 entropy_left: 1.410869033208931 entropy_right : 0.9235785996175947 -> 22 150 -idx: 89 entropy_left: 1.4080568512494867 entropy_right : 0.9127341558073343 -> 22 150 -idx: 91 entropy_left: 1.4518947803168825 entropy_right : 0.9238422284571814 -> 22 150 -idx: 95 entropy_left: 1.4378929868805908 entropy_right : 0.8698926856041563 -> 22 150 -idx: 97 entropy_left: 1.472935039619369 entropy_right : 0.8835850861052532 -> 22 150 -idx: 99 entropy_left: 1.4648232488769368 entropy_right : 0.8478617451660526 -> 22 150 -idx: 101 entropy_left: 1.4932162877956365 entropy_right : 0.863120568566631 -> 22 150 -idx: 102 entropy_left: 1.4890907595250464 entropy_right : 0.8426578772022391 -> 22 150 -idx: 104 entropy_left: 1.5121371519329765 entropy_right : 0.8589810370425963 -> 22 150 -idx: 105 entropy_left: 1.508093739822507 entropy_right : 0.8366407419411673 -> 22 150 -idx: 106 entropy_left: 1.5179917001861118 entropy_right : 0.8453509366224365 -> 22 150 -idx: 107 entropy_left: 1.5139223281333773 entropy_right : 0.8203636429576732 -> 22 150 -idx: 109 entropy_left: 1.5310057241873496 entropy_right : 0.8390040613676977 -> 22 150 -idx: 110 entropy_left: 1.5270676736451225 entropy_right : 0.8112781244591328 -> 22 150 -idx: 113 entropy_left: 1.5468616730129405 entropy_right : 0.8418521897563207 -> 22 150 -idx: 114 entropy_left: 1.5432213335160283 entropy_right : 0.8112781244591328 -> 22 150 -idx: 117 entropy_left: 1.5574319619297041 entropy_right : 0.8453509366224365 -> 22 150 -idx: 118 entropy_left: 1.5541004715340199 entropy_right : 0.8112781244591328 -> 22 150 -idx: 120 entropy_left: 1.5611556337477528 entropy_right : 0.8366407419411673 -> 22 150 -idx: 122 entropy_left: 1.5546755409861306 entropy_right : 0.74959525725948 -> 22 150 -idx: 127 entropy_left: 1.566282638423782 entropy_right : 0.828055725379504 -> 22 150 -idx: 130 entropy_left: 1.5577526146923748 entropy_right : 0.6098403047164004 -> 22 150 -idx: 132 entropy_left: 1.5607751276211168 entropy_right : 0.6500224216483541 -> 22 150 -idx: 133 entropy_left: 1.5579642402274387 entropy_right : 0.5225593745369408 -> 22 150 -idx: 134 entropy_left: 1.559164748038155 entropy_right : 0.5435644431995964 -> 22 150 -idx: 135 entropy_left: 1.556375214663463 entropy_right : 0.35335933502142136 -> 22 150 -idx: 137 entropy_left: 1.558231855890965 entropy_right : 0.39124356362925566 -> 22 150 -idx: 138 entropy_left: 1.5555906954881595 entropy_right : 0 -> 22 150 -cut: 5.0 index: 24 -start: 22 cut: 24 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.5511852922535474 ent1= 0 ent2= 1.5419822842863982 -ig= 0.033296481159124314 delta= 4.616247165873277 N 128 term 0.09066353009879252 -idx: 25 entropy_left: 0 entropy_right : 1.5433449229510985 -> 24 150 -idx: 29 entropy_left: 0.7219280948873623 entropy_right : 1.5202013991459298 -> 24 150 -idx: 30 entropy_left: 0.9182958340544896 entropy_right : 1.521677608876836 -> 24 150 -idx: 33 entropy_left: 0.7642045065086203 entropy_right : 1.4992098113026513 -> 24 150 -idx: 34 entropy_left: 0.8812908992306927 entropy_right : 1.5007111828980744 -> 24 150 -idx: 44 entropy_left: 0.6098403047164004 entropy_right : 1.3764263022492553 -> 24 150 -idx: 45 entropy_left: 0.7024665512903903 entropy_right : 1.3779796176519241 -> 24 150 -idx: 51 entropy_left: 0.6051865766334206 entropy_right : 1.2367928607774141 -> 24 150 -idx: 52 entropy_left: 0.676941869780886 entropy_right : 1.2377158231343603 -> 24 150 -idx: 53 entropy_left: 0.6631968402398287 entropy_right : 1.2046986815511866 -> 24 150 -idx: 58 entropy_left: 0.8739810481273578 entropy_right : 1.2056112071736118 -> 24 150 -idx: 59 entropy_left: 0.863120568566631 entropy_right : 1.167065448996099 -> 24 150 -idx: 61 entropy_left: 0.9090221560878149 entropy_right : 1.1653351793699953 -> 24 150 -idx: 62 entropy_left: 1.0606655462587962 entropy_right : 1.1687172769890006 -> 24 150 -idx: 68 entropy_left: 1.1149985556752577 entropy_right : 1.1573913563403753 -> 24 150 -idx: 69 entropy_left: 1.1080734808267854 entropy_right : 1.109500797247481 -> 24 150 -idx: 70 entropy_left: 1.1122129250331756 entropy_right : 1.105866621101474 -> 24 150 -idx: 71 entropy_left: 1.194545119186222 entropy_right : 1.1104593064416028 -> 24 150 -idx: 72 entropy_left: 1.1872003066827859 entropy_right : 1.0511407586429597 -> 24 150 -idx: 74 entropy_left: 1.1914436210393724 entropy_right : 1.041722068095403 -> 24 150 -idx: 75 entropy_left: 1.2532975784630431 entropy_right : 1.0462881865460743 -> 24 150 -idx: 76 entropy_left: 1.2466033489462778 entropy_right : 0.9568886656798212 -> 24 150 -idx: 77 entropy_left: 1.2473860973972195 entropy_right : 0.9505668528932196 -> 24 150 -idx: 78 entropy_left: 1.297231327577664 entropy_right : 0.9544340029249649 -> 24 150 -idx: 79 entropy_left: 1.2968531170351285 entropy_right : 0.9477073729342066 -> 24 150 -idx: 81 entropy_left: 1.3739840876515639 entropy_right : 0.9557589912150009 -> 24 150 -idx: 83 entropy_left: 1.3705732601023841 entropy_right : 0.9411864371816835 -> 24 150 -idx: 84 entropy_left: 1.4009934786687808 entropy_right : 0.9456603046006402 -> 24 150 -idx: 87 entropy_left: 1.3921472236645345 entropy_right : 0.9182958340544896 -> 24 150 -idx: 88 entropy_left: 1.4185644431995963 entropy_right : 0.9235785996175947 -> 24 150 -idx: 89 entropy_left: 1.4148695564698006 entropy_right : 0.9127341558073343 -> 24 150 -idx: 91 entropy_left: 1.4585269870967856 entropy_right : 0.9238422284571814 -> 24 150 -idx: 95 entropy_left: 1.4414340954861538 entropy_right : 0.8698926856041563 -> 24 150 -idx: 97 entropy_left: 1.4762561511389796 entropy_right : 0.8835850861052532 -> 24 150 -idx: 99 entropy_left: 1.4668134449046726 entropy_right : 0.8478617451660526 -> 24 150 -idx: 101 entropy_left: 1.4949188482339508 entropy_right : 0.863120568566631 -> 24 150 -idx: 102 entropy_left: 1.4901944396527276 entropy_right : 0.8426578772022391 -> 24 150 -idx: 104 entropy_left: 1.5128876215181606 entropy_right : 0.8589810370425963 -> 24 150 -idx: 105 entropy_left: 1.5082979986144511 entropy_right : 0.8366407419411673 -> 24 150 -idx: 106 entropy_left: 1.5180083381895495 entropy_right : 0.8453509366224365 -> 24 150 -idx: 107 entropy_left: 1.5134243514707206 entropy_right : 0.8203636429576732 -> 24 150 -idx: 109 entropy_left: 1.530122629268322 entropy_right : 0.8390040613676977 -> 24 150 -idx: 110 entropy_left: 1.5257153697175778 entropy_right : 0.8112781244591328 -> 24 150 -idx: 113 entropy_left: 1.54490062239043 entropy_right : 0.8418521897563207 -> 24 150 -idx: 114 entropy_left: 1.5408469049615863 entropy_right : 0.8112781244591328 -> 24 150 -idx: 117 entropy_left: 1.5544333664039933 entropy_right : 0.8453509366224365 -> 24 150 -idx: 118 entropy_left: 1.5507380564508026 entropy_right : 0.8112781244591328 -> 24 150 -idx: 120 entropy_left: 1.557384036498573 entropy_right : 0.8366407419411673 -> 24 150 -idx: 122 entropy_left: 1.5502477540313635 entropy_right : 0.74959525725948 -> 24 150 -idx: 127 entropy_left: 1.5609148740783336 entropy_right : 0.828055725379504 -> 24 150 -idx: 130 entropy_left: 1.5516017017685246 entropy_right : 0.6098403047164004 -> 24 150 -idx: 132 entropy_left: 1.5542993132861813 entropy_right : 0.6500224216483541 -> 24 150 -idx: 133 entropy_left: 1.551254504144143 entropy_right : 0.5225593745369408 -> 24 150 -idx: 134 entropy_left: 1.552300445892517 entropy_right : 0.5435644431995964 -> 24 150 -idx: 135 entropy_left: 1.5492893488248605 entropy_right : 0.35335933502142136 -> 24 150 -idx: 137 entropy_left: 1.5508523041806783 entropy_right : 0.39124356362925566 -> 24 150 -idx: 138 entropy_left: 1.5480084816425554 entropy_right : 0 -> 24 150 -cut: 5.0 index: 25 -start: 24 cut: 25 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.5419822842863982 ent1= 0 ent2= 1.5433449229510985 -ig= 0.010886130565070262 delta= 4.6479441057688256 N 126 term 0.09217244754310248 -idx: 29 entropy_left: 0 entropy_right : 1.5202013991459298 -> 25 150 -idx: 30 entropy_left: 0.7219280948873623 entropy_right : 1.521677608876836 -> 25 150 -idx: 33 entropy_left: 0.5435644431995964 entropy_right : 1.4992098113026513 -> 25 150 -idx: 34 entropy_left: 0.7642045065086203 entropy_right : 1.5007111828980744 -> 25 150 -idx: 44 entropy_left: 0.4854607607459134 entropy_right : 1.3764263022492553 -> 25 150 -idx: 45 entropy_left: 0.6098403047164004 entropy_right : 1.3779796176519241 -> 25 150 -idx: 51 entropy_left: 0.5159469300074474 entropy_right : 1.2367928607774141 -> 25 150 -idx: 52 entropy_left: 0.6051865766334206 entropy_right : 1.2377158231343603 -> 25 150 -idx: 53 entropy_left: 0.5916727785823275 entropy_right : 1.2046986815511866 -> 25 150 -idx: 58 entropy_left: 0.8453509366224365 entropy_right : 1.2056112071736118 -> 25 150 -idx: 59 entropy_left: 0.833764907210665 entropy_right : 1.167065448996099 -> 25 150 -idx: 61 entropy_left: 0.8879763195151351 entropy_right : 1.1653351793699953 -> 25 150 -idx: 62 entropy_left: 1.043233026456561 entropy_right : 1.1687172769890006 -> 25 150 -idx: 68 entropy_left: 1.1103746838736357 entropy_right : 1.1573913563403753 -> 25 150 -idx: 69 entropy_left: 1.102652051070839 entropy_right : 1.109500797247481 -> 25 150 -idx: 70 entropy_left: 1.1080734808267854 entropy_right : 1.105866621101474 -> 25 150 -idx: 71 entropy_left: 1.191603636543317 entropy_right : 1.1104593064416028 -> 25 150 -idx: 72 entropy_left: 1.1835119881802911 entropy_right : 1.0511407586429597 -> 25 150 -idx: 74 entropy_left: 1.1898011817445777 entropy_right : 1.041722068095403 -> 25 150 -idx: 75 entropy_left: 1.2523479506082373 entropy_right : 1.0462881865460743 -> 25 150 -idx: 76 entropy_left: 1.2449863769220126 entropy_right : 0.9568886656798212 -> 25 150 -idx: 77 entropy_left: 1.2466033489462778 entropy_right : 0.9505668528932196 -> 25 150 -idx: 78 entropy_left: 1.2968901961487296 entropy_right : 0.9544340029249649 -> 25 150 -idx: 79 entropy_left: 1.297231327577664 entropy_right : 0.9477073729342066 -> 25 150 -idx: 81 entropy_left: 1.3747976286297399 entropy_right : 0.9557589912150009 -> 25 150 -idx: 83 entropy_left: 1.3725531875543378 entropy_right : 0.9411864371816835 -> 25 150 -idx: 84 entropy_left: 1.4030409766614365 entropy_right : 0.9456603046006402 -> 25 150 -idx: 87 entropy_left: 1.3954965550573624 entropy_right : 0.9182958340544896 -> 25 150 -idx: 88 entropy_left: 1.4219164254677488 entropy_right : 0.9235785996175947 -> 25 150 -idx: 89 entropy_left: 1.4185644431995963 entropy_right : 0.9127341558073343 -> 25 150 -idx: 91 entropy_left: 1.4621038680842193 entropy_right : 0.9238422284571814 -> 25 150 -idx: 95 entropy_left: 1.4460656059951589 entropy_right : 0.8698926856041563 -> 25 150 -idx: 97 entropy_left: 1.4806821149663847 entropy_right : 0.8835850861052532 -> 25 150 -idx: 99 entropy_left: 1.4716260084832968 entropy_right : 0.8478617451660526 -> 25 150 -idx: 101 entropy_left: 1.4994716801681787 entropy_right : 0.863120568566631 -> 25 150 -idx: 102 entropy_left: 1.4949188482339508 entropy_right : 0.8426578772022391 -> 25 150 -idx: 104 entropy_left: 1.5173143758899288 entropy_right : 0.8589810370425963 -> 25 150 -idx: 105 entropy_left: 1.5128876215181606 entropy_right : 0.8366407419411673 -> 25 150 -idx: 106 entropy_left: 1.5224412847266997 entropy_right : 0.8453509366224365 -> 25 150 -idx: 107 entropy_left: 1.5180083381895495 entropy_right : 0.8203636429576732 -> 25 150 -idx: 109 entropy_left: 1.5343848620488534 entropy_right : 0.8390040613676977 -> 25 150 -idx: 110 entropy_left: 1.530122629268322 entropy_right : 0.8112781244591328 -> 25 150 -idx: 113 entropy_left: 1.5488102670635506 entropy_right : 0.8418521897563207 -> 25 150 -idx: 114 entropy_left: 1.54490062239043 entropy_right : 0.8112781244591328 -> 25 150 -idx: 117 entropy_left: 1.5579855528221356 entropy_right : 0.8453509366224365 -> 25 150 -idx: 118 entropy_left: 1.5544333664039933 entropy_right : 0.8112781244591328 -> 25 150 -idx: 120 entropy_left: 1.5607500907359895 entropy_right : 0.8366407419411673 -> 25 150 -idx: 122 entropy_left: 1.553879521231102 entropy_right : 0.74959525725948 -> 25 150 -idx: 127 entropy_left: 1.563765836340899 entropy_right : 0.828055725379504 -> 25 150 -idx: 130 entropy_left: 1.5548233543094725 entropy_right : 0.6098403047164004 -> 25 150 -idx: 132 entropy_left: 1.557232745700588 entropy_right : 0.6500224216483541 -> 25 150 -idx: 133 entropy_left: 1.5542993132861813 entropy_right : 0.5225593745369408 -> 25 150 -idx: 134 entropy_left: 1.5552054863428957 entropy_right : 0.5435644431995964 -> 25 150 -idx: 135 entropy_left: 1.552300445892517 entropy_right : 0.35335933502142136 -> 25 150 -idx: 137 entropy_left: 1.5535925258546306 entropy_right : 0.39124356362925566 -> 25 150 -idx: 138 entropy_left: 1.5508523041806783 entropy_right : 0 -> 25 150 -cut: 5.0 index: 29 -start: 25 cut: 29 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.5433449229510985 ent1= 0 ent2= 1.5202013991459298 -ig= 0.07178996857783848 delta= 4.574425618359218 N 125 term 0.09222897542996876 -idx: 30 entropy_left: 0 entropy_right : 1.521677608876836 -> 29 150 -idx: 33 entropy_left: 0.8112781244591328 entropy_right : 1.4992098113026513 -> 29 150 -idx: 34 entropy_left: 0.9709505944546686 entropy_right : 1.5007111828980744 -> 29 150 -idx: 44 entropy_left: 0.5665095065529053 entropy_right : 1.3764263022492553 -> 29 150 -idx: 45 entropy_left: 0.6962122601251458 entropy_right : 1.3779796176519241 -> 29 150 -idx: 51 entropy_left: 0.5746356978376794 entropy_right : 1.2367928607774141 -> 29 150 -idx: 52 entropy_left: 0.6665783579949205 entropy_right : 1.2377158231343603 -> 29 150 -idx: 53 entropy_left: 0.6500224216483541 entropy_right : 1.2046986815511866 -> 29 150 -idx: 58 entropy_left: 0.8935711016541907 entropy_right : 1.2056112071736118 -> 29 150 -idx: 59 entropy_left: 0.8812908992306927 entropy_right : 1.167065448996099 -> 29 150 -idx: 61 entropy_left: 0.9283620723948678 entropy_right : 1.1653351793699953 -> 29 150 -idx: 62 entropy_left: 1.096139159256507 entropy_right : 1.1687172769890006 -> 29 150 -idx: 68 entropy_left: 1.1385936501543064 entropy_right : 1.1573913563403753 -> 29 150 -idx: 69 entropy_left: 1.1320689971054545 entropy_right : 1.109500797247481 -> 29 150 -idx: 70 entropy_left: 1.1339874769112017 entropy_right : 1.105866621101474 -> 29 150 -idx: 71 entropy_left: 1.221694907636328 entropy_right : 1.1104593064416028 -> 29 150 -idx: 72 entropy_left: 1.2146234752771463 entropy_right : 1.0511407586429597 -> 29 150 -idx: 74 entropy_left: 1.2145089432839293 entropy_right : 1.041722068095403 -> 29 150 -idx: 75 entropy_left: 1.2793146867260998 entropy_right : 1.0462881865460743 -> 29 150 -idx: 76 entropy_left: 1.2730452470559679 entropy_right : 0.9568886656798212 -> 29 150 -idx: 77 entropy_left: 1.271782221599798 entropy_right : 0.9505668528932196 -> 29 150 -idx: 78 entropy_left: 1.323326866652724 entropy_right : 0.9544340029249649 -> 29 150 -idx: 79 entropy_left: 1.3209242772281589 entropy_right : 0.9477073729342066 -> 29 150 -idx: 81 entropy_left: 1.3993556675323378 entropy_right : 0.9557589912150009 -> 29 150 -idx: 83 entropy_left: 1.3921472236645345 entropy_right : 0.9411864371816835 -> 29 150 -idx: 84 entropy_left: 1.4226381773606827 entropy_right : 0.9456603046006402 -> 29 150 -idx: 87 entropy_left: 1.408454322194389 entropy_right : 0.9182958340544896 -> 29 150 -idx: 88 entropy_left: 1.4348284294343598 entropy_right : 0.9235785996175947 -> 29 150 -idx: 89 entropy_left: 1.4294732983598406 entropy_right : 0.9127341558073343 -> 29 150 -idx: 91 entropy_left: 1.4725137493579352 entropy_right : 0.9238422284571814 -> 29 150 -idx: 95 entropy_left: 1.4495701653254023 entropy_right : 0.8698926856041563 -> 29 150 -idx: 97 entropy_left: 1.4836591643979629 entropy_right : 0.8835850861052532 -> 29 150 -idx: 99 entropy_left: 1.4716774936810642 entropy_right : 0.8478617451660526 -> 29 150 -idx: 101 entropy_left: 1.498872146878066 entropy_right : 0.863120568566631 -> 29 150 -idx: 102 entropy_left: 1.4930166887541538 entropy_right : 0.8426578772022391 -> 29 150 -idx: 104 entropy_left: 1.5146319490241265 entropy_right : 0.8589810370425963 -> 29 150 -idx: 105 entropy_left: 1.5090275125326515 entropy_right : 0.8366407419411673 -> 29 150 -idx: 106 entropy_left: 1.518172665753515 entropy_right : 0.8453509366224365 -> 29 150 -idx: 107 entropy_left: 1.5126362849284707 entropy_right : 0.8203636429576732 -> 29 150 -idx: 109 entropy_left: 1.5281843786247746 entropy_right : 0.8390040613676977 -> 29 150 -idx: 110 entropy_left: 1.52292446851929 entropy_right : 0.8112781244591328 -> 29 150 -idx: 113 entropy_left: 1.540319313990849 entropy_right : 0.8418521897563207 -> 29 150 -idx: 114 entropy_left: 1.5355405577499845 entropy_right : 0.8112781244591328 -> 29 150 -idx: 117 entropy_left: 1.5473158084406657 entropy_right : 0.8453509366224365 -> 29 150 -idx: 118 entropy_left: 1.543007267402686 entropy_right : 0.8112781244591328 -> 29 150 -idx: 120 entropy_left: 1.5484739108446754 entropy_right : 0.8366407419411673 -> 29 150 -idx: 122 entropy_left: 1.5402513451679312 entropy_right : 0.74959525725948 -> 29 150 -idx: 127 entropy_left: 1.5482156423395383 entropy_right : 0.828055725379504 -> 29 150 -idx: 130 entropy_left: 1.5376917861959223 entropy_right : 0.6098403047164004 -> 29 150 -idx: 132 entropy_left: 1.539449789759387 entropy_right : 0.6500224216483541 -> 29 150 -idx: 133 entropy_left: 1.5360485008483817 entropy_right : 0.5225593745369408 -> 29 150 -idx: 134 entropy_left: 1.5366468930089403 entropy_right : 0.5435644431995964 -> 29 150 -idx: 135 entropy_left: 1.5333008164572508 entropy_right : 0.35335933502142136 -> 29 150 -idx: 137 entropy_left: 1.5340120338817291 entropy_right : 0.39124356362925566 -> 29 150 -idx: 138 entropy_left: 1.530871713949455 entropy_right : 0 -> 29 150 -cut: 5.0 index: 30 -start: 29 cut: 30 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.5202013991459298 ent1= 0 ent2= 1.521677608876836 -ig= 0.011099638276340196 delta= 4.6482848189674435 N 121 term 0.09549731747583441 -idx: 33 entropy_left: 0 entropy_right : 1.4992098113026513 -> 30 150 -idx: 34 entropy_left: 0.8112781244591328 entropy_right : 1.5007111828980744 -> 30 150 -idx: 44 entropy_left: 0.37123232664087563 entropy_right : 1.3764263022492553 -> 30 150 -idx: 45 entropy_left: 0.5665095065529053 entropy_right : 1.3779796176519241 -> 30 150 -idx: 51 entropy_left: 0.4537163391869448 entropy_right : 1.2367928607774141 -> 30 150 -idx: 52 entropy_left: 0.5746356978376794 entropy_right : 1.2377158231343603 -> 30 150 -idx: 53 entropy_left: 0.5586293734521992 entropy_right : 1.2046986815511866 -> 30 150 -idx: 58 entropy_left: 0.863120568566631 entropy_right : 1.2056112071736118 -> 30 150 -idx: 59 entropy_left: 0.8497511372532974 entropy_right : 1.167065448996099 -> 30 150 -idx: 61 entropy_left: 0.907165767573082 entropy_right : 1.1653351793699953 -> 30 150 -idx: 62 entropy_left: 1.079439161649138 entropy_right : 1.1687172769890006 -> 30 150 -idx: 68 entropy_left: 1.1363836745395337 entropy_right : 1.1573913563403753 -> 30 150 -idx: 69 entropy_left: 1.1287997673232602 entropy_right : 1.109500797247481 -> 30 150 -idx: 70 entropy_left: 1.1320689971054545 entropy_right : 1.105866621101474 -> 30 150 -idx: 71 entropy_left: 1.221104104343052 entropy_right : 1.1104593064416028 -> 30 150 -idx: 72 entropy_left: 1.2130604396700206 entropy_right : 1.0511407586429597 -> 30 150 -idx: 74 entropy_left: 1.215055533529583 entropy_right : 1.041722068095403 -> 30 150 -idx: 75 entropy_left: 1.2805767575096105 entropy_right : 1.0462881865460743 -> 30 150 -idx: 76 entropy_left: 1.273461732689636 entropy_right : 0.9568886656798212 -> 30 150 -idx: 77 entropy_left: 1.2730452470559679 entropy_right : 0.9505668528932196 -> 30 150 -idx: 78 entropy_left: 1.3250112108241772 entropy_right : 0.9544340029249649 -> 30 150 -idx: 79 entropy_left: 1.323326866652724 entropy_right : 0.9477073729342066 -> 30 150 -idx: 81 entropy_left: 1.402081402756032 entropy_right : 0.9557589912150009 -> 30 150 -idx: 83 entropy_left: 1.3960185675642185 entropy_right : 0.9411864371816835 -> 30 150 -idx: 84 entropy_left: 1.4265076973297228 entropy_right : 0.9456603046006402 -> 30 150 -idx: 87 entropy_left: 1.4135563800703668 entropy_right : 0.9182958340544896 -> 30 150 -idx: 88 entropy_left: 1.4398683625590178 entropy_right : 0.9235785996175947 -> 30 150 -idx: 89 entropy_left: 1.4348284294343598 entropy_right : 0.9127341558073343 -> 30 150 -idx: 91 entropy_left: 1.4776169519137876 entropy_right : 0.9238422284571814 -> 30 150 -idx: 95 entropy_left: 1.4556221732103853 entropy_right : 0.8698926856041563 -> 30 150 -idx: 97 entropy_left: 1.489391643473373 entropy_right : 0.8835850861052532 -> 30 150 -idx: 99 entropy_left: 1.4777468341000446 entropy_right : 0.8478617451660526 -> 30 150 -idx: 101 entropy_left: 1.504577050984356 entropy_right : 0.863120568566631 -> 30 150 -idx: 102 entropy_left: 1.498872146878066 entropy_right : 0.8426578772022391 -> 30 150 -idx: 104 entropy_left: 1.5200907086043647 entropy_right : 0.8589810370425963 -> 30 150 -idx: 105 entropy_left: 1.5146319490241265 entropy_right : 0.8366407419411673 -> 30 150 -idx: 106 entropy_left: 1.5235739093430942 entropy_right : 0.8453509366224365 -> 30 150 -idx: 107 entropy_left: 1.518172665753515 entropy_right : 0.8203636429576732 -> 30 150 -idx: 109 entropy_left: 1.5333121048269875 entropy_right : 0.8390040613676977 -> 30 150 -idx: 110 entropy_left: 1.5281843786247746 entropy_right : 0.8112781244591328 -> 30 150 -idx: 113 entropy_left: 1.544962682484281 entropy_right : 0.8418521897563207 -> 30 150 -idx: 114 entropy_left: 1.540319313990849 entropy_right : 0.8112781244591328 -> 30 150 -idx: 117 entropy_left: 1.551486596164451 entropy_right : 0.8453509366224365 -> 30 150 -idx: 118 entropy_left: 1.5473158084406657 entropy_right : 0.8112781244591328 -> 30 150 -idx: 120 entropy_left: 1.5523892173146852 entropy_right : 0.8366407419411673 -> 30 150 -idx: 122 entropy_left: 1.5444239694802433 entropy_right : 0.74959525725948 -> 30 150 -idx: 127 entropy_left: 1.5514723039742495 entropy_right : 0.828055725379504 -> 30 150 -idx: 130 entropy_left: 1.5413152774012366 entropy_right : 0.6098403047164004 -> 30 150 -idx: 132 entropy_left: 1.5427407553061978 entropy_right : 0.6500224216483541 -> 30 150 -idx: 133 entropy_left: 1.539449789759387 entropy_right : 0.5225593745369408 -> 30 150 -idx: 134 entropy_left: 1.5398878436678525 entropy_right : 0.5435644431995964 -> 30 150 -idx: 135 entropy_left: 1.5366468930089403 entropy_right : 0.35335933502142136 -> 30 150 -idx: 137 entropy_left: 1.5370490001936568 entropy_right : 0.39124356362925566 -> 30 150 -idx: 138 entropy_left: 1.5340120338817291 entropy_right : 0 -> 30 150 -cut: 5.1 index: 33 -start: 30 cut: 33 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.521677608876836 ent1= 0 ent2= 1.4992098113026513 -ig= 0.05994804285675093 delta= 4.57645279705217 N 120 term 0.09559392133633429 -idx: 34 entropy_left: 0 entropy_right : 1.5007111828980744 -> 33 150 -idx: 44 entropy_left: 0.4394969869215134 entropy_right : 1.3764263022492553 -> 33 150 -idx: 45 entropy_left: 0.6500224216483541 entropy_right : 1.3779796176519241 -> 33 150 -idx: 51 entropy_left: 0.5032583347756457 entropy_right : 1.2367928607774141 -> 33 150 -idx: 52 entropy_left: 0.6292492238560345 entropy_right : 1.2377158231343603 -> 33 150 -idx: 53 entropy_left: 0.6098403047164004 entropy_right : 1.2046986815511866 -> 33 150 -idx: 58 entropy_left: 0.904381457724494 entropy_right : 1.2056112071736118 -> 33 150 -idx: 59 entropy_left: 0.8904916402194913 entropy_right : 1.167065448996099 -> 33 150 -idx: 61 entropy_left: 0.9402859586706309 entropy_right : 1.1653351793699953 -> 33 150 -idx: 62 entropy_left: 1.1242592373746325 entropy_right : 1.1687172769890006 -> 33 150 -idx: 68 entropy_left: 1.1561787304889202 entropy_right : 1.1573913563403753 -> 33 150 -idx: 69 entropy_left: 1.1501854804581977 entropy_right : 1.109500797247481 -> 33 150 -idx: 70 entropy_left: 1.1500617154483042 entropy_right : 1.105866621101474 -> 33 150 -idx: 71 entropy_left: 1.2427303803729568 entropy_right : 1.1104593064416028 -> 33 150 -idx: 72 entropy_left: 1.236032213759607 entropy_right : 1.0511407586429597 -> 33 150 -idx: 74 entropy_left: 1.2319621350284407 entropy_right : 1.041722068095403 -> 33 150 -idx: 75 entropy_left: 1.2993633238421214 entropy_right : 1.0462881865460743 -> 33 150 -idx: 76 entropy_left: 1.2936094957266198 entropy_right : 0.9568886656798212 -> 33 150 -idx: 77 entropy_left: 1.2905199077676452 entropy_right : 0.9505668528932196 -> 33 150 -idx: 78 entropy_left: 1.3434702568607588 entropy_right : 0.9544340029249649 -> 33 150 -idx: 79 entropy_left: 1.3392721352590145 entropy_right : 0.9477073729342066 -> 33 150 -idx: 81 entropy_left: 1.4185644431995963 entropy_right : 0.9557589912150009 -> 33 150 -idx: 83 entropy_left: 1.4080488723348807 entropy_right : 0.9411864371816835 -> 33 150 -idx: 84 entropy_left: 1.4384630807544665 entropy_right : 0.9456603046006402 -> 33 150 -idx: 87 entropy_left: 1.4196730020815134 entropy_right : 0.9182958340544896 -> 33 150 -idx: 88 entropy_left: 1.4459033762515259 entropy_right : 0.9235785996175947 -> 33 150 -idx: 89 entropy_left: 1.4391294142581823 entropy_right : 0.9127341558073343 -> 33 150 -idx: 91 entropy_left: 1.4814308333061716 entropy_right : 0.9238422284571814 -> 33 150 -idx: 95 entropy_left: 1.4535828837865412 entropy_right : 0.8698926856041563 -> 33 150 -idx: 97 entropy_left: 1.4869015389218596 entropy_right : 0.8835850861052532 -> 33 150 -idx: 99 entropy_left: 1.47283015230032 entropy_right : 0.8478617451660526 -> 33 150 -idx: 101 entropy_left: 1.4991298893975544 entropy_right : 0.863120568566631 -> 33 150 -idx: 102 entropy_left: 1.4923596540293003 entropy_right : 0.8426578772022391 -> 33 150 -idx: 104 entropy_left: 1.5129527183657314 entropy_right : 0.8589810370425963 -> 33 150 -idx: 105 entropy_left: 1.5065420643391485 entropy_right : 0.8366407419411673 -> 33 150 -idx: 106 entropy_left: 1.5151610003501055 entropy_right : 0.8453509366224365 -> 33 150 -idx: 107 entropy_left: 1.5088745246622877 entropy_right : 0.8203636429576732 -> 33 150 -idx: 109 entropy_left: 1.5233671360000942 entropy_right : 0.8390040613676977 -> 33 150 -idx: 110 entropy_left: 1.5174480580708334 entropy_right : 0.8112781244591328 -> 33 150 -idx: 113 entropy_left: 1.5332288946792918 entropy_right : 0.8418521897563207 -> 33 150 -idx: 114 entropy_left: 1.5279067065978253 entropy_right : 0.8112781244591328 -> 33 150 -idx: 117 entropy_left: 1.538075564045685 entropy_right : 0.8453509366224365 -> 33 150 -idx: 118 entropy_left: 1.5333232048629988 entropy_right : 0.8112781244591328 -> 33 150 -idx: 120 entropy_left: 1.5377559674303916 entropy_right : 0.8366407419411673 -> 33 150 -idx: 122 entropy_left: 1.5287642104483186 entropy_right : 0.74959525725948 -> 33 150 -idx: 127 entropy_left: 1.5343941913830057 entropy_right : 0.828055725379504 -> 33 150 -idx: 130 entropy_left: 1.523071016430478 entropy_right : 0.6098403047164004 -> 33 150 -idx: 132 entropy_left: 1.5240294109795434 entropy_right : 0.6500224216483541 -> 33 150 -idx: 133 entropy_left: 1.520398271617716 entropy_right : 0.5225593745369408 -> 33 150 -idx: 134 entropy_left: 1.5206178114026545 entropy_right : 0.5435644431995964 -> 33 150 -idx: 135 entropy_left: 1.5170584650102175 entropy_right : 0.35335933502142136 -> 33 150 -idx: 137 entropy_left: 1.5170523105906335 entropy_right : 0.39124356362925566 -> 33 150 -idx: 138 entropy_left: 1.5137301230425602 entropy_right : 0 -> 33 150 -cut: 5.1 index: 34 -start: 33 cut: 34 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.4992098113026513 ent1= 0 ent2= 1.5007111828980744 -ig= 0.011325219711397994 delta= 4.648360304560994 N 117 term 0.0983447974332356 -idx: 44 entropy_left: 0 entropy_right : 1.3764263022492553 -> 34 150 -idx: 45 entropy_left: 0.4394969869215134 entropy_right : 1.3779796176519241 -> 34 150 -idx: 51 entropy_left: 0.3227569588973983 entropy_right : 1.2367928607774141 -> 34 150 -idx: 52 entropy_left: 0.5032583347756457 entropy_right : 1.2377158231343603 -> 34 150 -idx: 53 entropy_left: 0.4854607607459134 entropy_right : 1.2046986815511866 -> 34 150 -idx: 58 entropy_left: 0.8708644692353646 entropy_right : 1.2056112071736118 -> 34 150 -idx: 59 entropy_left: 0.8554508105601307 entropy_right : 1.167065448996099 -> 34 150 -idx: 61 entropy_left: 0.9182958340544896 entropy_right : 1.1653351793699953 -> 34 150 -idx: 62 entropy_left: 1.107784384952517 entropy_right : 1.1687172769890006 -> 34 150 -idx: 68 entropy_left: 1.1562272836006513 entropy_right : 1.1573913563403753 -> 34 150 -idx: 69 entropy_left: 1.1488835401005122 entropy_right : 1.109500797247481 -> 34 150 -idx: 70 entropy_left: 1.1501854804581977 entropy_right : 1.105866621101474 -> 34 150 -idx: 71 entropy_left: 1.2443013992660275 entropy_right : 1.1104593064416028 -> 34 150 -idx: 72 entropy_left: 1.2363864108712896 entropy_right : 1.0511407586429597 -> 34 150 -idx: 74 entropy_left: 1.2344977967946407 entropy_right : 1.041722068095403 -> 34 150 -idx: 75 entropy_left: 1.3026227503285144 entropy_right : 1.0462881865460743 -> 34 150 -idx: 76 entropy_left: 1.2958363892911637 entropy_right : 0.9568886656798212 -> 34 150 -idx: 77 entropy_left: 1.2936094957266198 entropy_right : 0.9505668528932196 -> 34 150 -idx: 78 entropy_left: 1.3469477860513406 entropy_right : 0.9544340029249649 -> 34 150 -idx: 79 entropy_left: 1.3434702568607588 entropy_right : 0.9477073729342066 -> 34 150 -idx: 81 entropy_left: 1.422950494647251 entropy_right : 0.9557589912150009 -> 34 150 -idx: 83 entropy_left: 1.4135682830396687 entropy_right : 0.9411864371816835 -> 34 150 -idx: 84 entropy_left: 1.4439032709191701 entropy_right : 0.9456603046006402 -> 34 150 -idx: 87 entropy_left: 1.4262873399004574 entropy_right : 0.9182958340544896 -> 34 150 -idx: 88 entropy_left: 1.4523861943352818 entropy_right : 0.9235785996175947 -> 34 150 -idx: 89 entropy_left: 1.4459033762515259 entropy_right : 0.9127341558073343 -> 34 150 -idx: 91 entropy_left: 1.4878131808507769 entropy_right : 0.9238422284571814 -> 34 150 -idx: 95 entropy_left: 1.4608248015713592 entropy_right : 0.8698926856041563 -> 34 150 -idx: 97 entropy_left: 1.4937095464322434 entropy_right : 0.8835850861052532 -> 34 150 -idx: 99 entropy_left: 1.4799337224591032 entropy_right : 0.8478617451660526 -> 34 150 -idx: 101 entropy_left: 1.5057662831867211 entropy_right : 0.863120568566631 -> 34 150 -idx: 102 entropy_left: 1.4991298893975544 entropy_right : 0.8426578772022391 -> 34 150 -idx: 104 entropy_left: 1.5192305624137816 entropy_right : 0.8589810370425963 -> 34 150 -idx: 105 entropy_left: 1.5129527183657314 entropy_right : 0.8366407419411673 -> 34 150 -idx: 106 entropy_left: 1.5213240183572947 entropy_right : 0.8453509366224365 -> 34 150 -idx: 107 entropy_left: 1.5151610003501055 entropy_right : 0.8203636429576732 -> 34 150 -idx: 109 entropy_left: 1.529162767471135 entropy_right : 0.8390040613676977 -> 34 150 -idx: 110 entropy_left: 1.5233671360000942 entropy_right : 0.8112781244591328 -> 34 150 -idx: 113 entropy_left: 1.5384204755151063 entropy_right : 0.8418521897563207 -> 34 150 -idx: 114 entropy_left: 1.5332288946792918 entropy_right : 0.8112781244591328 -> 34 150 -idx: 117 entropy_left: 1.5426918994072474 entropy_right : 0.8453509366224365 -> 34 150 -idx: 118 entropy_left: 1.538075564045685 entropy_right : 0.8112781244591328 -> 34 150 -idx: 120 entropy_left: 1.5420569181018204 entropy_right : 0.8366407419411673 -> 34 150 -idx: 122 entropy_left: 1.533320797816137 entropy_right : 0.74959525725948 -> 34 150 -idx: 127 entropy_left: 1.5379137608515965 entropy_right : 0.828055725379504 -> 34 150 -idx: 130 entropy_left: 1.5269619764446545 entropy_right : 0.6098403047164004 -> 34 150 -idx: 132 entropy_left: 1.5275487529615783 entropy_right : 0.6500224216483541 -> 34 150 -idx: 133 entropy_left: 1.5240294109795434 entropy_right : 0.5225593745369408 -> 34 150 -idx: 134 entropy_left: 1.524070562860036 entropy_right : 0.5435644431995964 -> 34 150 -idx: 135 entropy_left: 1.5206178114026545 entropy_right : 0.35335933502142136 -> 34 150 -idx: 137 entropy_left: 1.52026917047001 entropy_right : 0.39124356362925566 -> 34 150 -idx: 138 entropy_left: 1.5170523105906335 entropy_right : 0 -> 34 150 -cut: 5.2 index: 44 -start: 34 cut: 44 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.5007111828980744 ent1= 0 ent2= 1.3764263022492553 -ig= 0.24294232049789266 delta= 4.271001547828267 N 116 term 0.09583182412735038 -¡Ding! 5.2 44 -idx: 45 entropy_left: 0 entropy_right : 1.3779796176519241 -> 44 150 -idx: 51 entropy_left: 0.5916727785823275 entropy_right : 1.2367928607774141 -> 44 150 -idx: 52 entropy_left: 0.8112781244591328 entropy_right : 1.2377158231343603 -> 44 150 -idx: 53 entropy_left: 0.7642045065086203 entropy_right : 1.2046986815511866 -> 44 150 -idx: 58 entropy_left: 1.0 entropy_right : 1.2056112071736118 -> 44 150 -idx: 59 entropy_left: 0.9967916319816366 entropy_right : 1.167065448996099 -> 44 150 -idx: 61 entropy_left: 0.9975025463691153 entropy_right : 1.1653351793699953 -> 44 150 -idx: 62 entropy_left: 1.2516291673878228 entropy_right : 1.1687172769890006 -> 44 150 -idx: 68 entropy_left: 1.1431558784658322 entropy_right : 1.1573913563403753 -> 44 150 -idx: 69 entropy_left: 1.1585488318903812 entropy_right : 1.109500797247481 -> 44 150 -idx: 70 entropy_left: 1.1416195253341381 entropy_right : 1.105866621101474 -> 44 150 -idx: 71 entropy_left: 1.2538013905715866 entropy_right : 1.1104593064416028 -> 44 150 -idx: 72 entropy_left: 1.2638091738835462 entropy_right : 1.0511407586429597 -> 44 150 -idx: 74 entropy_left: 1.2309595631140104 entropy_right : 1.041722068095403 -> 44 150 -idx: 75 entropy_left: 1.307976359515949 entropy_right : 1.0462881865460743 -> 44 150 -idx: 76 entropy_left: 1.31664733333952 entropy_right : 0.9568886656798212 -> 44 150 -idx: 77 entropy_left: 1.3013862992796092 entropy_right : 0.9505668528932196 -> 44 150 -idx: 78 entropy_left: 1.3590990012374453 entropy_right : 0.9544340029249649 -> 44 150 -idx: 79 entropy_left: 1.3437884540090375 entropy_right : 0.9477073729342066 -> 44 150 -idx: 81 entropy_left: 1.4256132384104512 entropy_right : 0.9557589912150009 -> 44 150 -idx: 83 entropy_left: 1.3964017465710241 entropy_right : 0.9411864371816835 -> 44 150 -idx: 84 entropy_left: 1.4266098981515114 entropy_right : 0.9456603046006402 -> 44 150 -idx: 87 entropy_left: 1.3843662197304327 entropy_right : 0.9182958340544896 -> 44 150 -idx: 88 entropy_left: 1.4105645152423338 entropy_right : 0.9235785996175947 -> 44 150 -idx: 89 entropy_left: 1.3970713079590378 entropy_right : 0.9127341558073343 -> 44 150 -idx: 91 entropy_left: 1.4378981830488653 entropy_right : 0.9238422284571814 -> 44 150 -idx: 95 entropy_left: 1.3885087415373887 entropy_right : 0.8698926856041563 -> 44 150 -idx: 97 entropy_left: 1.4207503473571672 entropy_right : 0.8835850861052532 -> 44 150 -idx: 99 entropy_left: 1.3982088441853116 entropy_right : 0.8478617451660526 -> 44 150 -idx: 101 entropy_left: 1.4231230542732203 entropy_right : 0.863120568566631 -> 44 150 -idx: 102 entropy_left: 1.4127788804267845 entropy_right : 0.8426578772022391 -> 44 150 -idx: 104 entropy_left: 1.431578033211198 entropy_right : 0.8589810370425963 -> 44 150 -idx: 105 entropy_left: 1.4220900521936763 entropy_right : 0.8366407419411673 -> 44 150 -idx: 106 entropy_left: 1.4297712666969145 entropy_right : 0.8453509366224365 -> 44 150 -idx: 107 entropy_left: 1.4206843409707122 entropy_right : 0.8203636429576732 -> 44 150 -idx: 109 entropy_left: 1.4333020260513436 entropy_right : 0.8390040613676977 -> 44 150 -idx: 110 entropy_left: 1.4249748676560043 entropy_right : 0.8112781244591328 -> 44 150 -idx: 113 entropy_left: 1.4378209282715886 entropy_right : 0.8418521897563207 -> 44 150 -idx: 114 entropy_left: 1.43055418918351 entropy_right : 0.8112781244591328 -> 44 150 -idx: 117 entropy_left: 1.4377707632957772 entropy_right : 0.8453509366224365 -> 44 150 -idx: 118 entropy_left: 1.4314614999501034 entropy_right : 0.8112781244591328 -> 44 150 -idx: 120 entropy_left: 1.4340201993083201 entropy_right : 0.8366407419411673 -> 44 150 -idx: 122 entropy_left: 1.4224171655427815 entropy_right : 0.74959525725948 -> 44 150 -idx: 127 entropy_left: 1.4240650747143373 entropy_right : 0.828055725379504 -> 44 150 -idx: 130 entropy_left: 1.4101818214788366 entropy_right : 0.6098403047164004 -> 44 150 -idx: 132 entropy_left: 1.409921745231479 entropy_right : 0.6500224216483541 -> 44 150 -idx: 133 entropy_left: 1.4055932553758037 entropy_right : 0.5225593745369408 -> 44 150 -idx: 134 entropy_left: 1.4052570450171729 entropy_right : 0.5435644431995964 -> 44 150 -idx: 135 entropy_left: 1.4010688958809001 entropy_right : 0.35335933502142136 -> 44 150 -idx: 137 entropy_left: 1.400052234031507 entropy_right : 0.39124356362925566 -> 44 150 -idx: 138 entropy_left: 1.3962125504871692 entropy_right : 0 -> 44 150 -cut: 5.25 index: 45 -start: 44 cut: 45 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.3764263022492553 ent1= 0 ent2= 1.3779796176519241 -ig= 0.011446492311028678 delta= 4.648516135982731 N 106 term 0.10719586465706465 -idx: 51 entropy_left: 0 entropy_right : 1.2367928607774141 -> 45 150 -idx: 52 entropy_left: 0.5916727785823275 entropy_right : 1.2377158231343603 -> 45 150 -idx: 53 entropy_left: 0.5435644431995964 entropy_right : 1.2046986815511866 -> 45 150 -idx: 58 entropy_left: 0.9957274520849256 entropy_right : 1.2056112071736118 -> 45 150 -idx: 59 entropy_left: 0.9852281360342516 entropy_right : 1.167065448996099 -> 45 150 -idx: 61 entropy_left: 1.0 entropy_right : 1.1653351793699953 -> 45 150 -idx: 62 entropy_left: 1.2639334294856337 entropy_right : 1.1687172769890006 -> 45 150 -idx: 68 entropy_left: 1.1625633078480364 entropy_right : 1.1573913563403753 -> 45 150 -idx: 69 entropy_left: 1.1752835873133531 entropy_right : 1.109500797247481 -> 45 150 -idx: 70 entropy_left: 1.1585488318903812 entropy_right : 1.105866621101474 -> 45 150 -idx: 71 entropy_left: 1.2722595663292235 entropy_right : 1.1104593064416028 -> 45 150 -idx: 72 entropy_left: 1.2799749139041574 entropy_right : 1.0511407586429597 -> 45 150 -idx: 74 entropy_left: 1.2474241244334552 entropy_right : 1.041722068095403 -> 45 150 -idx: 75 entropy_left: 1.3248560371987566 entropy_right : 1.0462881865460743 -> 45 150 -idx: 76 entropy_left: 1.3317607101149553 entropy_right : 0.9568886656798212 -> 45 150 -idx: 77 entropy_left: 1.31664733333952 entropy_right : 0.9505668528932196 -> 45 150 -idx: 78 entropy_left: 1.3743214578138507 entropy_right : 0.9544340029249649 -> 45 150 -idx: 79 entropy_left: 1.3590990012374453 entropy_right : 0.9477073729342066 -> 45 150 -idx: 81 entropy_left: 1.4400876246432754 entropy_right : 0.9557589912150009 -> 45 150 -idx: 83 entropy_left: 1.4110278111359231 entropy_right : 0.9411864371816835 -> 45 150 -idx: 84 entropy_left: 1.440686881996416 entropy_right : 0.9456603046006402 -> 45 150 -idx: 87 entropy_left: 1.3984047495234926 entropy_right : 0.9182958340544896 -> 45 150 -idx: 88 entropy_left: 1.4241055030202836 entropy_right : 0.9235785996175947 -> 45 150 -idx: 89 entropy_left: 1.4105645152423338 entropy_right : 0.9127341558073343 -> 45 150 -idx: 91 entropy_left: 1.4503134017471866 entropy_right : 0.9238422284571814 -> 45 150 -idx: 95 entropy_left: 1.400766637523055 entropy_right : 0.8698926856041563 -> 45 150 -idx: 97 entropy_left: 1.4320792052110205 entropy_right : 0.8835850861052532 -> 45 150 -idx: 99 entropy_left: 1.4094544755772227 entropy_right : 0.8478617451660526 -> 45 150 -idx: 101 entropy_left: 1.4334834517752852 entropy_right : 0.863120568566631 -> 45 150 -idx: 102 entropy_left: 1.4231230542732203 entropy_right : 0.8426578772022391 -> 45 150 -idx: 104 entropy_left: 1.4410541035142095 entropy_right : 0.8589810370425963 -> 45 150 -idx: 105 entropy_left: 1.431578033211198 entropy_right : 0.8366407419411673 -> 45 150 -idx: 106 entropy_left: 1.438841894200673 entropy_right : 0.8453509366224365 -> 45 150 -idx: 107 entropy_left: 1.4297712666969145 entropy_right : 0.8203636429576732 -> 45 150 -idx: 109 entropy_left: 1.4415920755789071 entropy_right : 0.8390040613676977 -> 45 150 -idx: 110 entropy_left: 1.4333020260513436 entropy_right : 0.8112781244591328 -> 45 150 -idx: 113 entropy_left: 1.4450194734840949 entropy_right : 0.8418521897563207 -> 45 150 -idx: 114 entropy_left: 1.4378209282715886 entropy_right : 0.8112781244591328 -> 45 150 -idx: 117 entropy_left: 1.4439881597575672 entropy_right : 0.8453509366224365 -> 45 150 -idx: 118 entropy_left: 1.4377707632957772 entropy_right : 0.8112781244591328 -> 45 150 -idx: 120 entropy_left: 1.4396788919399468 entropy_right : 0.8366407419411673 -> 45 150 -idx: 122 entropy_left: 1.4282619056422832 entropy_right : 0.74959525725948 -> 45 150 -idx: 127 entropy_left: 1.4284735370493284 entropy_right : 0.828055725379504 -> 45 150 -idx: 130 entropy_left: 1.4149076471763113 entropy_right : 0.6098403047164004 -> 45 150 -idx: 132 entropy_left: 1.414152505455283 entropy_right : 0.6500224216483541 -> 45 150 -idx: 133 entropy_left: 1.409921745231479 entropy_right : 0.5225593745369408 -> 45 150 -idx: 134 entropy_left: 1.4093509832105067 entropy_right : 0.5435644431995964 -> 45 150 -idx: 135 entropy_left: 1.4052570450171729 entropy_right : 0.35335933502142136 -> 45 150 -idx: 137 entropy_left: 1.403795504390464 entropy_right : 0.39124356362925566 -> 45 150 -idx: 138 entropy_left: 1.400052234031507 entropy_right : 0 -> 45 150 -cut: 5.4 index: 51 -start: 45 cut: 51 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.3779796176519241 ent1= 0 ent2= 1.2367928607774141 -ig= 0.21186063463321947 delta= 4.220295919151194 N 105 term 0.10400700606945035 -¡Ding! 5.4 51 -idx: 52 entropy_left: 0 entropy_right : 1.2377158231343603 -> 51 150 -idx: 53 entropy_left: 1.0 entropy_right : 1.2046986815511866 -> 51 150 -idx: 58 entropy_left: 0.5916727785823275 entropy_right : 1.2056112071736118 -> 51 150 -idx: 59 entropy_left: 0.8112781244591328 entropy_right : 1.167065448996099 -> 51 150 -idx: 61 entropy_left: 0.7219280948873623 entropy_right : 1.1653351793699953 -> 51 150 -idx: 62 entropy_left: 1.0957952550009338 entropy_right : 1.1687172769890006 -> 51 150 -idx: 68 entropy_left: 0.8343470230852539 entropy_right : 1.1573913563403753 -> 51 150 -idx: 69 entropy_left: 0.9444885341662053 entropy_right : 1.109500797247481 -> 51 150 -idx: 70 entropy_left: 0.9132829641650988 entropy_right : 1.105866621101474 -> 51 150 -idx: 71 entropy_left: 1.0540157730728 entropy_right : 1.1104593064416028 -> 51 150 -idx: 72 entropy_left: 1.1254908068679135 entropy_right : 1.0511407586429597 -> 51 150 -idx: 74 entropy_left: 1.0676111603502403 entropy_right : 1.041722068095403 -> 51 150 -idx: 75 entropy_left: 1.158222675578688 entropy_right : 1.0462881865460743 -> 51 150 -idx: 76 entropy_left: 1.2098003386604828 entropy_right : 0.9568886656798212 -> 51 150 -idx: 77 entropy_left: 1.1841636411194805 entropy_right : 0.9505668528932196 -> 51 150 -idx: 78 entropy_left: 1.2486545206672304 entropy_right : 0.9544340029249649 -> 51 150 -idx: 79 entropy_left: 1.2244883781338565 entropy_right : 0.9477073729342066 -> 51 150 -idx: 81 entropy_left: 1.3125559878021227 entropy_right : 0.9557589912150009 -> 51 150 -idx: 83 entropy_left: 1.2700599575900715 entropy_right : 0.9411864371816835 -> 51 150 -idx: 84 entropy_left: 1.3019762161101505 entropy_right : 0.9456603046006402 -> 51 150 -idx: 87 entropy_left: 1.2449187529382073 entropy_right : 0.9182958340544896 -> 51 150 -idx: 88 entropy_left: 1.2730009199061236 entropy_right : 0.9235785996175947 -> 51 150 -idx: 89 entropy_left: 1.255663165580298 entropy_right : 0.9127341558073343 -> 51 150 -idx: 91 entropy_left: 1.2987949406953985 entropy_right : 0.9238422284571814 -> 51 150 -idx: 95 entropy_left: 1.2387413849552513 entropy_right : 0.8698926856041563 -> 51 150 -idx: 97 entropy_left: 1.2733306660180936 entropy_right : 0.8835850861052532 -> 51 150 -idx: 99 entropy_left: 1.24726924853191 entropy_right : 0.8478617451660526 -> 51 150 -idx: 101 entropy_left: 1.2740022896699967 entropy_right : 0.863120568566631 -> 51 150 -idx: 102 entropy_left: 1.2623741775941766 entropy_right : 0.8426578772022391 -> 51 150 -idx: 104 entropy_left: 1.2824555399511839 entropy_right : 0.8589810370425963 -> 51 150 -idx: 105 entropy_left: 1.2720236796955837 entropy_right : 0.8366407419411673 -> 51 150 -idx: 106 entropy_left: 1.2802412641697223 entropy_right : 0.8453509366224365 -> 51 150 -idx: 107 entropy_left: 1.2703862545896736 entropy_right : 0.8203636429576732 -> 51 150 -idx: 109 entropy_left: 1.2839465152590122 entropy_right : 0.8390040613676977 -> 51 150 -idx: 110 entropy_left: 1.2750978150747438 entropy_right : 0.8112781244591328 -> 51 150 -idx: 113 entropy_left: 1.2890020897815337 entropy_right : 0.8418521897563207 -> 51 150 -idx: 114 entropy_left: 1.2814952229224468 entropy_right : 0.8112781244591328 -> 51 150 -idx: 117 entropy_left: 1.2894949485898448 entropy_right : 0.8453509366224365 -> 51 150 -idx: 118 entropy_left: 1.2831665076655923 entropy_right : 0.8112781244591328 -> 51 150 -idx: 120 entropy_left: 1.2861856515445227 entropy_right : 0.8366407419411673 -> 51 150 -idx: 122 entropy_left: 1.274785294596539 entropy_right : 0.74959525725948 -> 51 150 -idx: 127 entropy_left: 1.277660052784842 entropy_right : 0.828055725379504 -> 51 150 -idx: 130 entropy_left: 1.2647051503145113 entropy_right : 0.6098403047164004 -> 51 150 -idx: 132 entropy_left: 1.2650264370370163 entropy_right : 0.6500224216483541 -> 51 150 -idx: 133 entropy_left: 1.2610549127993207 entropy_right : 0.5225593745369408 -> 51 150 -idx: 134 entropy_left: 1.2610161720734205 entropy_right : 0.5435644431995964 -> 51 150 -idx: 135 entropy_left: 1.2572038836412398 entropy_right : 0.35335933502142136 -> 51 150 -idx: 137 entropy_left: 1.2567949149026907 entropy_right : 0.39124356362925566 -> 51 150 -idx: 138 entropy_left: 1.2533710321988052 entropy_right : 0 -> 51 150 -cut: 5.45 index: 52 -start: 51 cut: 52 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.2367928607774141 ent1= 0 ent2= 1.2377158231343603 -ig= 0.011579217674714037 delta= 4.646625076845563 N 99 term 0.11375085778748256 -idx: 53 entropy_left: 0 entropy_right : 1.2046986815511866 -> 52 150 -idx: 58 entropy_left: 0.6500224216483541 entropy_right : 1.2056112071736118 -> 52 150 -idx: 59 entropy_left: 0.863120568566631 entropy_right : 1.167065448996099 -> 52 150 -idx: 61 entropy_left: 0.7642045065086203 entropy_right : 1.1653351793699953 -> 52 150 -idx: 62 entropy_left: 1.1567796494470395 entropy_right : 1.1687172769890006 -> 52 150 -idx: 68 entropy_left: 0.8683927290103626 entropy_right : 1.1573913563403753 -> 52 150 -idx: 69 entropy_left: 0.9780155566622415 entropy_right : 1.109500797247481 -> 52 150 -idx: 70 entropy_left: 0.9444885341662053 entropy_right : 1.105866621101474 -> 52 150 -idx: 71 entropy_left: 1.086987702339905 entropy_right : 1.1104593064416028 -> 52 150 -idx: 72 entropy_left: 1.1567796494470395 entropy_right : 1.0511407586429597 -> 52 150 -idx: 74 entropy_left: 1.0957952550009338 entropy_right : 1.041722068095403 -> 52 150 -idx: 75 entropy_left: 1.1863929342238186 entropy_right : 1.0462881865460743 -> 52 150 -idx: 76 entropy_left: 1.2364405016961446 entropy_right : 0.9568886656798212 -> 52 150 -idx: 77 entropy_left: 1.2098003386604828 entropy_right : 0.9505668528932196 -> 52 150 -idx: 78 entropy_left: 1.2736509190759928 entropy_right : 0.9544340029249649 -> 52 150 -idx: 79 entropy_left: 1.2486545206672304 entropy_right : 0.9477073729342066 -> 52 150 -idx: 81 entropy_left: 1.334599425999111 entropy_right : 0.9557589912150009 -> 52 150 -idx: 83 entropy_left: 1.2910357498542626 entropy_right : 0.9411864371816835 -> 52 150 -idx: 84 entropy_left: 1.3218847866691474 entropy_right : 0.9456603046006402 -> 52 150 -idx: 87 entropy_left: 1.2634815907120713 entropy_right : 0.9182958340544896 -> 52 150 -idx: 88 entropy_left: 1.2907148496715317 entropy_right : 0.9235785996175947 -> 52 150 -idx: 89 entropy_left: 1.2730009199061236 entropy_right : 0.9127341558073343 -> 52 150 -idx: 91 entropy_left: 1.314427310128449 entropy_right : 0.9238422284571814 -> 52 150 -idx: 95 entropy_left: 1.2533610514248106 entropy_right : 0.8698926856041563 -> 52 150 -idx: 97 entropy_left: 1.2866280229807059 entropy_right : 0.8835850861052532 -> 52 150 -idx: 99 entropy_left: 1.2602078229255897 entropy_right : 0.8478617451660526 -> 52 150 -idx: 101 entropy_left: 1.285743981839722 entropy_right : 0.863120568566631 -> 52 150 -idx: 102 entropy_left: 1.2740022896699967 entropy_right : 0.8426578772022391 -> 52 150 -idx: 104 entropy_left: 1.2929449855174395 entropy_right : 0.8589810370425963 -> 52 150 -idx: 105 entropy_left: 1.2824555399511839 entropy_right : 0.8366407419411673 -> 52 150 -idx: 106 entropy_left: 1.290137339650643 entropy_right : 0.8453509366224365 -> 52 150 -idx: 107 entropy_left: 1.2802412641697223 entropy_right : 0.8203636429576732 -> 52 150 -idx: 109 entropy_left: 1.2927975726087082 entropy_right : 0.8390040613676977 -> 52 150 -idx: 110 entropy_left: 1.2839465152590122 entropy_right : 0.8112781244591328 -> 52 150 -idx: 113 entropy_left: 1.2964607361371667 entropy_right : 0.8418521897563207 -> 52 150 -idx: 114 entropy_left: 1.2890020897815337 entropy_right : 0.8112781244591328 -> 52 150 -idx: 117 entropy_left: 1.2957378005380122 entropy_right : 0.8453509366224365 -> 52 150 -idx: 118 entropy_left: 1.2894949485898448 entropy_right : 0.8112781244591328 -> 52 150 -idx: 120 entropy_left: 1.2917436782389615 entropy_right : 0.8366407419411673 -> 52 150 -idx: 122 entropy_left: 1.2805280377491564 entropy_right : 0.74959525725948 -> 52 150 -idx: 127 entropy_left: 1.2817402106919733 entropy_right : 0.828055725379504 -> 52 150 -idx: 130 entropy_left: 1.269129492403553 entropy_right : 0.6098403047164004 -> 52 150 -idx: 132 entropy_left: 1.26889047905874 entropy_right : 0.6500224216483541 -> 52 150 -idx: 133 entropy_left: 1.2650264370370163 entropy_right : 0.5225593745369408 -> 52 150 -idx: 134 entropy_left: 1.2647242262739549 entropy_right : 0.5435644431995964 -> 52 150 -idx: 135 entropy_left: 1.2610161720734205 entropy_right : 0.35335933502142136 -> 52 150 -idx: 137 entropy_left: 1.2601109425506647 entropy_right : 0.39124356362925566 -> 52 150 -idx: 138 entropy_left: 1.2567949149026907 entropy_right : 0 -> 52 150 -cut: 5.5 index: 53 -start: 52 cut: 53 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.2377158231343603 ent1= 0 ent2= 1.2046986815511866 -ig= 0.04530998527247143 delta= 4.544804765025203 N 98 term 0.11372160823686052 -idx: 58 entropy_left: 0 entropy_right : 1.2056112071736118 -> 53 150 -idx: 59 entropy_left: 0.6500224216483541 entropy_right : 1.167065448996099 -> 53 150 -idx: 61 entropy_left: 0.5435644431995964 entropy_right : 1.1653351793699953 -> 53 150 -idx: 62 entropy_left: 0.9864267287308424 entropy_right : 1.1687172769890006 -> 53 150 -idx: 68 entropy_left: 0.6998428398862386 entropy_right : 1.1573913563403753 -> 53 150 -idx: 69 entropy_left: 0.8683927290103626 entropy_right : 1.109500797247481 -> 53 150 -idx: 70 entropy_left: 0.8343470230852539 entropy_right : 1.105866621101474 -> 53 150 -idx: 71 entropy_left: 0.9864267287308424 entropy_right : 1.1104593064416028 -> 53 150 -idx: 72 entropy_left: 1.086987702339905 entropy_right : 1.0511407586429597 -> 53 150 -idx: 74 entropy_left: 1.0230370655328809 entropy_right : 1.041722068095403 -> 53 150 -idx: 75 entropy_left: 1.1180782093497093 entropy_right : 1.0462881865460743 -> 53 150 -idx: 76 entropy_left: 1.1863929342238186 entropy_right : 0.9568886656798212 -> 53 150 -idx: 77 entropy_left: 1.158222675578688 entropy_right : 0.9505668528932196 -> 53 150 -idx: 78 entropy_left: 1.224381457724494 entropy_right : 0.9544340029249649 -> 53 150 -idx: 79 entropy_left: 1.198183947911799 entropy_right : 0.9477073729342066 -> 53 150 -idx: 81 entropy_left: 1.287054028118727 entropy_right : 0.9557589912150009 -> 53 150 -idx: 83 entropy_left: 1.2419460322060458 entropy_right : 0.9411864371816835 -> 53 150 -idx: 84 entropy_left: 1.2738722345110536 entropy_right : 0.9456603046006402 -> 53 150 -idx: 87 entropy_left: 1.2141272693763827 entropy_right : 0.9182958340544896 -> 53 150 -idx: 88 entropy_left: 1.2423708743932154 entropy_right : 0.9235785996175947 -> 53 150 -idx: 89 entropy_left: 1.224394445405986 entropy_right : 0.9127341558073343 -> 53 150 -idx: 91 entropy_left: 1.2674438038072338 entropy_right : 0.9238422284571814 -> 53 150 -idx: 95 entropy_left: 1.2060026902433665 entropy_right : 0.8698926856041563 -> 53 150 -idx: 97 entropy_left: 1.2406705316766886 entropy_right : 0.8835850861052532 -> 53 150 -idx: 99 entropy_left: 1.214295263080721 entropy_right : 0.8478617451660526 -> 53 150 -idx: 101 entropy_left: 1.2410106928656977 entropy_right : 0.863120568566631 -> 53 150 -idx: 102 entropy_left: 1.2293413843029717 entropy_right : 0.8426578772022391 -> 53 150 -idx: 104 entropy_left: 1.2492864082069246 entropy_right : 0.8589810370425963 -> 53 150 -idx: 105 entropy_left: 1.2389012566026305 entropy_right : 0.8366407419411673 -> 53 150 -idx: 106 entropy_left: 1.2470361469923357 entropy_right : 0.8453509366224365 -> 53 150 -idx: 107 entropy_left: 1.237260201421159 entropy_right : 0.8203636429576732 -> 53 150 -idx: 109 entropy_left: 1.2506472668030133 entropy_right : 0.8390040613676977 -> 53 150 -idx: 110 entropy_left: 1.2419363412184317 entropy_right : 0.8112781244591328 -> 53 150 -idx: 113 entropy_left: 1.2555367253996503 entropy_right : 0.8418521897563207 -> 53 150 -idx: 114 entropy_left: 1.2482389571842902 entropy_right : 0.8112781244591328 -> 53 150 -idx: 117 entropy_left: 1.2559170259774697 entropy_right : 0.8453509366224365 -> 53 150 -idx: 118 entropy_left: 1.2498492777008952 entropy_right : 0.8112781244591328 -> 53 150 -idx: 120 entropy_left: 1.2526673604527443 entropy_right : 0.8366407419411673 -> 53 150 -idx: 122 entropy_left: 1.2418112963539676 entropy_right : 0.74959525725948 -> 53 150 -idx: 127 entropy_left: 1.2443013992660277 entropy_right : 0.828055725379504 -> 53 150 -idx: 130 entropy_left: 1.2322458629112465 entropy_right : 0.6098403047164004 -> 53 150 -idx: 132 entropy_left: 1.232472282457445 entropy_right : 0.6500224216483541 -> 53 150 -idx: 133 entropy_left: 1.228789740397119 entropy_right : 0.5225593745369408 -> 53 150 -idx: 134 entropy_left: 1.22871127017127 entropy_right : 0.5435644431995964 -> 53 150 -idx: 135 entropy_left: 1.2251826138221809 entropy_right : 0.35335933502142136 -> 53 150 -idx: 137 entropy_left: 1.2247083872970776 entropy_right : 0.39124356362925566 -> 53 150 -idx: 138 entropy_left: 1.2215701626281463 entropy_right : 0 -> 53 150 -cut: 5.5 index: 58 -start: 53 cut: 58 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.2046986815511866 ent1= 0 ent2= 1.2056112071736118 -ig= 0.06123238196384362 delta= 4.646593766642 N 97 term 0.11578923986972327 -idx: 59 entropy_left: 0 entropy_right : 1.167065448996099 -> 58 150 -idx: 61 entropy_left: 0.9182958340544896 entropy_right : 1.1653351793699953 -> 58 150 -idx: 62 entropy_left: 1.5 entropy_right : 1.1687172769890006 -> 58 150 -idx: 68 entropy_left: 0.9219280948873623 entropy_right : 1.1573913563403753 -> 58 150 -idx: 69 entropy_left: 1.0957952550009338 entropy_right : 1.109500797247481 -> 58 150 -idx: 70 entropy_left: 1.0408520829727552 entropy_right : 1.105866621101474 -> 58 150 -idx: 71 entropy_left: 1.198183947911799 entropy_right : 1.1104593064416028 -> 58 150 -idx: 72 entropy_left: 1.287054028118727 entropy_right : 1.0511407586429597 -> 58 150 -idx: 74 entropy_left: 1.1994602933016414 entropy_right : 1.041722068095403 -> 58 150 -idx: 75 entropy_left: 1.289608558348151 entropy_right : 1.0462881865460743 -> 58 150 -idx: 76 entropy_left: 1.3472230399326601 entropy_right : 0.9568886656798212 -> 58 150 -idx: 77 entropy_left: 1.312430802347936 entropy_right : 0.9505668528932196 -> 58 150 -idx: 78 entropy_left: 1.3709505944546687 entropy_right : 0.9544340029249649 -> 58 150 -idx: 79 entropy_left: 1.3396642639295127 entropy_right : 0.9477073729342066 -> 58 150 -idx: 81 entropy_left: 1.4098449412673983 entropy_right : 0.9557589912150009 -> 58 150 -idx: 83 entropy_left: 1.359330832236536 entropy_right : 0.9411864371816835 -> 58 150 -idx: 84 entropy_left: 1.3829457416591304 entropy_right : 0.9456603046006402 -> 58 150 -idx: 87 entropy_left: 1.3162522199425772 entropy_right : 0.9182958340544896 -> 58 150 -idx: 88 entropy_left: 1.3382689280764646 entropy_right : 0.9235785996175947 -> 58 150 -idx: 89 entropy_left: 1.3183697698891939 entropy_right : 0.9127341558073343 -> 58 150 -idx: 91 entropy_left: 1.3495485525614308 entropy_right : 0.9238422284571814 -> 58 150 -idx: 95 entropy_left: 1.283474826759087 entropy_right : 0.8698926856041563 -> 58 150 -idx: 97 entropy_left: 1.309466962504167 entropy_right : 0.8835850861052532 -> 58 150 -idx: 99 entropy_left: 1.2815531082029132 entropy_right : 0.8478617451660526 -> 58 150 -idx: 101 entropy_left: 1.3006979255585032 entropy_right : 0.863120568566631 -> 58 150 -idx: 102 entropy_left: 1.288649764535596 entropy_right : 0.8426578772022391 -> 58 150 -idx: 104 entropy_left: 1.301574289281613 entropy_right : 0.8589810370425963 -> 58 150 -idx: 105 entropy_left: 1.2911428397964957 entropy_right : 0.8366407419411673 -> 58 150 -idx: 106 entropy_left: 1.2960285244780434 entropy_right : 0.8453509366224365 -> 58 150 -idx: 107 entropy_left: 1.286285229444419 entropy_right : 0.8203636429576732 -> 58 150 -idx: 109 entropy_left: 1.2936692523040243 entropy_right : 0.8390040613676977 -> 58 150 -idx: 110 entropy_left: 1.285207571715559 entropy_right : 0.8112781244591328 -> 58 150 -idx: 113 entropy_left: 1.2906516322752029 entropy_right : 0.8418521897563207 -> 58 150 -idx: 114 entropy_left: 1.2838868242312453 entropy_right : 0.8112781244591328 -> 58 150 -idx: 117 entropy_left: 1.284285038978389 entropy_right : 0.8453509366224365 -> 58 150 -idx: 118 entropy_left: 1.2789490895024977 entropy_right : 0.8112781244591328 -> 58 150 -idx: 120 entropy_left: 1.2773890816706368 entropy_right : 0.8366407419411673 -> 58 150 -idx: 122 entropy_left: 1.2680161172305842 entropy_right : 0.74959525725948 -> 58 150 -idx: 127 entropy_left: 1.261205530128474 entropy_right : 0.828055725379504 -> 58 150 -idx: 130 entropy_left: 1.2516291673878228 entropy_right : 0.6098403047164004 -> 58 150 -idx: 132 entropy_left: 1.2487636811095608 entropy_right : 0.6500224216483541 -> 58 150 -idx: 133 entropy_left: 1.2458385420854454 entropy_right : 0.5225593745369408 -> 58 150 -idx: 134 entropy_left: 1.2443133013206253 entropy_right : 0.5435644431995964 -> 58 150 -idx: 135 entropy_left: 1.2415118510334717 entropy_right : 0.35335933502142136 -> 58 150 -idx: 137 entropy_left: 1.238324798314731 entropy_right : 0.39124356362925566 -> 58 150 -idx: 138 entropy_left: 1.235922331588627 entropy_right : 0 -> 58 150 -cut: 5.55 index: 59 -start: 58 cut: 59 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.2056112071736118 ent1= 0 ent2= 1.167065448996099 -ig= 0.051231252188340015 delta= 4.528218915242186 N 92 term 0.11995666908087914 -idx: 61 entropy_left: 0 entropy_right : 1.1653351793699953 -> 59 150 -idx: 62 entropy_left: 0.9182958340544896 entropy_right : 1.1687172769890006 -> 59 150 -idx: 68 entropy_left: 0.5032583347756457 entropy_right : 1.1573913563403753 -> 59 150 -idx: 69 entropy_left: 0.9219280948873623 entropy_right : 1.109500797247481 -> 59 150 -idx: 70 entropy_left: 0.8658566174572235 entropy_right : 1.105866621101474 -> 59 150 -idx: 71 entropy_left: 1.0408520829727552 entropy_right : 1.1104593064416028 -> 59 150 -idx: 72 entropy_left: 1.198183947911799 entropy_right : 1.0511407586429597 -> 59 150 -idx: 74 entropy_left: 1.103307408607834 entropy_right : 1.041722068095403 -> 59 150 -idx: 75 entropy_left: 1.1994602933016414 entropy_right : 1.0462881865460743 -> 59 150 -idx: 76 entropy_left: 1.289608558348151 entropy_right : 0.9568886656798212 -> 59 150 -idx: 77 entropy_left: 1.2516291673878228 entropy_right : 0.9505668528932196 -> 59 150 -idx: 78 entropy_left: 1.3124308023479359 entropy_right : 0.9544340029249649 -> 59 150 -idx: 79 entropy_left: 1.278897902987479 entropy_right : 0.9477073729342066 -> 59 150 -idx: 81 entropy_left: 1.3516871258043608 entropy_right : 0.9557589912150009 -> 59 150 -idx: 83 entropy_left: 1.2987949406953985 entropy_right : 0.9411864371816835 -> 59 150 -idx: 84 entropy_left: 1.3234669541469457 entropy_right : 0.9456603046006402 -> 59 150 -idx: 87 entropy_left: 1.2550327083958783 entropy_right : 0.9182958340544896 -> 59 150 -idx: 88 entropy_left: 1.2782038389853276 entropy_right : 0.9235785996175947 -> 59 150 -idx: 89 entropy_left: 1.258040253688799 entropy_right : 0.9127341558073343 -> 59 150 -idx: 91 entropy_left: 1.2911002747979619 entropy_right : 0.9238422284571814 -> 59 150 -idx: 95 entropy_left: 1.2250335169881907 entropy_right : 0.8698926856041563 -> 59 150 -idx: 97 entropy_left: 1.252760079229674 entropy_right : 0.8835850861052532 -> 59 150 -idx: 99 entropy_left: 1.2251570385077257 entropy_right : 0.8478617451660526 -> 59 150 -idx: 101 entropy_left: 1.2457873952707117 entropy_right : 0.863120568566631 -> 59 150 -idx: 102 entropy_left: 1.2339557062686486 entropy_right : 0.8426578772022391 -> 59 150 -idx: 104 entropy_left: 1.2481570924667444 entropy_right : 0.8589810370425963 -> 59 150 -idx: 105 entropy_left: 1.237978259087945 entropy_right : 0.8366407419411673 -> 59 150 -idx: 106 entropy_left: 1.2434459078088524 entropy_right : 0.8453509366224365 -> 59 150 -idx: 107 entropy_left: 1.2339688836163196 entropy_right : 0.8203636429576732 -> 59 150 -idx: 109 entropy_left: 1.2424272282706346 entropy_right : 0.8390040613676977 -> 59 150 -idx: 110 entropy_left: 1.2342496730246095 entropy_right : 0.8112781244591328 -> 59 150 -idx: 113 entropy_left: 1.2411128360359944 entropy_right : 0.8418521897563207 -> 59 150 -idx: 114 entropy_left: 1.2346487866075766 entropy_right : 0.8112781244591328 -> 59 150 -idx: 117 entropy_left: 1.2362911655622766 entropy_right : 0.8453509366224365 -> 59 150 -idx: 118 entropy_left: 1.2312637634546426 entropy_right : 0.8112781244591328 -> 59 150 -idx: 120 entropy_left: 1.2304597034223903 entropy_right : 0.8366407419411673 -> 59 150 -idx: 122 entropy_left: 1.221694907636328 entropy_right : 0.74959525725948 -> 59 150 -idx: 127 entropy_left: 1.216582055353392 entropy_right : 0.828055725379504 -> 59 150 -idx: 130 entropy_left: 1.2078853229682496 entropy_right : 0.6098403047164004 -> 59 150 -idx: 132 entropy_left: 1.2056338170088083 entropy_right : 0.6500224216483541 -> 59 150 -idx: 133 entropy_left: 1.2029885192377856 entropy_right : 0.5225593745369408 -> 59 150 -idx: 134 entropy_left: 1.2017577888491018 entropy_right : 0.5435644431995964 -> 59 150 -idx: 135 entropy_left: 1.1992296370476179 entropy_right : 0.35335933502142136 -> 59 150 -idx: 137 entropy_left: 1.1966085324354425 entropy_right : 0.39124356362925566 -> 59 150 -idx: 138 entropy_left: 1.1944725384801118 entropy_right : 0 -> 59 150 -cut: 5.6 index: 61 -start: 59 cut: 61 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.167065448996099 ent1= 0 ent2= 1.1653351793699953 -ig= 0.027342031810059675 delta= 4.638665380896414 N 91 term 0.12231338985962735 -idx: 62 entropy_left: 0 entropy_right : 1.1687172769890006 -> 61 150 -idx: 68 entropy_left: 0.5916727785823275 entropy_right : 1.1573913563403753 -> 61 150 -idx: 69 entropy_left: 1.061278124459133 entropy_right : 1.109500797247481 -> 61 150 -idx: 70 entropy_left: 0.9864267287308424 entropy_right : 1.105866621101474 -> 61 150 -idx: 71 entropy_left: 1.1567796494470395 entropy_right : 1.1104593064416028 -> 61 150 -idx: 72 entropy_left: 1.3092966682370037 entropy_right : 1.0511407586429597 -> 61 150 -idx: 74 entropy_left: 1.198183947911799 entropy_right : 1.041722068095403 -> 61 150 -idx: 75 entropy_left: 1.287054028118727 entropy_right : 1.0462881865460743 -> 61 150 -idx: 76 entropy_left: 1.3709505944546687 entropy_right : 0.9568886656798212 -> 61 150 -idx: 77 entropy_left: 1.3294340029249652 entropy_right : 0.9505668528932196 -> 61 150 -idx: 78 entropy_left: 1.383099991189334 entropy_right : 0.9544340029249649 -> 61 150 -idx: 79 entropy_left: 1.3472230399326601 entropy_right : 0.9477073729342066 -> 61 150 -idx: 81 entropy_left: 1.4060075793123286 entropy_right : 0.9557589912150009 -> 61 150 -idx: 83 entropy_left: 1.3516871258043608 entropy_right : 0.9411864371816835 -> 61 150 -idx: 84 entropy_left: 1.370862465083061 entropy_right : 0.9456603046006402 -> 61 150 -idx: 87 entropy_left: 1.3001946428885267 entropy_right : 0.9182958340544896 -> 61 150 -idx: 88 entropy_left: 1.3195212983796363 entropy_right : 0.9235785996175947 -> 61 150 -idx: 89 entropy_left: 1.2987207862212027 entropy_right : 0.9127341558073343 -> 61 150 -idx: 91 entropy_left: 1.3248560371987566 entropy_right : 0.9238422284571814 -> 61 150 -idx: 95 entropy_left: 1.2576735962682495 entropy_right : 0.8698926856041563 -> 61 150 -idx: 97 entropy_left: 1.280672129520887 entropy_right : 0.8835850861052532 -> 61 150 -idx: 99 entropy_left: 1.252760079229674 entropy_right : 0.8478617451660526 -> 61 150 -idx: 101 entropy_left: 1.269433559880332 entropy_right : 0.863120568566631 -> 61 150 -idx: 102 entropy_left: 1.2576262380747258 entropy_right : 0.8426578772022391 -> 61 150 -idx: 104 entropy_left: 1.2682650449469532 entropy_right : 0.8589810370425963 -> 61 150 -idx: 105 entropy_left: 1.2582658857615794 entropy_right : 0.8366407419411673 -> 61 150 -idx: 106 entropy_left: 1.2621161952677336 entropy_right : 0.8453509366224365 -> 61 150 -idx: 107 entropy_left: 1.2528404674681515 entropy_right : 0.8203636429576732 -> 61 150 -idx: 109 entropy_left: 1.2583595230282398 entropy_right : 0.8390040613676977 -> 61 150 -idx: 110 entropy_left: 1.2504757050130606 entropy_right : 0.8112781244591328 -> 61 150 -idx: 113 entropy_left: 1.2534330706295986 entropy_right : 0.8418521897563207 -> 61 150 -idx: 114 entropy_left: 1.2473860973972197 entropy_right : 0.8112781244591328 -> 61 150 -idx: 117 entropy_left: 1.2456186709121666 entropy_right : 0.8453509366224365 -> 61 150 -idx: 118 entropy_left: 1.2410875386343703 entropy_right : 0.8112781244591328 -> 61 150 -idx: 120 entropy_left: 1.2382651015774901 entropy_right : 0.8366407419411673 -> 61 150 -idx: 122 entropy_left: 1.2304597034223903 entropy_right : 0.74959525725948 -> 61 150 -idx: 127 entropy_left: 1.2211369508106262 entropy_right : 0.828055725379504 -> 61 150 -idx: 130 entropy_left: 1.213906716130705 entropy_right : 0.6098403047164004 -> 61 150 -idx: 132 entropy_left: 1.2102772503893786 entropy_right : 0.6500224216483541 -> 61 150 -idx: 133 entropy_left: 1.2080704223069119 entropy_right : 0.5225593745369408 -> 61 150 -idx: 134 entropy_left: 1.206198549451098 entropy_right : 0.5435644431995964 -> 61 150 -idx: 135 entropy_left: 1.2040872420186723 entropy_right : 0.35335933502142136 -> 61 150 -idx: 137 entropy_left: 1.2002701176230874 entropy_right : 0.39124356362925566 -> 61 150 -idx: 138 entropy_left: 1.198547104867554 entropy_right : 0 -> 61 150 -cut: 5.6 index: 62 -start: 61 cut: 62 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.1653351793699953 ent1= 0 ent2= 1.1687172769890006 -ig= 0.009749557178623913 delta= 4.65400248263174 N 89 term 0.1248700460816746 -idx: 68 entropy_left: 0 entropy_right : 1.1573913563403753 -> 62 150 -idx: 69 entropy_left: 0.5916727785823275 entropy_right : 1.109500797247481 -> 62 150 -idx: 70 entropy_left: 0.5435644431995964 entropy_right : 1.105866621101474 -> 62 150 -idx: 71 entropy_left: 0.9864267287308424 entropy_right : 1.1104593064416028 -> 62 150 -idx: 72 entropy_left: 1.1567796494470395 entropy_right : 1.0511407586429597 -> 62 150 -idx: 74 entropy_left: 1.0408520829727552 entropy_right : 1.041722068095403 -> 62 150 -idx: 75 entropy_left: 1.198183947911799 entropy_right : 1.0462881865460743 -> 62 150 -idx: 76 entropy_left: 1.287054028118727 entropy_right : 0.9568886656798212 -> 62 150 -idx: 77 entropy_left: 1.2419460322060458 entropy_right : 0.9505668528932196 -> 62 150 -idx: 78 entropy_left: 1.3294340029249652 entropy_right : 0.9544340029249649 -> 62 150 -idx: 79 entropy_left: 1.289608558348151 entropy_right : 0.9477073729342066 -> 62 150 -idx: 81 entropy_left: 1.383807735464083 entropy_right : 0.9557589912150009 -> 62 150 -idx: 83 entropy_left: 1.322305788853309 entropy_right : 0.9411864371816835 -> 62 150 -idx: 84 entropy_left: 1.3516871258043608 entropy_right : 0.9456603046006402 -> 62 150 -idx: 87 entropy_left: 1.2732696895151085 entropy_right : 0.9182958340544896 -> 62 150 -idx: 88 entropy_left: 1.3001946428885267 entropy_right : 0.9235785996175947 -> 62 150 -idx: 89 entropy_left: 1.2773600852070808 entropy_right : 0.9127341558073343 -> 62 150 -idx: 91 entropy_left: 1.3141506221482602 entropy_right : 0.9238422284571814 -> 62 150 -idx: 95 entropy_left: 1.2406705316766886 entropy_right : 0.8698926856041563 -> 62 150 -idx: 97 entropy_left: 1.2707886973584608 entropy_right : 0.8835850861052532 -> 62 150 -idx: 99 entropy_left: 1.2405193035617867 entropy_right : 0.8478617451660526 -> 62 150 -idx: 101 entropy_left: 1.2622604540594544 entropy_right : 0.863120568566631 -> 62 150 -idx: 102 entropy_left: 1.249435498504727 entropy_right : 0.8426578772022391 -> 62 150 -idx: 104 entropy_left: 1.2638091738835462 entropy_right : 0.8589810370425963 -> 62 150 -idx: 105 entropy_left: 1.2529007737565314 entropy_right : 0.8366407419411673 -> 62 150 -idx: 106 entropy_left: 1.2582658857615794 entropy_right : 0.8453509366224365 -> 62 150 -idx: 107 entropy_left: 1.2481570924667444 entropy_right : 0.8203636429576732 -> 62 150 -idx: 109 entropy_left: 1.2561852304054355 entropy_right : 0.8390040613676977 -> 62 150 -idx: 110 entropy_left: 1.2475562489182657 entropy_right : 0.8112781244591328 -> 62 150 -idx: 113 entropy_left: 1.2532975784630431 entropy_right : 0.8418521897563207 -> 62 150 -idx: 114 entropy_left: 1.2466033489462778 entropy_right : 0.8112781244591328 -> 62 150 -idx: 117 entropy_left: 1.2468156164867663 entropy_right : 0.8453509366224365 -> 62 150 -idx: 118 entropy_left: 1.2417221295902683 entropy_right : 0.8112781244591328 -> 62 150 -idx: 120 entropy_left: 1.2399160118080643 entropy_right : 0.8366407419411673 -> 62 150 -idx: 122 entropy_left: 1.2311171656781021 entropy_right : 0.74959525725948 -> 62 150 -idx: 127 entropy_left: 1.223674601549228 entropy_right : 0.828055725379504 -> 62 150 -idx: 130 entropy_left: 1.2152759335052197 entropy_right : 0.6098403047164004 -> 62 150 -idx: 132 entropy_left: 1.212231159180624 entropy_right : 0.6500224216483541 -> 62 150 -idx: 133 entropy_left: 1.2096795274755798 entropy_right : 0.5225593745369408 -> 62 150 -idx: 134 entropy_left: 1.2080704223069119 entropy_right : 0.5435644431995964 -> 62 150 -idx: 135 entropy_left: 1.2056338170088083 entropy_right : 0.35335933502142136 -> 62 150 -idx: 137 entropy_left: 1.2022921890824148 entropy_right : 0.39124356362925566 -> 62 150 -idx: 138 entropy_left: 1.2002701176230874 entropy_right : 0 -> 62 150 -cut: 5.7 index: 68 -start: 62 cut: 68 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.1687172769890006 ent1= 0 ent2= 1.1573913563403753 -ig= 0.09023896767183293 delta= 4.609878427828848 N 88 term 0.12560024913269974 -idx: 69 entropy_left: 0 entropy_right : 1.109500797247481 -> 68 150 -idx: 70 entropy_left: 1.0 entropy_right : 1.105866621101474 -> 68 150 -idx: 71 entropy_left: 1.584962500721156 entropy_right : 1.1104593064416028 -> 68 150 -idx: 72 entropy_left: 1.5 entropy_right : 1.0511407586429597 -> 68 150 -idx: 74 entropy_left: 1.4591479170272448 entropy_right : 1.041722068095403 -> 68 150 -idx: 75 entropy_left: 1.5566567074628228 entropy_right : 1.0462881865460743 -> 68 150 -idx: 76 entropy_left: 1.5612781244591327 entropy_right : 0.9568886656798212 -> 68 150 -idx: 77 entropy_left: 1.5304930567574824 entropy_right : 0.9505668528932196 -> 68 150 -idx: 78 entropy_left: 1.5709505944546684 entropy_right : 0.9544340029249649 -> 68 150 -idx: 79 entropy_left: 1.5394847569315018 entropy_right : 0.9477073729342066 -> 68 150 -idx: 81 entropy_left: 1.5485806065228545 entropy_right : 0.9557589912150009 -> 68 150 -idx: 83 entropy_left: 1.5058231002082845 entropy_right : 0.9411864371816835 -> 68 150 -idx: 84 entropy_left: 1.5052408149441479 entropy_right : 0.9456603046006402 -> 68 150 -idx: 87 entropy_left: 1.432983121056005 entropy_right : 0.9182958340544896 -> 68 150 -idx: 88 entropy_left: 1.4406454496153462 entropy_right : 0.9235785996175947 -> 68 150 -idx: 89 entropy_left: 1.4180260055608096 entropy_right : 0.9127341558073343 -> 68 150 -idx: 91 entropy_left: 1.4219115073546411 entropy_right : 0.9238422284571814 -> 68 150 -idx: 95 entropy_left: 1.3516441151533924 entropy_right : 0.8698926856041563 -> 68 150 -idx: 97 entropy_left: 1.3610156764620025 entropy_right : 0.8835850861052532 -> 68 150 -idx: 99 entropy_left: 1.3317607101149556 entropy_right : 0.8478617451660526 -> 68 150 -idx: 101 entropy_left: 1.336894963623501 entropy_right : 0.863120568566631 -> 68 150 -idx: 102 entropy_left: 1.3251318452515368 entropy_right : 0.8426578772022391 -> 68 150 -idx: 104 entropy_left: 1.3250112108241772 entropy_right : 0.8589810370425963 -> 68 150 -idx: 105 entropy_left: 1.315700144231129 entropy_right : 0.8366407419411673 -> 68 150 -idx: 106 entropy_left: 1.3146246119280174 entropy_right : 0.8453509366224365 -> 68 150 -idx: 107 entropy_left: 1.3060830034799225 entropy_right : 0.8203636429576732 -> 68 150 -idx: 109 entropy_left: 1.3026227503285146 entropy_right : 0.8390040613676977 -> 68 150 -idx: 110 entropy_left: 1.2958363892911637 entropy_right : 0.8112781244591328 -> 68 150 -idx: 113 entropy_left: 1.2866926683547546 entropy_right : 0.8418521897563207 -> 68 150 -idx: 114 entropy_left: 1.2822348040887959 entropy_right : 0.8112781244591328 -> 68 150 -idx: 117 entropy_left: 1.2697816169827234 entropy_right : 0.8453509366224365 -> 68 150 -idx: 118 entropy_left: 1.2671379395990745 entropy_right : 0.8112781244591328 -> 68 150 -idx: 120 entropy_left: 1.2579734650037238 entropy_right : 0.8366407419411673 -> 68 150 -idx: 122 entropy_left: 1.2537259296042096 entropy_right : 0.74959525725948 -> 68 150 -idx: 127 entropy_left: 1.2312637634546426 entropy_right : 0.828055725379504 -> 68 150 -idx: 130 entropy_left: 1.22934290810027 entropy_right : 0.6098403047164004 -> 68 150 -idx: 132 entropy_left: 1.2214713865842914 entropy_right : 0.6500224216483541 -> 68 150 -idx: 133 entropy_left: 1.2208087007255004 entropy_right : 0.5225593745369408 -> 68 150 -idx: 134 entropy_left: 1.2169687714285353 entropy_right : 0.5435644431995964 -> 68 150 -idx: 135 entropy_left: 1.216307966981197 entropy_right : 0.35335933502142136 -> 68 150 -idx: 137 entropy_left: 1.2088301752949477 entropy_right : 0.39124356362925566 -> 68 150 -idx: 138 entropy_left: 1.208536257286683 entropy_right : 0 -> 68 150 -cut: 5.7 index: 69 -start: 68 cut: 69 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.1573913563403753 ent1= 0 ent2= 1.109500797247481 -ig= 0.061421056620302616 delta= 4.500184512496042 N 82 term 0.13219554287049595 -idx: 70 entropy_left: 0 entropy_right : 1.105866621101474 -> 69 150 -idx: 71 entropy_left: 1.0 entropy_right : 1.1104593064416028 -> 69 150 -idx: 72 entropy_left: 1.584962500721156 entropy_right : 1.0511407586429597 -> 69 150 -idx: 74 entropy_left: 1.3709505944546687 entropy_right : 1.041722068095403 -> 69 150 -idx: 75 entropy_left: 1.4591479170272446 entropy_right : 1.0462881865460743 -> 69 150 -idx: 76 entropy_left: 1.5566567074628228 entropy_right : 0.9568886656798212 -> 69 150 -idx: 77 entropy_left: 1.5 entropy_right : 0.9505668528932196 -> 69 150 -idx: 78 entropy_left: 1.5304930567574826 entropy_right : 0.9544340029249649 -> 69 150 -idx: 79 entropy_left: 1.4854752972273344 entropy_right : 0.9477073729342066 -> 69 150 -idx: 81 entropy_left: 1.4833557549816874 entropy_right : 0.9557589912150009 -> 69 150 -idx: 83 entropy_left: 1.4315602842833155 entropy_right : 0.9411864371816835 -> 69 150 -idx: 84 entropy_left: 1.4294732983598406 entropy_right : 0.9456603046006402 -> 69 150 -idx: 87 entropy_left: 1.3516441151533924 entropy_right : 0.9182958340544896 -> 69 150 -idx: 88 entropy_left: 1.3599924922184878 entropy_right : 0.9235785996175947 -> 69 150 -idx: 89 entropy_left: 1.3366664819166876 entropy_right : 0.9127341558073343 -> 69 150 -idx: 91 entropy_left: 1.342019217819521 entropy_right : 0.9238422284571814 -> 69 150 -idx: 95 entropy_left: 1.2722595663292235 entropy_right : 0.8698926856041563 -> 69 150 -idx: 97 entropy_left: 1.2838868242312453 entropy_right : 0.8835850861052532 -> 69 150 -idx: 99 entropy_left: 1.2555367253996503 entropy_right : 0.8478617451660526 -> 69 150 -idx: 101 entropy_left: 1.2627317300909384 entropy_right : 0.863120568566631 -> 69 150 -idx: 102 entropy_left: 1.251534532637368 entropy_right : 0.8426578772022391 -> 69 150 -idx: 104 entropy_left: 1.2532256180852694 entropy_right : 0.8589810370425963 -> 69 150 -idx: 105 entropy_left: 1.2445366211768707 entropy_right : 0.8366407419411673 -> 69 150 -idx: 106 entropy_left: 1.2443013992660277 entropy_right : 0.8453509366224365 -> 69 150 -idx: 107 entropy_left: 1.2363864108712896 entropy_right : 0.8203636429576732 -> 69 150 -idx: 109 entropy_left: 1.2344977967946407 entropy_right : 0.8390040613676977 -> 69 150 -idx: 110 entropy_left: 1.2283491776835573 entropy_right : 0.8112781244591328 -> 69 150 -idx: 113 entropy_left: 1.2213104423484806 entropy_right : 0.8418521897563207 -> 69 150 -idx: 114 entropy_left: 1.2174939521435744 entropy_right : 0.8112781244591328 -> 69 150 -idx: 117 entropy_left: 1.206908425151817 entropy_right : 0.8453509366224365 -> 69 150 -idx: 118 entropy_left: 1.2048930072454316 entropy_right : 0.8112781244591328 -> 69 150 -idx: 120 entropy_left: 1.1968693094032665 entropy_right : 0.8366407419411673 -> 69 150 -idx: 122 entropy_left: 1.193810314637982 entropy_right : 0.74959525725948 -> 69 150 -idx: 127 entropy_left: 1.1739035750178954 entropy_right : 0.828055725379504 -> 69 150 -idx: 130 entropy_left: 1.1735894123234432 entropy_right : 0.6098403047164004 -> 69 150 -idx: 132 entropy_left: 1.1666300226040138 entropy_right : 0.6500224216483541 -> 69 150 -idx: 133 entropy_left: 1.1664616437886164 entropy_right : 0.5225593745369408 -> 69 150 -idx: 134 entropy_left: 1.16305726747136 entropy_right : 0.5435644431995964 -> 69 150 -idx: 135 entropy_left: 1.1628720819225884 entropy_right : 0.35335933502142136 -> 69 150 -idx: 137 entropy_left: 1.1562272836006513 entropy_right : 0.39124356362925566 -> 69 150 -idx: 138 entropy_left: 1.1563884325185114 entropy_right : 0 -> 69 150 -cut: 5.7 index: 70 -start: 69 cut: 70 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.109500797247481 ent1= 0 ent2= 1.105866621101474 -ig= 0.017286850480593197 delta= 4.632953661336703 N 81 term 0.135245453780544 -idx: 71 entropy_left: 0 entropy_right : 1.1104593064416028 -> 70 150 -idx: 72 entropy_left: 1.0 entropy_right : 1.0511407586429597 -> 70 150 -idx: 74 entropy_left: 1.5 entropy_right : 1.041722068095403 -> 70 150 -idx: 75 entropy_left: 1.5219280948873621 entropy_right : 1.0462881865460743 -> 70 150 -idx: 76 entropy_left: 1.584962500721156 entropy_right : 0.9568886656798212 -> 70 150 -idx: 77 entropy_left: 1.5566567074628228 entropy_right : 0.9505668528932196 -> 70 150 -idx: 78 entropy_left: 1.5612781244591325 entropy_right : 0.9544340029249649 -> 70 150 -idx: 79 entropy_left: 1.5304930567574826 entropy_right : 0.9477073729342066 -> 70 150 -idx: 81 entropy_left: 1.4949188482339508 entropy_right : 0.9557589912150009 -> 70 150 -idx: 83 entropy_left: 1.4604846813131114 entropy_right : 0.9411864371816835 -> 70 150 -idx: 84 entropy_left: 1.4488156357251847 entropy_right : 0.9456603046006402 -> 70 150 -idx: 87 entropy_left: 1.3792804872910602 entropy_right : 0.9182958340544896 -> 70 150 -idx: 88 entropy_left: 1.3821022532543101 entropy_right : 0.9235785996175947 -> 70 150 -idx: 89 entropy_left: 1.3599924922184878 entropy_right : 0.9127341558073343 -> 70 150 -idx: 91 entropy_left: 1.3566695198333112 entropy_right : 0.9238422284571814 -> 70 150 -idx: 95 entropy_left: 1.290564432903234 entropy_right : 0.8698926856041563 -> 70 150 -idx: 97 entropy_left: 1.2972313275776637 entropy_right : 0.8835850861052532 -> 70 150 -idx: 99 entropy_left: 1.2699207259892868 entropy_right : 0.8478617451660526 -> 70 150 -idx: 101 entropy_left: 1.2733667511664173 entropy_right : 0.863120568566631 -> 70 150 -idx: 102 entropy_left: 1.2627317300909384 entropy_right : 0.8426578772022391 -> 70 150 -idx: 104 entropy_left: 1.2612796872684706 entropy_right : 0.8589810370425963 -> 70 150 -idx: 105 entropy_left: 1.2532256180852694 entropy_right : 0.8366407419411673 -> 70 150 -idx: 106 entropy_left: 1.2516291673878228 entropy_right : 0.8453509366224365 -> 70 150 -idx: 107 entropy_left: 1.2443013992660277 entropy_right : 0.8203636429576732 -> 70 150 -idx: 109 entropy_left: 1.2400362501086653 entropy_right : 0.8390040613676977 -> 70 150 -idx: 110 entropy_left: 1.2344977967946407 entropy_right : 0.8112781244591328 -> 70 150 -idx: 113 entropy_left: 1.2244687599090465 entropy_right : 0.8418521897563207 -> 70 150 -idx: 114 entropy_left: 1.2213104423484806 entropy_right : 0.8112781244591328 -> 70 150 -idx: 117 entropy_left: 1.2082534070890902 entropy_right : 0.8453509366224365 -> 70 150 -idx: 118 entropy_left: 1.206908425151817 entropy_right : 0.8112781244591328 -> 70 150 -idx: 120 entropy_left: 1.1974776241409462 entropy_right : 0.8366407419411673 -> 70 150 -idx: 122 entropy_left: 1.1956217818146277 entropy_right : 0.74959525725948 -> 70 150 -idx: 127 entropy_left: 1.172904301194551 entropy_right : 0.828055725379504 -> 70 150 -idx: 130 entropy_left: 1.174189792601739 entropy_right : 0.6098403047164004 -> 70 150 -idx: 132 entropy_left: 1.1663419797861878 entropy_right : 0.6500224216483541 -> 70 150 -idx: 133 entropy_left: 1.1666300226040138 entropy_right : 0.5225593745369408 -> 70 150 -idx: 134 entropy_left: 1.1628175871855553 entropy_right : 0.5435644431995964 -> 70 150 -idx: 135 entropy_left: 1.16305726747136 entropy_right : 0.35335933502142136 -> 70 150 -idx: 137 entropy_left: 1.1556601022395212 entropy_right : 0.39124356362925566 -> 70 150 -idx: 138 entropy_left: 1.1562272836006513 entropy_right : 0 -> 70 150 -cut: 5.7 index: 71 -start: 70 cut: 71 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.105866621101474 ent1= 0 ent2= 1.1104593064416028 -ig= 0.009288055990391175 delta= 4.65763424579511 N 80 term 0.13701768742465267 -idx: 72 entropy_left: 0 entropy_right : 1.0511407586429597 -> 71 150 -idx: 74 entropy_left: 0.9182958340544896 entropy_right : 1.041722068095403 -> 71 150 -idx: 75 entropy_left: 1.5 entropy_right : 1.0462881865460743 -> 71 150 -idx: 76 entropy_left: 1.5219280948873621 entropy_right : 0.9568886656798212 -> 71 150 -idx: 77 entropy_left: 1.4591479170272448 entropy_right : 0.9505668528932196 -> 71 150 -idx: 78 entropy_left: 1.5566567074628228 entropy_right : 0.9544340029249649 -> 71 150 -idx: 79 entropy_left: 1.5 entropy_right : 0.9477073729342066 -> 71 150 -idx: 81 entropy_left: 1.5219280948873621 entropy_right : 0.9557589912150009 -> 71 150 -idx: 83 entropy_left: 1.4591479170272446 entropy_right : 0.9411864371816835 -> 71 150 -idx: 84 entropy_left: 1.4604846813131114 entropy_right : 0.9456603046006402 -> 71 150 -idx: 87 entropy_left: 1.3663146570363986 entropy_right : 0.9182958340544896 -> 71 150 -idx: 88 entropy_left: 1.3792804872910602 entropy_right : 0.9235785996175947 -> 71 150 -idx: 89 entropy_left: 1.3516441151533924 entropy_right : 0.9127341558073343 -> 71 150 -idx: 91 entropy_left: 1.360964047443681 entropy_right : 0.9238422284571814 -> 71 150 -idx: 95 entropy_left: 1.280672129520887 entropy_right : 0.8698926856041563 -> 71 150 -idx: 97 entropy_left: 1.2957378005380122 entropy_right : 0.8835850861052532 -> 71 150 -idx: 99 entropy_left: 1.2638091738835462 entropy_right : 0.8478617451660526 -> 71 150 -idx: 101 entropy_left: 1.272905595320056 entropy_right : 0.863120568566631 -> 71 150 -idx: 102 entropy_left: 1.2604408810349512 entropy_right : 0.8426578772022391 -> 71 150 -idx: 104 entropy_left: 1.2628839008717194 entropy_right : 0.8589810370425963 -> 71 150 -idx: 105 entropy_left: 1.2532975784630431 entropy_right : 0.8366407419411673 -> 71 150 -idx: 106 entropy_left: 1.2532256180852694 entropy_right : 0.8453509366224365 -> 71 150 -idx: 107 entropy_left: 1.2445366211768707 entropy_right : 0.8203636429576732 -> 71 150 -idx: 109 entropy_left: 1.2427303803729566 entropy_right : 0.8390040613676977 -> 71 150 -idx: 110 entropy_left: 1.236032213759607 entropy_right : 0.8112781244591328 -> 71 150 -idx: 113 entropy_left: 1.2285763800288914 entropy_right : 0.8418521897563207 -> 71 150 -idx: 114 entropy_left: 1.2244687599090465 entropy_right : 0.8112781244591328 -> 71 150 -idx: 117 entropy_left: 1.2131143284990724 entropy_right : 0.8453509366224365 -> 71 150 -idx: 118 entropy_left: 1.2109841580748322 entropy_right : 0.8112781244591328 -> 71 150 -idx: 120 entropy_left: 1.2023853470868684 entropy_right : 0.8366407419411673 -> 71 150 -idx: 122 entropy_left: 1.1991801505660864 entropy_right : 0.74959525725948 -> 71 150 -idx: 127 entropy_left: 1.1779653169582593 entropy_right : 0.828055725379504 -> 71 150 -idx: 130 entropy_left: 1.1777501607742278 entropy_right : 0.6098403047164004 -> 71 150 -idx: 132 entropy_left: 1.170377295621679 entropy_right : 0.6500224216483541 -> 71 150 -idx: 133 entropy_left: 1.1702295713931186 entropy_right : 0.5225593745369408 -> 71 150 -idx: 134 entropy_left: 1.1666300226040138 entropy_right : 0.5435644431995964 -> 71 150 -idx: 135 entropy_left: 1.1664616437886164 entropy_right : 0.35335933502142136 -> 71 150 -idx: 137 entropy_left: 1.1594493549376441 entropy_right : 0.39124356362925566 -> 71 150 -idx: 138 entropy_left: 1.159647049243901 entropy_right : 0 -> 71 150 -cut: 5.7 index: 72 -start: 71 cut: 72 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.1104593064416028 ent1= 0 ent2= 1.0511407586429597 -ig= 0.07262412702197163 delta= 4.465900546378795 N 79 term 0.1360924400663423 -idx: 74 entropy_left: 0 entropy_right : 1.041722068095403 -> 72 150 -idx: 75 entropy_left: 0.9182958340544896 entropy_right : 1.0462881865460743 -> 72 150 -idx: 76 entropy_left: 1.5 entropy_right : 0.9568886656798212 -> 72 150 -idx: 77 entropy_left: 1.3709505944546687 entropy_right : 0.9505668528932196 -> 72 150 -idx: 78 entropy_left: 1.4591479170272446 entropy_right : 0.9544340029249649 -> 72 150 -idx: 79 entropy_left: 1.3787834934861758 entropy_right : 0.9477073729342066 -> 72 150 -idx: 81 entropy_left: 1.3921472236645345 entropy_right : 0.9557589912150009 -> 72 150 -idx: 83 entropy_left: 1.3221793455166668 entropy_right : 0.9411864371816835 -> 72 150 -idx: 84 entropy_left: 1.3250112108241772 entropy_right : 0.9456603046006402 -> 72 150 -idx: 87 entropy_left: 1.2309595631140104 entropy_right : 0.9182958340544896 -> 72 150 -idx: 88 entropy_left: 1.2475562489182657 entropy_right : 0.9235785996175947 -> 72 150 -idx: 89 entropy_left: 1.2210477851797181 entropy_right : 0.9127341558073343 -> 72 150 -idx: 91 entropy_left: 1.2363864108712896 entropy_right : 0.9238422284571814 -> 72 150 -idx: 95 entropy_left: 1.1625633078480364 entropy_right : 0.8698926856041563 -> 72 150 -idx: 97 entropy_left: 1.1829661954675212 entropy_right : 0.8835850861052532 -> 72 150 -idx: 99 entropy_left: 1.154173392945927 entropy_right : 0.8478617451660526 -> 72 150 -idx: 101 entropy_left: 1.1676516844843352 entropy_right : 0.863120568566631 -> 72 150 -idx: 102 entropy_left: 1.1566766519448637 entropy_right : 0.8426578772022391 -> 72 150 -idx: 104 entropy_left: 1.1628175871855553 entropy_right : 0.8589810370425963 -> 72 150 -idx: 105 entropy_left: 1.154648091032148 entropy_right : 0.8366407419411673 -> 72 150 -idx: 106 entropy_left: 1.1562272836006513 entropy_right : 0.8453509366224365 -> 72 150 -idx: 107 entropy_left: 1.148883540100512 entropy_right : 0.8203636429576732 -> 72 150 -idx: 109 entropy_left: 1.1500617154483042 entropy_right : 0.8390040613676977 -> 72 150 -idx: 110 entropy_left: 1.14462671873298 entropy_right : 0.8112781244591328 -> 72 150 -idx: 113 entropy_left: 1.1410367900938279 entropy_right : 0.8418521897563207 -> 72 150 -idx: 114 entropy_left: 1.1380977138239694 entropy_right : 0.8112781244591328 -> 72 150 -idx: 117 entropy_left: 1.1300621881593356 entropy_right : 0.8453509366224365 -> 72 150 -idx: 118 entropy_left: 1.1290093343324077 entropy_right : 0.8112781244591328 -> 72 150 -idx: 120 entropy_left: 1.1223812433380593 entropy_right : 0.8366407419411673 -> 72 150 -idx: 122 entropy_left: 1.1211460945412073 entropy_right : 0.74959525725948 -> 72 150 -idx: 127 entropy_left: 1.104163024696236 entropy_right : 0.828055725379504 -> 72 150 -idx: 130 entropy_left: 1.106452022253965 entropy_right : 0.6098403047164004 -> 72 150 -idx: 132 entropy_left: 1.1005245529682912 entropy_right : 0.6500224216483541 -> 72 150 -idx: 133 entropy_left: 1.1011317995692322 entropy_right : 0.5225593745369408 -> 72 150 -idx: 134 entropy_left: 1.0982133465732966 entropy_right : 0.5435644431995964 -> 72 150 -idx: 135 entropy_left: 1.0987647679835901 entropy_right : 0.35335933502142136 -> 72 150 -idx: 137 entropy_left: 1.093039283001171 entropy_right : 0.39124356362925566 -> 72 150 -idx: 138 entropy_left: 1.093914976004978 entropy_right : 0 -> 72 150 -cut: 5.8 index: 74 -start: 72 cut: 74 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.0511407586429597 ent1= 0 ent2= 1.041722068095403 -ig= 0.03612951280641341 delta= 4.615600118132054 N 78 term 0.13951777767726867 -idx: 75 entropy_left: 0 entropy_right : 1.0462881865460743 -> 74 150 -idx: 76 entropy_left: 1.0 entropy_right : 0.9568886656798212 -> 74 150 -idx: 77 entropy_left: 1.584962500721156 entropy_right : 0.9505668528932196 -> 74 150 -idx: 78 entropy_left: 1.5 entropy_right : 0.9544340029249649 -> 74 150 -idx: 79 entropy_left: 1.5219280948873621 entropy_right : 0.9477073729342066 -> 74 150 -idx: 81 entropy_left: 1.3787834934861756 entropy_right : 0.9557589912150009 -> 74 150 -idx: 83 entropy_left: 1.3921472236645345 entropy_right : 0.9411864371816835 -> 74 150 -idx: 84 entropy_left: 1.360964047443681 entropy_right : 0.9456603046006402 -> 74 150 -idx: 87 entropy_left: 1.2957378005380122 entropy_right : 0.9182958340544896 -> 74 150 -idx: 88 entropy_left: 1.2958363892911637 entropy_right : 0.9235785996175947 -> 74 150 -idx: 89 entropy_left: 1.272905595320056 entropy_right : 0.9127341558073343 -> 74 150 -idx: 91 entropy_left: 1.2639334294856335 entropy_right : 0.9238422284571814 -> 74 150 -idx: 95 entropy_left: 1.2009102795095283 entropy_right : 0.8698926856041563 -> 74 150 -idx: 97 entropy_left: 1.2088301752949477 entropy_right : 0.8835850861052532 -> 74 150 -idx: 99 entropy_left: 1.1829661954675212 entropy_right : 0.8478617451660526 -> 74 150 -idx: 101 entropy_left: 1.1873868015167897 entropy_right : 0.863120568566631 -> 74 150 -idx: 102 entropy_left: 1.1779653169582593 entropy_right : 0.8426578772022391 -> 74 150 -idx: 104 entropy_left: 1.1766796675107107 entropy_right : 0.8589810370425963 -> 74 150 -idx: 105 entropy_left: 1.1702295713931186 entropy_right : 0.8366407419411673 -> 74 150 -idx: 106 entropy_left: 1.168645033308507 entropy_right : 0.8453509366224365 -> 74 150 -idx: 107 entropy_left: 1.1628720819225884 entropy_right : 0.8203636429576732 -> 74 150 -idx: 109 entropy_left: 1.1586048283017796 entropy_right : 0.8390040613676977 -> 74 150 -idx: 110 entropy_left: 1.1547717145751626 entropy_right : 0.8112781244591328 -> 74 150 -idx: 113 entropy_left: 1.1444480669722774 entropy_right : 0.8418521897563207 -> 74 150 -idx: 114 entropy_left: 1.143198478557978 entropy_right : 0.8112781244591328 -> 74 150 -idx: 117 entropy_left: 1.1296938769174603 entropy_right : 0.8453509366224365 -> 74 150 -idx: 118 entropy_left: 1.1303296439314212 entropy_right : 0.8112781244591328 -> 74 150 -idx: 120 entropy_left: 1.1206278986197225 entropy_right : 0.8366407419411673 -> 74 150 -idx: 122 entropy_left: 1.1223812433380593 entropy_right : 0.74959525725948 -> 74 150 -idx: 127 entropy_left: 1.0993503889353484 entropy_right : 0.828055725379504 -> 74 150 -idx: 130 entropy_left: 1.1055134468321814 entropy_right : 0.6098403047164004 -> 74 150 -idx: 132 entropy_left: 1.097698154707432 entropy_right : 0.6500224216483541 -> 74 150 -idx: 133 entropy_left: 1.0993984278081397 entropy_right : 0.5225593745369408 -> 74 150 -idx: 134 entropy_left: 1.0956166187668959 entropy_right : 0.5435644431995964 -> 74 150 -idx: 135 entropy_left: 1.0971804769523517 entropy_right : 0.35335933502142136 -> 74 150 -idx: 137 entropy_left: 1.0898693179207501 entropy_right : 0.39124356362925566 -> 74 150 -idx: 138 entropy_left: 1.0917055717080197 entropy_right : 0 -> 74 150 -cut: 5.8 index: 75 -start: 74 cut: 75 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.041722068095403 ent1= 0 ent2= 1.0462881865460743 -ig= 0.00920083137230332 delta= 4.657554545126739 N 76 term 0.1432417531002976 -idx: 76 entropy_left: 0 entropy_right : 0.9568886656798212 -> 75 150 -idx: 77 entropy_left: 1.0 entropy_right : 0.9505668528932196 -> 75 150 -idx: 78 entropy_left: 1.584962500721156 entropy_right : 0.9544340029249649 -> 75 150 -idx: 79 entropy_left: 1.5 entropy_right : 0.9477073729342066 -> 75 150 -idx: 81 entropy_left: 1.4591479170272448 entropy_right : 0.9557589912150009 -> 75 150 -idx: 83 entropy_left: 1.4056390622295662 entropy_right : 0.9411864371816835 -> 75 150 -idx: 84 entropy_left: 1.3921472236645345 entropy_right : 0.9456603046006402 -> 75 150 -idx: 87 entropy_left: 1.280672129520887 entropy_right : 0.9182958340544896 -> 75 150 -idx: 88 entropy_left: 1.2957378005380122 entropy_right : 0.9235785996175947 -> 75 150 -idx: 89 entropy_left: 1.2638091738835462 entropy_right : 0.9127341558073343 -> 75 150 -idx: 91 entropy_left: 1.271782221599798 entropy_right : 0.9238422284571814 -> 75 150 -idx: 95 entropy_left: 1.1883763717345075 entropy_right : 0.8698926856041563 -> 75 150 -idx: 97 entropy_left: 1.2072100267448116 entropy_right : 0.8835850861052532 -> 75 150 -idx: 99 entropy_left: 1.1752835873133534 entropy_right : 0.8478617451660526 -> 75 150 -idx: 101 entropy_left: 1.1867198445327565 entropy_right : 0.863120568566631 -> 75 150 -idx: 102 entropy_left: 1.1749946599731707 entropy_right : 0.8426578772022391 -> 75 150 -idx: 104 entropy_left: 1.1783577099564695 entropy_right : 0.8589810370425963 -> 75 150 -idx: 105 entropy_left: 1.1700333844140454 entropy_right : 0.8366407419411673 -> 75 150 -idx: 106 entropy_left: 1.1702295713931186 entropy_right : 0.8453509366224365 -> 75 150 -idx: 107 entropy_left: 1.1628175871855553 entropy_right : 0.8203636429576732 -> 75 150 -idx: 109 entropy_left: 1.1613784794486992 entropy_right : 0.8390040613676977 -> 75 150 -idx: 110 entropy_left: 1.1561787304889202 entropy_right : 0.8112781244591328 -> 75 150 -idx: 113 entropy_left: 1.1487361244596448 entropy_right : 0.8418521897563207 -> 75 150 -idx: 114 entropy_left: 1.1463959237120882 entropy_right : 0.8112781244591328 -> 75 150 -idx: 117 entropy_left: 1.1347431759823636 entropy_right : 0.8453509366224365 -> 75 150 -idx: 118 entropy_left: 1.1344959754516843 entropy_right : 0.8112781244591328 -> 75 150 -idx: 120 entropy_left: 1.1256828315506748 entropy_right : 0.8366407419411673 -> 75 150 -idx: 122 entropy_left: 1.1259378808834186 entropy_right : 0.74959525725948 -> 75 150 -idx: 127 entropy_left: 1.1044984783580127 entropy_right : 0.828055725379504 -> 75 150 -idx: 130 entropy_left: 1.1090351025597922 entropy_right : 0.6098403047164004 -> 75 150 -idx: 132 entropy_left: 1.1017235165092814 entropy_right : 0.6500224216483541 -> 75 150 -idx: 133 entropy_left: 1.1029548176506492 entropy_right : 0.5225593745369408 -> 75 150 -idx: 134 entropy_left: 1.0993984278081397 entropy_right : 0.5435644431995964 -> 75 150 -idx: 135 entropy_left: 1.1005245529682912 entropy_right : 0.35335933502142136 -> 75 150 -idx: 137 entropy_left: 1.093620517468727 entropy_right : 0.39124356362925566 -> 75 150 -idx: 138 entropy_left: 1.0950628692122266 entropy_right : 0 -> 75 150 -cut: 5.8 index: 76 -start: 75 cut: 76 end: 150 -k= 3 k1= 1 k2= 2 ent= 1.0462881865460743 ent1= 0 ent2= 0.9568886656798212 -ig= 0.10215803640865062 delta= 3.418768961496144 N 75 term 0.12837629769500125 -idx: 77 entropy_left: 0 entropy_right : 0.9505668528932196 -> 76 150 -idx: 78 entropy_left: 1.0 entropy_right : 0.9544340029249649 -> 76 150 -idx: 79 entropy_left: 0.9182958340544896 entropy_right : 0.9477073729342066 -> 76 150 -idx: 81 entropy_left: 0.9709505944546686 entropy_right : 0.9557589912150009 -> 76 150 -idx: 83 entropy_left: 0.9852281360342516 entropy_right : 0.9411864371816835 -> 76 150 -idx: 84 entropy_left: 1.0 entropy_right : 0.9456603046006402 -> 76 150 -idx: 87 entropy_left: 0.9456603046006402 entropy_right : 0.9182958340544896 -> 76 150 -idx: 88 entropy_left: 0.9798687566511527 entropy_right : 0.9235785996175947 -> 76 150 -idx: 89 entropy_left: 0.961236604722876 entropy_right : 0.9127341558073343 -> 76 150 -idx: 91 entropy_left: 0.9967916319816366 entropy_right : 0.9238422284571814 -> 76 150 -idx: 95 entropy_left: 0.9494520153879484 entropy_right : 0.8698926856041563 -> 76 150 -idx: 97 entropy_left: 0.9852281360342516 entropy_right : 0.8835850861052532 -> 76 150 -idx: 99 entropy_left: 0.9656361333706098 entropy_right : 0.8478617451660526 -> 76 150 -idx: 101 entropy_left: 0.9895875212220557 entropy_right : 0.863120568566631 -> 76 150 -idx: 102 entropy_left: 0.9828586897127056 entropy_right : 0.8426578772022391 -> 76 150 -idx: 104 entropy_left: 0.996316519558962 entropy_right : 0.8589810370425963 -> 76 150 -idx: 105 entropy_left: 0.9922666387194963 entropy_right : 0.8366407419411673 -> 76 150 -idx: 106 entropy_left: 0.9967916319816366 entropy_right : 0.8453509366224365 -> 76 150 -idx: 107 entropy_left: 0.9932338197397066 entropy_right : 0.8203636429576732 -> 76 150 -idx: 109 entropy_left: 0.9993375041688847 entropy_right : 0.8390040613676977 -> 76 150 -idx: 110 entropy_left: 0.9975025463691153 entropy_right : 0.8112781244591328 -> 76 150 -idx: 113 entropy_left: 0.9994730201859836 entropy_right : 0.8418521897563207 -> 76 150 -idx: 114 entropy_left: 1.0 entropy_right : 0.8112781244591328 -> 76 150 -idx: 117 entropy_left: 0.9961344835095796 entropy_right : 0.8453509366224365 -> 76 150 -idx: 118 entropy_left: 0.9983636725938131 entropy_right : 0.8112781244591328 -> 76 150 -idx: 120 entropy_left: 0.9940302114769565 entropy_right : 0.8366407419411673 -> 76 150 -idx: 122 entropy_left: 0.9986359641585718 entropy_right : 0.74959525725948 -> 76 150 -idx: 127 entropy_left: 0.9863676072907088 entropy_right : 0.828055725379504 -> 76 150 -idx: 130 entropy_left: 0.9960383613659183 entropy_right : 0.6098403047164004 -> 76 150 -idx: 132 entropy_left: 0.9917033083725818 entropy_right : 0.6500224216483541 -> 76 150 -idx: 133 entropy_left: 0.9944423248022588 entropy_right : 0.5225593745369408 -> 76 150 -idx: 134 entropy_left: 0.9922666387194963 entropy_right : 0.5435644431995964 -> 76 150 -idx: 135 entropy_left: 0.9948131754904235 entropy_right : 0.35335933502142136 -> 76 150 -idx: 137 entropy_left: 0.9904799742690307 entropy_right : 0.39124356362925566 -> 76 150 -idx: 138 entropy_left: 0.9932338197397066 entropy_right : 0 -> 76 150 -cut: 5.8 index: 77 -start: 76 cut: 77 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9568886656798212 ent1= 0 ent2= 0.9505668528932196 -ig= 0.019167310798672066 delta= 2.794711296484401 N 74 term 0.12141264669411377 -idx: 78 entropy_left: 0 entropy_right : 0.9544340029249649 -> 77 150 -idx: 79 entropy_left: 1.0 entropy_right : 0.9477073729342066 -> 77 150 -idx: 81 entropy_left: 0.8112781244591328 entropy_right : 0.9557589912150009 -> 77 150 -idx: 83 entropy_left: 1.0 entropy_right : 0.9411864371816835 -> 77 150 -idx: 84 entropy_left: 0.9852281360342516 entropy_right : 0.9456603046006402 -> 77 150 -idx: 87 entropy_left: 0.9709505944546686 entropy_right : 0.9182958340544896 -> 77 150 -idx: 88 entropy_left: 0.9940302114769565 entropy_right : 0.9235785996175947 -> 77 150 -idx: 89 entropy_left: 0.9798687566511527 entropy_right : 0.9127341558073343 -> 77 150 -idx: 91 entropy_left: 1.0 entropy_right : 0.9238422284571814 -> 77 150 -idx: 95 entropy_left: 0.9640787648082292 entropy_right : 0.8698926856041563 -> 77 150 -idx: 97 entropy_left: 0.9927744539878084 entropy_right : 0.8835850861052532 -> 77 150 -idx: 99 entropy_left: 0.976020648236615 entropy_right : 0.8478617451660526 -> 77 150 -idx: 101 entropy_left: 0.9949848281859701 entropy_right : 0.863120568566631 -> 77 150 -idx: 102 entropy_left: 0.9895875212220557 entropy_right : 0.8426578772022391 -> 77 150 -idx: 104 entropy_left: 0.9990102708804813 entropy_right : 0.8589810370425963 -> 77 150 -idx: 105 entropy_left: 0.996316519558962 entropy_right : 0.8366407419411673 -> 77 150 -idx: 106 entropy_left: 0.9991421039919088 entropy_right : 0.8453509366224365 -> 77 150 -idx: 107 entropy_left: 0.9967916319816366 entropy_right : 0.8203636429576732 -> 77 150 -idx: 109 entropy_left: 1.0 entropy_right : 0.8390040613676977 -> 77 150 -idx: 110 entropy_left: 0.9993375041688847 entropy_right : 0.8112781244591328 -> 77 150 -idx: 113 entropy_left: 0.9977724720899821 entropy_right : 0.8418521897563207 -> 77 150 -idx: 114 entropy_left: 0.9994730201859836 entropy_right : 0.8112781244591328 -> 77 150 -idx: 117 entropy_left: 0.9927744539878084 entropy_right : 0.8453509366224365 -> 77 150 -idx: 118 entropy_left: 0.9961344835095796 entropy_right : 0.8112781244591328 -> 77 150 -idx: 120 entropy_left: 0.9902246902198684 entropy_right : 0.8366407419411673 -> 77 150 -idx: 122 entropy_left: 0.9967916319816366 entropy_right : 0.74959525725948 -> 77 150 -idx: 127 entropy_left: 0.9814538950336535 entropy_right : 0.828055725379504 -> 77 150 -idx: 130 entropy_left: 0.9935704757706079 entropy_right : 0.6098403047164004 -> 77 150 -idx: 132 entropy_left: 0.9882836109919162 entropy_right : 0.6500224216483541 -> 77 150 -idx: 133 entropy_left: 0.9917033083725818 entropy_right : 0.5225593745369408 -> 77 150 -idx: 134 entropy_left: 0.9890934397021431 entropy_right : 0.5435644431995964 -> 77 150 -idx: 135 entropy_left: 0.9922666387194963 entropy_right : 0.35335933502142136 -> 77 150 -idx: 137 entropy_left: 0.9871377743721863 entropy_right : 0.39124356362925566 -> 77 150 -idx: 138 entropy_left: 0.9904799742690307 entropy_right : 0 -> 77 150 -cut: 5.8 index: 78 -start: 77 cut: 78 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9505668528932196 ent1= 0 ent2= 0.9544340029249649 -ig= 0.009207288364487143 delta= 2.815089222121095 N 73 term 0.12308238662415626 -idx: 79 entropy_left: 0 entropy_right : 0.9477073729342066 -> 78 150 -idx: 81 entropy_left: 0.9182958340544896 entropy_right : 0.9557589912150009 -> 78 150 -idx: 83 entropy_left: 0.9709505944546686 entropy_right : 0.9411864371816835 -> 78 150 -idx: 84 entropy_left: 1.0 entropy_right : 0.9456603046006402 -> 78 150 -idx: 87 entropy_left: 0.9182958340544896 entropy_right : 0.9182958340544896 -> 78 150 -idx: 88 entropy_left: 0.9709505944546686 entropy_right : 0.9235785996175947 -> 78 150 -idx: 89 entropy_left: 0.9456603046006402 entropy_right : 0.9127341558073343 -> 78 150 -idx: 91 entropy_left: 0.9957274520849256 entropy_right : 0.9238422284571814 -> 78 150 -idx: 95 entropy_left: 0.9366673818775626 entropy_right : 0.8698926856041563 -> 78 150 -idx: 97 entropy_left: 0.9819407868640977 entropy_right : 0.8835850861052532 -> 78 150 -idx: 99 entropy_left: 0.9587118829771318 entropy_right : 0.8478617451660526 -> 78 150 -idx: 101 entropy_left: 0.9876925088958034 entropy_right : 0.863120568566631 -> 78 150 -idx: 102 entropy_left: 0.9798687566511527 entropy_right : 0.8426578772022391 -> 78 150 -idx: 104 entropy_left: 0.9957274520849256 entropy_right : 0.8589810370425963 -> 78 150 -idx: 105 entropy_left: 0.9910760598382222 entropy_right : 0.8366407419411673 -> 78 150 -idx: 106 entropy_left: 0.996316519558962 entropy_right : 0.8453509366224365 -> 78 150 -idx: 107 entropy_left: 0.9922666387194963 entropy_right : 0.8203636429576732 -> 78 150 -idx: 109 entropy_left: 0.9992492479956565 entropy_right : 0.8390040613676977 -> 78 150 -idx: 110 entropy_left: 0.9971803988942642 entropy_right : 0.8112781244591328 -> 78 150 -idx: 113 entropy_left: 0.9994110647387553 entropy_right : 0.8418521897563207 -> 78 150 -idx: 114 entropy_left: 1.0 entropy_right : 0.8112781244591328 -> 78 150 -idx: 117 entropy_left: 0.9957274520849256 entropy_right : 0.8453509366224365 -> 78 150 -idx: 118 entropy_left: 0.99819587904281 entropy_right : 0.8112781244591328 -> 78 150 -idx: 120 entropy_left: 0.9934472383802027 entropy_right : 0.8366407419411673 -> 78 150 -idx: 122 entropy_left: 0.9985090989176322 entropy_right : 0.74959525725948 -> 78 150 -idx: 127 entropy_left: 0.9852281360342516 entropy_right : 0.828055725379504 -> 78 150 -idx: 130 entropy_left: 0.9957274520849256 entropy_right : 0.6098403047164004 -> 78 150 -idx: 132 entropy_left: 0.9910760598382222 entropy_right : 0.6500224216483541 -> 78 150 -idx: 133 entropy_left: 0.9940302114769565 entropy_right : 0.5225593745369408 -> 78 150 -idx: 134 entropy_left: 0.9917033083725818 entropy_right : 0.5435644431995964 -> 78 150 -idx: 135 entropy_left: 0.9944423248022588 entropy_right : 0.35335933502142136 -> 78 150 -idx: 137 entropy_left: 0.9898220559635811 entropy_right : 0.39124356362925566 -> 78 150 -idx: 138 entropy_left: 0.9927744539878084 entropy_right : 0 -> 78 150 -cut: 5.8 index: 79 -start: 78 cut: 79 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9544340029249649 ent1= 0 ent2= 0.9477073729342066 -ig= 0.019889232392622302 delta= 2.7939016620760873 N 72 term 0.12421734418862179 -idx: 81 entropy_left: 0 entropy_right : 0.9557589912150009 -> 79 150 -idx: 83 entropy_left: 1.0 entropy_right : 0.9411864371816835 -> 79 150 -idx: 84 entropy_left: 0.9709505944546686 entropy_right : 0.9456603046006402 -> 79 150 -idx: 87 entropy_left: 0.9544340029249649 entropy_right : 0.9182958340544896 -> 79 150 -idx: 88 entropy_left: 0.9910760598382222 entropy_right : 0.9235785996175947 -> 79 150 -idx: 89 entropy_left: 0.9709505944546686 entropy_right : 0.9127341558073343 -> 79 150 -idx: 91 entropy_left: 1.0 entropy_right : 0.9238422284571814 -> 79 150 -idx: 95 entropy_left: 0.9544340029249649 entropy_right : 0.8698926856041563 -> 79 150 -idx: 97 entropy_left: 0.9910760598382222 entropy_right : 0.8835850861052532 -> 79 150 -idx: 99 entropy_left: 0.9709505944546686 entropy_right : 0.8478617451660526 -> 79 150 -idx: 101 entropy_left: 0.9940302114769565 entropy_right : 0.863120568566631 -> 79 150 -idx: 102 entropy_left: 0.9876925088958034 entropy_right : 0.8426578772022391 -> 79 150 -idx: 104 entropy_left: 0.9988455359952018 entropy_right : 0.8589810370425963 -> 79 150 -idx: 105 entropy_left: 0.9957274520849256 entropy_right : 0.8366407419411673 -> 79 150 -idx: 106 entropy_left: 0.9990102708804813 entropy_right : 0.8453509366224365 -> 79 150 -idx: 107 entropy_left: 0.996316519558962 entropy_right : 0.8203636429576732 -> 79 150 -idx: 109 entropy_left: 1.0 entropy_right : 0.8390040613676977 -> 79 150 -idx: 110 entropy_left: 0.9992492479956565 entropy_right : 0.8112781244591328 -> 79 150 -idx: 113 entropy_left: 0.9975025463691153 entropy_right : 0.8418521897563207 -> 79 150 -idx: 114 entropy_left: 0.9994110647387553 entropy_right : 0.8112781244591328 -> 79 150 -idx: 117 entropy_left: 0.9919924034538556 entropy_right : 0.8453509366224365 -> 79 150 -idx: 118 entropy_left: 0.9957274520849256 entropy_right : 0.8112781244591328 -> 79 150 -idx: 120 entropy_left: 0.9892452969285004 entropy_right : 0.8366407419411673 -> 79 150 -idx: 122 entropy_left: 0.996485989886783 entropy_right : 0.74959525725948 -> 79 150 -idx: 127 entropy_left: 0.9798687566511527 entropy_right : 0.828055725379504 -> 79 150 -idx: 130 entropy_left: 0.9930554830121974 entropy_right : 0.6098403047164004 -> 79 150 -idx: 132 entropy_left: 0.987380023288353 entropy_right : 0.6500224216483541 -> 79 150 -idx: 133 entropy_left: 0.9910760598382222 entropy_right : 0.5225593745369408 -> 79 150 -idx: 134 entropy_left: 0.9882836109919162 entropy_right : 0.5435644431995964 -> 79 150 -idx: 135 entropy_left: 0.9917033083725818 entropy_right : 0.35335933502142136 -> 79 150 -idx: 137 entropy_left: 0.9862325350724501 entropy_right : 0.39124356362925566 -> 79 150 -idx: 138 entropy_left: 0.9898220559635811 entropy_right : 0 -> 79 150 -cut: 5.9 index: 81 -start: 79 cut: 81 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9477073729342066 ent1= 0 ent2= 0.9557589912150009 -ig= 0.018871170204135312 delta= 2.823458158619193 N 71 term 0.12609494613470648 -idx: 83 entropy_left: 0 entropy_right : 0.9411864371816835 -> 81 150 -idx: 84 entropy_left: 0.9182958340544896 entropy_right : 0.9456603046006402 -> 81 150 -idx: 87 entropy_left: 0.6500224216483541 entropy_right : 0.9182958340544896 -> 81 150 -idx: 88 entropy_left: 0.863120568566631 entropy_right : 0.9235785996175947 -> 81 150 -idx: 89 entropy_left: 0.8112781244591328 entropy_right : 0.9127341558073343 -> 81 150 -idx: 91 entropy_left: 0.9709505944546686 entropy_right : 0.9238422284571814 -> 81 150 -idx: 95 entropy_left: 0.863120568566631 entropy_right : 0.8698926856041563 -> 81 150 -idx: 97 entropy_left: 0.9544340029249649 entropy_right : 0.8835850861052532 -> 81 150 -idx: 99 entropy_left: 0.9182958340544896 entropy_right : 0.8478617451660526 -> 81 150 -idx: 101 entropy_left: 0.9709505944546686 entropy_right : 0.863120568566631 -> 81 150 -idx: 102 entropy_left: 0.9587118829771318 entropy_right : 0.8426578772022391 -> 81 150 -idx: 104 entropy_left: 0.9876925088958034 entropy_right : 0.8589810370425963 -> 81 150 -idx: 105 entropy_left: 0.9798687566511527 entropy_right : 0.8366407419411673 -> 81 150 -idx: 106 entropy_left: 0.9895875212220557 entropy_right : 0.8453509366224365 -> 81 150 -idx: 107 entropy_left: 0.9828586897127056 entropy_right : 0.8203636429576732 -> 81 150 -idx: 109 entropy_left: 0.996316519558962 entropy_right : 0.8390040613676977 -> 81 150 -idx: 110 entropy_left: 0.9922666387194963 entropy_right : 0.8112781244591328 -> 81 150 -idx: 113 entropy_left: 1.0 entropy_right : 0.8418521897563207 -> 81 150 -idx: 114 entropy_left: 0.9993375041688847 entropy_right : 0.8112781244591328 -> 81 150 -idx: 117 entropy_left: 0.9977724720899821 entropy_right : 0.8453509366224365 -> 81 150 -idx: 118 entropy_left: 0.9994730201859836 entropy_right : 0.8112781244591328 -> 81 150 -idx: 120 entropy_left: 0.9957274520849256 entropy_right : 0.8366407419411673 -> 81 150 -idx: 122 entropy_left: 0.9995708393473224 entropy_right : 0.74959525725948 -> 81 150 -idx: 127 entropy_left: 0.9876925088958034 entropy_right : 0.828055725379504 -> 81 150 -idx: 130 entropy_left: 0.997294381646235 entropy_right : 0.6098403047164004 -> 81 150 -idx: 132 entropy_left: 0.9930554830121974 entropy_right : 0.6500224216483541 -> 81 150 -idx: 133 entropy_left: 0.9957274520849256 entropy_right : 0.5225593745369408 -> 81 150 -idx: 134 entropy_left: 0.9935704757706079 entropy_right : 0.5435644431995964 -> 81 150 -idx: 135 entropy_left: 0.9960383613659183 entropy_right : 0.35335933502142136 -> 81 150 -idx: 137 entropy_left: 0.9917033083725818 entropy_right : 0.39124356362925566 -> 81 150 -idx: 138 entropy_left: 0.9944423248022588 entropy_right : 0 -> 81 150 -cut: 5.95 index: 83 -start: 81 cut: 83 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9557589912150009 ent1= 0 ent2= 0.9411864371816835 -ig= 0.04185332032843869 delta= 2.7782098139909692 N 69 term 0.12848800949625086 -idx: 84 entropy_left: 0 entropy_right : 0.9456603046006402 -> 83 150 -idx: 87 entropy_left: 0.8112781244591328 entropy_right : 0.9182958340544896 -> 83 150 -idx: 88 entropy_left: 0.9709505944546686 entropy_right : 0.9235785996175947 -> 83 150 -idx: 89 entropy_left: 0.9182958340544896 entropy_right : 0.9127341558073343 -> 83 150 -idx: 91 entropy_left: 1.0 entropy_right : 0.9238422284571814 -> 83 150 -idx: 95 entropy_left: 0.9182958340544896 entropy_right : 0.8698926856041563 -> 83 150 -idx: 97 entropy_left: 0.9852281360342516 entropy_right : 0.8835850861052532 -> 83 150 -idx: 99 entropy_left: 0.9544340029249649 entropy_right : 0.8478617451660526 -> 83 150 -idx: 101 entropy_left: 0.9910760598382222 entropy_right : 0.863120568566631 -> 83 150 -idx: 102 entropy_left: 0.9819407868640977 entropy_right : 0.8426578772022391 -> 83 150 -idx: 104 entropy_left: 0.9983636725938131 entropy_right : 0.8589810370425963 -> 83 150 -idx: 105 entropy_left: 0.9940302114769565 entropy_right : 0.8366407419411673 -> 83 150 -idx: 106 entropy_left: 0.9986359641585718 entropy_right : 0.8453509366224365 -> 83 150 -idx: 107 entropy_left: 0.9949848281859701 entropy_right : 0.8203636429576732 -> 83 150 -idx: 109 entropy_left: 1.0 entropy_right : 0.8390040613676977 -> 83 150 -idx: 110 entropy_left: 0.9990102708804813 entropy_right : 0.8112781244591328 -> 83 150 -idx: 113 entropy_left: 0.9967916319816366 entropy_right : 0.8418521897563207 -> 83 150 -idx: 114 entropy_left: 0.9992492479956565 entropy_right : 0.8112781244591328 -> 83 150 -idx: 117 entropy_left: 0.9899927915575188 entropy_right : 0.8453509366224365 -> 83 150 -idx: 118 entropy_left: 0.9946937953613058 entropy_right : 0.8112781244591328 -> 83 150 -idx: 120 entropy_left: 0.9867867202680318 entropy_right : 0.8366407419411673 -> 83 150 -idx: 122 entropy_left: 0.9957274520849256 entropy_right : 0.74959525725948 -> 83 150 -idx: 127 entropy_left: 0.976020648236615 entropy_right : 0.828055725379504 -> 83 150 -idx: 130 entropy_left: 0.9918207974218424 entropy_right : 0.6098403047164004 -> 83 150 -idx: 132 entropy_left: 0.9852281360342516 entropy_right : 0.6500224216483541 -> 83 150 -idx: 133 entropy_left: 0.9895875212220557 entropy_right : 0.5225593745369408 -> 83 150 -idx: 134 entropy_left: 0.9863676072907088 entropy_right : 0.5435644431995964 -> 83 150 -idx: 135 entropy_left: 0.990374836448575 entropy_right : 0.35335933502142136 -> 83 150 -idx: 137 entropy_left: 0.9841095278800533 entropy_right : 0.39124356362925566 -> 83 150 -idx: 138 entropy_left: 0.9882836109919162 entropy_right : 0 -> 83 150 -cut: 6.0 index: 84 -start: 83 cut: 84 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9411864371816835 ent1= 0 ent2= 0.9456603046006402 -ig= 0.009640465485530436 delta= 2.816302656895518 N 67 term 0.1322492056157309 -idx: 87 entropy_left: 0 entropy_right : 0.9182958340544896 -> 84 150 -idx: 88 entropy_left: 0.8112781244591328 entropy_right : 0.9235785996175947 -> 84 150 -idx: 89 entropy_left: 0.7219280948873623 entropy_right : 0.9127341558073343 -> 84 150 -idx: 91 entropy_left: 0.9852281360342516 entropy_right : 0.9238422284571814 -> 84 150 -idx: 95 entropy_left: 0.8453509366224365 entropy_right : 0.8698926856041563 -> 84 150 -idx: 97 entropy_left: 0.961236604722876 entropy_right : 0.8835850861052532 -> 84 150 -idx: 99 entropy_left: 0.9182958340544896 entropy_right : 0.8478617451660526 -> 84 150 -idx: 101 entropy_left: 0.9774178175281716 entropy_right : 0.863120568566631 -> 84 150 -idx: 102 entropy_left: 0.9640787648082292 entropy_right : 0.8426578772022391 -> 84 150 -idx: 104 entropy_left: 0.9927744539878084 entropy_right : 0.8589810370425963 -> 84 150 -idx: 105 entropy_left: 0.9852281360342516 entropy_right : 0.8366407419411673 -> 84 150 -idx: 106 entropy_left: 0.9940302114769565 entropy_right : 0.8453509366224365 -> 84 150 -idx: 107 entropy_left: 0.9876925088958034 entropy_right : 0.8203636429576732 -> 84 150 -idx: 109 entropy_left: 0.9988455359952018 entropy_right : 0.8390040613676977 -> 84 150 -idx: 110 entropy_left: 0.9957274520849256 entropy_right : 0.8112781244591328 -> 84 150 -idx: 113 entropy_left: 0.9991421039919088 entropy_right : 0.8418521897563207 -> 84 150 -idx: 114 entropy_left: 1.0 entropy_right : 0.8112781244591328 -> 84 150 -idx: 117 entropy_left: 0.9940302114769565 entropy_right : 0.8453509366224365 -> 84 150 -idx: 118 entropy_left: 0.9975025463691153 entropy_right : 0.8112781244591328 -> 84 150 -idx: 120 entropy_left: 0.9910760598382222 entropy_right : 0.8366407419411673 -> 84 150 -idx: 122 entropy_left: 0.9980008838722996 entropy_right : 0.74959525725948 -> 84 150 -idx: 127 entropy_left: 0.9807983646944296 entropy_right : 0.828055725379504 -> 84 150 -idx: 130 entropy_left: 0.9945386816500111 entropy_right : 0.6098403047164004 -> 84 150 -idx: 132 entropy_left: 0.9886994082884974 entropy_right : 0.6500224216483541 -> 84 150 -idx: 133 entropy_left: 0.992476003943082 entropy_right : 0.5225593745369408 -> 84 150 -idx: 134 entropy_left: 0.9895875212220557 entropy_right : 0.5435644431995964 -> 84 150 -idx: 135 entropy_left: 0.9930554830121974 entropy_right : 0.35335933502142136 -> 84 150 -idx: 137 entropy_left: 0.987380023288353 entropy_right : 0.39124356362925566 -> 84 150 -idx: 138 entropy_left: 0.9910760598382222 entropy_right : 0 -> 84 150 -cut: 6.0 index: 87 -start: 84 cut: 87 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9456603046006402 ent1= 0 ent2= 0.9182958340544896 -ig= 0.06910519027590012 delta= 2.752625980965303 N 66 term 0.13295445142414786 -idx: 88 entropy_left: 0 entropy_right : 0.9235785996175947 -> 87 150 -idx: 89 entropy_left: 1.0 entropy_right : 0.9127341558073343 -> 87 150 -idx: 91 entropy_left: 0.8112781244591328 entropy_right : 0.9238422284571814 -> 87 150 -idx: 95 entropy_left: 0.9544340029249649 entropy_right : 0.8698926856041563 -> 87 150 -idx: 97 entropy_left: 1.0 entropy_right : 0.8835850861052532 -> 87 150 -idx: 99 entropy_left: 0.9798687566511527 entropy_right : 0.8478617451660526 -> 87 150 -idx: 101 entropy_left: 1.0 entropy_right : 0.863120568566631 -> 87 150 -idx: 102 entropy_left: 0.9967916319816366 entropy_right : 0.8426578772022391 -> 87 150 -idx: 104 entropy_left: 0.9975025463691153 entropy_right : 0.8589810370425963 -> 87 150 -idx: 105 entropy_left: 1.0 entropy_right : 0.8366407419411673 -> 87 150 -idx: 106 entropy_left: 0.9980008838722996 entropy_right : 0.8453509366224365 -> 87 150 -idx: 107 entropy_left: 1.0 entropy_right : 0.8203636429576732 -> 87 150 -idx: 109 entropy_left: 0.9940302114769565 entropy_right : 0.8390040613676977 -> 87 150 -idx: 110 entropy_left: 0.9986359641585718 entropy_right : 0.8112781244591328 -> 87 150 -idx: 113 entropy_left: 0.9828586897127056 entropy_right : 0.8418521897563207 -> 87 150 -idx: 114 entropy_left: 0.9910760598382222 entropy_right : 0.8112781244591328 -> 87 150 -idx: 117 entropy_left: 0.9709505944546686 entropy_right : 0.8453509366224365 -> 87 150 -idx: 118 entropy_left: 0.9811522341999133 entropy_right : 0.8112781244591328 -> 87 150 -idx: 120 entropy_left: 0.9672947789468944 entropy_right : 0.8366407419411673 -> 87 150 -idx: 122 entropy_left: 0.9852281360342516 entropy_right : 0.74959525725948 -> 87 150 -idx: 127 entropy_left: 0.9544340029249649 entropy_right : 0.828055725379504 -> 87 150 -idx: 130 entropy_left: 0.9807983646944296 entropy_right : 0.6098403047164004 -> 87 150 -idx: 132 entropy_left: 0.9709505944546686 entropy_right : 0.6500224216483541 -> 87 150 -idx: 133 entropy_left: 0.978070970973496 entropy_right : 0.5225593745369408 -> 87 150 -idx: 134 entropy_left: 0.9733854352299557 entropy_right : 0.5435644431995964 -> 87 150 -idx: 135 entropy_left: 0.9798687566511527 entropy_right : 0.35335933502142136 -> 87 150 -idx: 137 entropy_left: 0.9709505944546686 entropy_right : 0.39124356362925566 -> 87 150 -idx: 138 entropy_left: 0.9774178175281716 entropy_right : 0 -> 87 150 -cut: 6.0 index: 88 -start: 87 cut: 88 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9182958340544896 ent1= 0 ent2= 0.9235785996175947 -ig= 0.00937721220860277 delta= 2.8179204531838145 N 63 term 0.13923994862810618 -idx: 89 entropy_left: 0 entropy_right : 0.9127341558073343 -> 88 150 -idx: 91 entropy_left: 0.9182958340544896 entropy_right : 0.9238422284571814 -> 88 150 -idx: 95 entropy_left: 0.863120568566631 entropy_right : 0.8698926856041563 -> 88 150 -idx: 97 entropy_left: 0.9910760598382222 entropy_right : 0.8835850861052532 -> 88 150 -idx: 99 entropy_left: 0.9456603046006402 entropy_right : 0.8478617451660526 -> 88 150 -idx: 101 entropy_left: 0.9957274520849256 entropy_right : 0.863120568566631 -> 88 150 -idx: 102 entropy_left: 0.9852281360342516 entropy_right : 0.8426578772022391 -> 88 150 -idx: 104 entropy_left: 1.0 entropy_right : 0.8589810370425963 -> 88 150 -idx: 105 entropy_left: 0.9975025463691153 entropy_right : 0.8366407419411673 -> 88 150 -idx: 106 entropy_left: 1.0 entropy_right : 0.8453509366224365 -> 88 150 -idx: 107 entropy_left: 0.9980008838722996 entropy_right : 0.8203636429576732 -> 88 150 -idx: 109 entropy_left: 0.9983636725938131 entropy_right : 0.8390040613676977 -> 88 150 -idx: 110 entropy_left: 1.0 entropy_right : 0.8112781244591328 -> 88 150 -idx: 113 entropy_left: 0.9895875212220557 entropy_right : 0.8418521897563207 -> 88 150 -idx: 114 entropy_left: 0.9957274520849256 entropy_right : 0.8112781244591328 -> 88 150 -idx: 117 entropy_left: 0.9784493292686189 entropy_right : 0.8453509366224365 -> 88 150 -idx: 118 entropy_left: 0.9871377743721863 entropy_right : 0.8112781244591328 -> 88 150 -idx: 120 entropy_left: 0.9744894033980523 entropy_right : 0.8366407419411673 -> 88 150 -idx: 122 entropy_left: 0.9899927915575188 entropy_right : 0.74959525725948 -> 88 150 -idx: 127 entropy_left: 0.961236604722876 entropy_right : 0.828055725379504 -> 88 150 -idx: 130 entropy_left: 0.9852281360342516 entropy_right : 0.6098403047164004 -> 88 150 -idx: 132 entropy_left: 0.976020648236615 entropy_right : 0.6500224216483541 -> 88 150 -idx: 133 entropy_left: 0.9824740868386409 entropy_right : 0.5225593745369408 -> 88 150 -idx: 134 entropy_left: 0.978070970973496 entropy_right : 0.5435644431995964 -> 88 150 -idx: 135 entropy_left: 0.9839393951635756 entropy_right : 0.35335933502142136 -> 88 150 -idx: 137 entropy_left: 0.9755259511264972 entropy_right : 0.39124356362925566 -> 88 150 -idx: 138 entropy_left: 0.9814538950336535 entropy_right : 0 -> 88 150 -cut: 6.05 index: 89 -start: 88 cut: 89 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9235785996175947 ent1= 0 ent2= 0.9127341558073343 -ig= 0.025565962452314128 delta= 2.7856660344370834 N 62 term 0.14058715116128984 -idx: 91 entropy_left: 0 entropy_right : 0.9238422284571814 -> 89 150 -idx: 95 entropy_left: 0.9182958340544896 entropy_right : 0.8698926856041563 -> 89 150 -idx: 97 entropy_left: 1.0 entropy_right : 0.8835850861052532 -> 89 150 -idx: 99 entropy_left: 0.9709505944546686 entropy_right : 0.8478617451660526 -> 89 150 -idx: 101 entropy_left: 1.0 entropy_right : 0.863120568566631 -> 89 150 -idx: 102 entropy_left: 0.9957274520849256 entropy_right : 0.8426578772022391 -> 89 150 -idx: 104 entropy_left: 0.9967916319816366 entropy_right : 0.8589810370425963 -> 89 150 -idx: 105 entropy_left: 1.0 entropy_right : 0.8366407419411673 -> 89 150 -idx: 106 entropy_left: 0.9975025463691153 entropy_right : 0.8453509366224365 -> 89 150 -idx: 107 entropy_left: 1.0 entropy_right : 0.8203636429576732 -> 89 150 -idx: 109 entropy_left: 0.9927744539878084 entropy_right : 0.8390040613676977 -> 89 150 -idx: 110 entropy_left: 0.9983636725938131 entropy_right : 0.8112781244591328 -> 89 150 -idx: 113 entropy_left: 0.9798687566511527 entropy_right : 0.8418521897563207 -> 89 150 -idx: 114 entropy_left: 0.9895875212220557 entropy_right : 0.8112781244591328 -> 89 150 -idx: 117 entropy_left: 0.9666186325481028 entropy_right : 0.8453509366224365 -> 89 150 -idx: 118 entropy_left: 0.9784493292686189 entropy_right : 0.8112781244591328 -> 89 150 -idx: 120 entropy_left: 0.9629004147713269 entropy_right : 0.8366407419411673 -> 89 150 -idx: 122 entropy_left: 0.9833761901392237 entropy_right : 0.74959525725948 -> 89 150 -idx: 127 entropy_left: 0.9494520153879484 entropy_right : 0.828055725379504 -> 89 150 -idx: 130 entropy_left: 0.9788698505067785 entropy_right : 0.6098403047164004 -> 89 150 -idx: 132 entropy_left: 0.9681647320759548 entropy_right : 0.6500224216483541 -> 89 150 -idx: 133 entropy_left: 0.976020648236615 entropy_right : 0.5225593745369408 -> 89 150 -idx: 134 entropy_left: 0.9709505944546686 entropy_right : 0.5435644431995964 -> 89 150 -idx: 135 entropy_left: 0.978070970973496 entropy_right : 0.35335933502142136 -> 89 150 -idx: 137 entropy_left: 0.9684610087601622 entropy_right : 0.39124356362925566 -> 89 150 -idx: 138 entropy_left: 0.9755259511264972 entropy_right : 0 -> 89 150 -cut: 6.1 index: 91 -start: 89 cut: 91 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9127341558073343 ent1= 0 ent2= 0.9238422284571814 -ig= 0.019181836479896575 delta= 2.8295710673572985 N 61 term 0.14322068299943963 -idx: 95 entropy_left: 0 entropy_right : 0.8698926856041563 -> 91 150 -idx: 97 entropy_left: 0.9182958340544896 entropy_right : 0.8835850861052532 -> 91 150 -idx: 99 entropy_left: 0.8112781244591328 entropy_right : 0.8478617451660526 -> 91 150 -idx: 101 entropy_left: 0.9709505944546686 entropy_right : 0.863120568566631 -> 91 150 -idx: 102 entropy_left: 0.9456603046006402 entropy_right : 0.8426578772022391 -> 91 150 -idx: 104 entropy_left: 0.9957274520849256 entropy_right : 0.8589810370425963 -> 91 150 -idx: 105 entropy_left: 0.9852281360342516 entropy_right : 0.8366407419411673 -> 91 150 -idx: 106 entropy_left: 0.9967916319816366 entropy_right : 0.8453509366224365 -> 91 150 -idx: 107 entropy_left: 0.9886994082884974 entropy_right : 0.8203636429576732 -> 91 150 -idx: 109 entropy_left: 1.0 entropy_right : 0.8390040613676977 -> 91 150 -idx: 110 entropy_left: 0.9980008838722996 entropy_right : 0.8112781244591328 -> 91 150 -idx: 113 entropy_left: 0.9940302114769565 entropy_right : 0.8418521897563207 -> 91 150 -idx: 114 entropy_left: 0.9986359641585718 entropy_right : 0.8112781244591328 -> 91 150 -idx: 117 entropy_left: 0.9828586897127056 entropy_right : 0.8453509366224365 -> 91 150 -idx: 118 entropy_left: 0.9910760598382222 entropy_right : 0.8112781244591328 -> 91 150 -idx: 120 entropy_left: 0.9784493292686189 entropy_right : 0.8366407419411673 -> 91 150 -idx: 122 entropy_left: 0.9932338197397066 entropy_right : 0.74959525725948 -> 91 150 -idx: 127 entropy_left: 0.9640787648082292 entropy_right : 0.828055725379504 -> 91 150 -idx: 130 entropy_left: 0.9881108365218301 entropy_right : 0.6098403047164004 -> 91 150 -idx: 132 entropy_left: 0.9788698505067785 entropy_right : 0.6500224216483541 -> 91 150 -idx: 133 entropy_left: 0.9852281360342516 entropy_right : 0.5225593745369408 -> 91 150 -idx: 134 entropy_left: 0.9807983646944296 entropy_right : 0.5435644431995964 -> 91 150 -idx: 135 entropy_left: 0.9865446300055645 entropy_right : 0.35335933502142136 -> 91 150 -idx: 137 entropy_left: 0.978070970973496 entropy_right : 0.39124356362925566 -> 91 150 -idx: 138 entropy_left: 0.9839393951635756 entropy_right : 0 -> 91 150 -cut: 6.15 index: 95 -start: 91 cut: 95 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9238422284571814 ent1= 0 ent2= 0.8698926856041563 -ig= 0.11292531814822215 delta= 2.6994558363515537 N 59 term 0.14504130222845976 -idx: 97 entropy_left: 0 entropy_right : 0.8835850861052532 -> 95 150 -idx: 99 entropy_left: 1.0 entropy_right : 0.8478617451660526 -> 95 150 -idx: 101 entropy_left: 0.9182958340544896 entropy_right : 0.863120568566631 -> 95 150 -idx: 102 entropy_left: 0.9852281360342516 entropy_right : 0.8426578772022391 -> 95 150 -idx: 104 entropy_left: 0.9182958340544896 entropy_right : 0.8589810370425963 -> 95 150 -idx: 105 entropy_left: 0.9709505944546686 entropy_right : 0.8366407419411673 -> 95 150 -idx: 106 entropy_left: 0.9456603046006402 entropy_right : 0.8453509366224365 -> 95 150 -idx: 107 entropy_left: 0.9798687566511527 entropy_right : 0.8203636429576732 -> 95 150 -idx: 109 entropy_left: 0.9402859586706309 entropy_right : 0.8390040613676977 -> 95 150 -idx: 110 entropy_left: 0.9709505944546686 entropy_right : 0.8112781244591328 -> 95 150 -idx: 113 entropy_left: 0.9182958340544896 entropy_right : 0.8418521897563207 -> 95 150 -idx: 114 entropy_left: 0.9494520153879484 entropy_right : 0.8112781244591328 -> 95 150 -idx: 117 entropy_left: 0.9023932827949789 entropy_right : 0.8453509366224365 -> 95 150 -idx: 118 entropy_left: 0.9321115676166747 entropy_right : 0.8112781244591328 -> 95 150 -idx: 120 entropy_left: 0.904381457724494 entropy_right : 0.8366407419411673 -> 95 150 -idx: 122 entropy_left: 0.9509560484549725 entropy_right : 0.74959525725948 -> 95 150 -idx: 127 entropy_left: 0.8960382325345575 entropy_right : 0.828055725379504 -> 95 150 -idx: 130 entropy_left: 0.9517626756348311 entropy_right : 0.6098403047164004 -> 95 150 -idx: 132 entropy_left: 0.9352691398683566 entropy_right : 0.6500224216483541 -> 95 150 -idx: 133 entropy_left: 0.9494520153879484 entropy_right : 0.5225593745369408 -> 95 150 -idx: 134 entropy_left: 0.9418285354475157 entropy_right : 0.5435644431995964 -> 95 150 -idx: 135 entropy_left: 0.9544340029249649 entropy_right : 0.35335933502142136 -> 95 150 -idx: 137 entropy_left: 0.9402859586706309 entropy_right : 0.39124356362925566 -> 95 150 -idx: 138 entropy_left: 0.9522656254366642 entropy_right : 0 -> 95 150 -cut: 6.2 index: 97 -start: 95 cut: 97 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8698926856041563 ent1= 0 ent2= 0.8835850861052532 -ig= 0.018437966266366845 delta= 2.8347397230597977 N 55 term 0.15617504045860486 -idx: 99 entropy_left: 0 entropy_right : 0.8478617451660526 -> 97 150 -idx: 101 entropy_left: 1.0 entropy_right : 0.863120568566631 -> 97 150 -idx: 102 entropy_left: 0.9709505944546686 entropy_right : 0.8426578772022391 -> 97 150 -idx: 104 entropy_left: 0.9852281360342516 entropy_right : 0.8589810370425963 -> 97 150 -idx: 105 entropy_left: 1.0 entropy_right : 0.8366407419411673 -> 97 150 -idx: 106 entropy_left: 0.9910760598382222 entropy_right : 0.8453509366224365 -> 97 150 -idx: 107 entropy_left: 1.0 entropy_right : 0.8203636429576732 -> 97 150 -idx: 109 entropy_left: 0.9798687566511527 entropy_right : 0.8390040613676977 -> 97 150 -idx: 110 entropy_left: 0.9957274520849256 entropy_right : 0.8112781244591328 -> 97 150 -idx: 113 entropy_left: 0.9544340029249649 entropy_right : 0.8418521897563207 -> 97 150 -idx: 114 entropy_left: 0.9774178175281716 entropy_right : 0.8112781244591328 -> 97 150 -idx: 117 entropy_left: 0.934068055375491 entropy_right : 0.8453509366224365 -> 97 150 -idx: 118 entropy_left: 0.9587118829771318 entropy_right : 0.8112781244591328 -> 97 150 -idx: 120 entropy_left: 0.9321115676166747 entropy_right : 0.8366407419411673 -> 97 150 -idx: 122 entropy_left: 0.9709505944546686 entropy_right : 0.74959525725948 -> 97 150 -idx: 127 entropy_left: 0.9182958340544896 entropy_right : 0.828055725379504 -> 97 150 -idx: 130 entropy_left: 0.9672947789468944 entropy_right : 0.6098403047164004 -> 97 150 -idx: 132 entropy_left: 0.9517626756348311 entropy_right : 0.6500224216483541 -> 97 150 -idx: 133 entropy_left: 0.9640787648082292 entropy_right : 0.5225593745369408 -> 97 150 -idx: 134 entropy_left: 0.9568886656798212 entropy_right : 0.5435644431995964 -> 97 150 -idx: 135 entropy_left: 0.9677884628267679 entropy_right : 0.35335933502142136 -> 97 150 -idx: 137 entropy_left: 0.9544340029249649 entropy_right : 0.39124356362925566 -> 97 150 -idx: 138 entropy_left: 0.9649567669505688 entropy_right : 0 -> 97 150 -cut: 6.25 index: 99 -start: 97 cut: 99 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8835850861052532 ent1= 0 ent2= 0.8478617451660526 -ig= 0.06771812377565545 delta= 2.735908240179203 N 53 term 0.15917637657208103 -idx: 101 entropy_left: 0 entropy_right : 0.863120568566631 -> 99 150 -idx: 102 entropy_left: 0.9182958340544896 entropy_right : 0.8426578772022391 -> 99 150 -idx: 104 entropy_left: 0.7219280948873623 entropy_right : 0.8589810370425963 -> 99 150 -idx: 105 entropy_left: 0.9182958340544896 entropy_right : 0.8366407419411673 -> 99 150 -idx: 106 entropy_left: 0.863120568566631 entropy_right : 0.8453509366224365 -> 99 150 -idx: 107 entropy_left: 0.9544340029249649 entropy_right : 0.8203636429576732 -> 99 150 -idx: 109 entropy_left: 0.8812908992306927 entropy_right : 0.8390040613676977 -> 99 150 -idx: 110 entropy_left: 0.9456603046006402 entropy_right : 0.8112781244591328 -> 99 150 -idx: 113 entropy_left: 0.863120568566631 entropy_right : 0.8418521897563207 -> 99 150 -idx: 114 entropy_left: 0.9182958340544896 entropy_right : 0.8112781244591328 -> 99 150 -idx: 117 entropy_left: 0.8524051786494786 entropy_right : 0.8453509366224365 -> 99 150 -idx: 118 entropy_left: 0.8997437586982626 entropy_right : 0.8112781244591328 -> 99 150 -idx: 120 entropy_left: 0.863120568566631 entropy_right : 0.8366407419411673 -> 99 150 -idx: 122 entropy_left: 0.9321115676166747 entropy_right : 0.74959525725948 -> 99 150 -idx: 127 entropy_left: 0.863120568566631 entropy_right : 0.828055725379504 -> 99 150 -idx: 130 entropy_left: 0.9383153522334069 entropy_right : 0.6098403047164004 -> 99 150 -idx: 132 entropy_left: 0.9182958340544896 entropy_right : 0.6500224216483541 -> 99 150 -idx: 133 entropy_left: 0.9366673818775626 entropy_right : 0.5225593745369408 -> 99 150 -idx: 134 entropy_left: 0.9275265884316759 entropy_right : 0.5435644431995964 -> 99 150 -idx: 135 entropy_left: 0.943601631299382 entropy_right : 0.35335933502142136 -> 99 150 -idx: 137 entropy_left: 0.9268190639645772 entropy_right : 0.39124356362925566 -> 99 150 -idx: 138 entropy_left: 0.9418285354475157 entropy_right : 0 -> 99 150 -cut: 6.3 index: 101 -start: 99 cut: 101 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8478617451660526 ent1= 0 ent2= 0.863120568566631 -ig= 0.018589042033407166 delta= 2.837872568858761 N 51 term 0.16630840703202912 -idx: 102 entropy_left: 0 entropy_right : 0.8426578772022391 -> 101 150 -idx: 104 entropy_left: 0.9182958340544896 entropy_right : 0.8589810370425963 -> 101 150 -idx: 105 entropy_left: 1.0 entropy_right : 0.8366407419411673 -> 101 150 -idx: 106 entropy_left: 0.9709505944546686 entropy_right : 0.8453509366224365 -> 101 150 -idx: 107 entropy_left: 1.0 entropy_right : 0.8203636429576732 -> 101 150 -idx: 109 entropy_left: 0.9544340029249649 entropy_right : 0.8390040613676977 -> 101 150 -idx: 110 entropy_left: 0.9910760598382222 entropy_right : 0.8112781244591328 -> 101 150 -idx: 113 entropy_left: 0.9182958340544896 entropy_right : 0.8418521897563207 -> 101 150 -idx: 114 entropy_left: 0.961236604722876 entropy_right : 0.8112781244591328 -> 101 150 -idx: 117 entropy_left: 0.8960382325345575 entropy_right : 0.8453509366224365 -> 101 150 -idx: 118 entropy_left: 0.9366673818775626 entropy_right : 0.8112781244591328 -> 101 150 -idx: 120 entropy_left: 0.8997437586982626 entropy_right : 0.8366407419411673 -> 101 150 -idx: 122 entropy_left: 0.9587118829771318 entropy_right : 0.74959525725948 -> 101 150 -idx: 127 entropy_left: 0.8904916402194913 entropy_right : 0.828055725379504 -> 101 150 -idx: 130 entropy_left: 0.9575534837147482 entropy_right : 0.6098403047164004 -> 101 150 -idx: 132 entropy_left: 0.9383153522334069 entropy_right : 0.6500224216483541 -> 101 150 -idx: 133 entropy_left: 0.9544340029249649 entropy_right : 0.5225593745369408 -> 101 150 -idx: 134 entropy_left: 0.9456603046006402 entropy_right : 0.5435644431995964 -> 101 150 -idx: 135 entropy_left: 0.9596868937742169 entropy_right : 0.35335933502142136 -> 101 150 -idx: 137 entropy_left: 0.943601631299382 entropy_right : 0.39124356362925566 -> 101 150 -idx: 138 entropy_left: 0.9568886656798212 entropy_right : 0 -> 101 150 -cut: 6.3 index: 102 -start: 101 cut: 102 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.863120568566631 ent1= 0 ent2= 0.8426578772022391 -ig= 0.03765979089913152 delta= 2.7664295393288203 N 49 term 0.17043657224591788 -idx: 104 entropy_left: 0 entropy_right : 0.8589810370425963 -> 102 150 -idx: 105 entropy_left: 0.9182958340544896 entropy_right : 0.8366407419411673 -> 102 150 -idx: 106 entropy_left: 0.8112781244591328 entropy_right : 0.8453509366224365 -> 102 150 -idx: 107 entropy_left: 0.9709505944546686 entropy_right : 0.8203636429576732 -> 102 150 -idx: 109 entropy_left: 0.863120568566631 entropy_right : 0.8390040613676977 -> 102 150 -idx: 110 entropy_left: 0.9544340029249649 entropy_right : 0.8112781244591328 -> 102 150 -idx: 113 entropy_left: 0.8453509366224365 entropy_right : 0.8418521897563207 -> 102 150 -idx: 114 entropy_left: 0.9182958340544896 entropy_right : 0.8112781244591328 -> 102 150 -idx: 117 entropy_left: 0.8366407419411673 entropy_right : 0.8453509366224365 -> 102 150 -idx: 118 entropy_left: 0.8960382325345575 entropy_right : 0.8112781244591328 -> 102 150 -idx: 120 entropy_left: 0.8524051786494786 entropy_right : 0.8366407419411673 -> 102 150 -idx: 122 entropy_left: 0.934068055375491 entropy_right : 0.74959525725948 -> 102 150 -idx: 127 entropy_left: 0.8554508105601307 entropy_right : 0.828055725379504 -> 102 150 -idx: 130 entropy_left: 0.9402859586706309 entropy_right : 0.6098403047164004 -> 102 150 -idx: 132 entropy_left: 0.9182958340544896 entropy_right : 0.6500224216483541 -> 102 150 -idx: 133 entropy_left: 0.9383153522334069 entropy_right : 0.5225593745369408 -> 102 150 -idx: 134 entropy_left: 0.9283620723948678 entropy_right : 0.5435644431995964 -> 102 150 -idx: 135 entropy_left: 0.9456603046006402 entropy_right : 0.35335933502142136 -> 102 150 -idx: 137 entropy_left: 0.9275265884316759 entropy_right : 0.39124356362925566 -> 102 150 -idx: 138 entropy_left: 0.943601631299382 entropy_right : 0 -> 102 150 -cut: 6.3 index: 104 -start: 102 cut: 104 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8426578772022391 ent1= 0 ent2= 0.8589810370425963 -ig= 0.019467716703084226 delta= 2.8400012417383187 N 48 term 0.17488729361283242 -idx: 105 entropy_left: 0 entropy_right : 0.8366407419411673 -> 104 150 -idx: 106 entropy_left: 1.0 entropy_right : 0.8453509366224365 -> 104 150 -idx: 107 entropy_left: 0.9182958340544896 entropy_right : 0.8203636429576732 -> 104 150 -idx: 109 entropy_left: 0.9709505944546686 entropy_right : 0.8390040613676977 -> 104 150 -idx: 110 entropy_left: 1.0 entropy_right : 0.8112781244591328 -> 104 150 -idx: 113 entropy_left: 0.9182958340544896 entropy_right : 0.8418521897563207 -> 104 150 -idx: 114 entropy_left: 0.9709505944546686 entropy_right : 0.8112781244591328 -> 104 150 -idx: 117 entropy_left: 0.8904916402194913 entropy_right : 0.8453509366224365 -> 104 150 -idx: 118 entropy_left: 0.9402859586706309 entropy_right : 0.8112781244591328 -> 104 150 -idx: 120 entropy_left: 0.8960382325345575 entropy_right : 0.8366407419411673 -> 104 150 -idx: 122 entropy_left: 0.9640787648082292 entropy_right : 0.74959525725948 -> 104 150 -idx: 127 entropy_left: 0.8865408928220899 entropy_right : 0.828055725379504 -> 104 150 -idx: 130 entropy_left: 0.961236604722876 entropy_right : 0.6098403047164004 -> 104 150 -idx: 132 entropy_left: 0.9402859586706309 entropy_right : 0.6500224216483541 -> 104 150 -idx: 133 entropy_left: 0.9575534837147482 entropy_right : 0.5225593745369408 -> 104 150 -idx: 134 entropy_left: 0.9480782435939054 entropy_right : 0.5435644431995964 -> 104 150 -idx: 135 entropy_left: 0.9629004147713269 entropy_right : 0.35335933502142136 -> 104 150 -idx: 137 entropy_left: 0.9456603046006402 entropy_right : 0.39124356362925566 -> 104 150 -idx: 138 entropy_left: 0.9596868937742169 entropy_right : 0 -> 104 150 -cut: 6.3 index: 105 -start: 104 cut: 105 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8589810370425963 ent1= 0 ent2= 0.8366407419411673 -ig= 0.040528137317541346 delta= 2.762674331854746 N 46 term 0.17944624843879176 -idx: 106 entropy_left: 0 entropy_right : 0.8453509366224365 -> 105 150 -idx: 107 entropy_left: 1.0 entropy_right : 0.8203636429576732 -> 105 150 -idx: 109 entropy_left: 0.8112781244591328 entropy_right : 0.8390040613676977 -> 105 150 -idx: 110 entropy_left: 0.9709505944546686 entropy_right : 0.8112781244591328 -> 105 150 -idx: 113 entropy_left: 0.8112781244591328 entropy_right : 0.8418521897563207 -> 105 150 -idx: 114 entropy_left: 0.9182958340544896 entropy_right : 0.8112781244591328 -> 105 150 -idx: 117 entropy_left: 0.8112781244591328 entropy_right : 0.8453509366224365 -> 105 150 -idx: 118 entropy_left: 0.8904916402194913 entropy_right : 0.8112781244591328 -> 105 150 -idx: 120 entropy_left: 0.8366407419411673 entropy_right : 0.8366407419411673 -> 105 150 -idx: 122 entropy_left: 0.9366673818775626 entropy_right : 0.74959525725948 -> 105 150 -idx: 127 entropy_left: 0.8453509366224365 entropy_right : 0.828055725379504 -> 105 150 -idx: 130 entropy_left: 0.9426831892554922 entropy_right : 0.6098403047164004 -> 105 150 -idx: 132 entropy_left: 0.9182958340544896 entropy_right : 0.6500224216483541 -> 105 150 -idx: 133 entropy_left: 0.9402859586706309 entropy_right : 0.5225593745369408 -> 105 150 -idx: 134 entropy_left: 0.9293636260137187 entropy_right : 0.5435644431995964 -> 105 150 -idx: 135 entropy_left: 0.9480782435939054 entropy_right : 0.35335933502142136 -> 105 150 -idx: 137 entropy_left: 0.9283620723948678 entropy_right : 0.39124356362925566 -> 105 150 -idx: 138 entropy_left: 0.9456603046006402 entropy_right : 0 -> 105 150 -cut: 6.3 index: 106 -start: 105 cut: 106 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8366407419411673 ent1= 0 ent2= 0.8453509366224365 -ig= 0.010075381688118279 delta= 2.824775311420143 N 45 term 0.18409348733460978 -idx: 107 entropy_left: 0 entropy_right : 0.8203636429576732 -> 106 150 -idx: 109 entropy_left: 0.9182958340544896 entropy_right : 0.8390040613676977 -> 106 150 -idx: 110 entropy_left: 1.0 entropy_right : 0.8112781244591328 -> 106 150 -idx: 113 entropy_left: 0.863120568566631 entropy_right : 0.8418521897563207 -> 106 150 -idx: 114 entropy_left: 0.9544340029249649 entropy_right : 0.8112781244591328 -> 106 150 -idx: 117 entropy_left: 0.8453509366224365 entropy_right : 0.8453509366224365 -> 106 150 -idx: 118 entropy_left: 0.9182958340544896 entropy_right : 0.8112781244591328 -> 106 150 -idx: 120 entropy_left: 0.863120568566631 entropy_right : 0.8366407419411673 -> 106 150 -idx: 122 entropy_left: 0.9544340029249649 entropy_right : 0.74959525725948 -> 106 150 -idx: 127 entropy_left: 0.863120568566631 entropy_right : 0.828055725379504 -> 106 150 -idx: 130 entropy_left: 0.9544340029249649 entropy_right : 0.6098403047164004 -> 106 150 -idx: 132 entropy_left: 0.930586129131993 entropy_right : 0.6500224216483541 -> 106 150 -idx: 133 entropy_left: 0.9509560484549725 entropy_right : 0.5225593745369408 -> 106 150 -idx: 134 entropy_left: 0.9402859586706309 entropy_right : 0.5435644431995964 -> 106 150 -idx: 135 entropy_left: 0.9575534837147482 entropy_right : 0.35335933502142136 -> 106 150 -idx: 137 entropy_left: 0.9383153522334069 entropy_right : 0.39124356362925566 -> 106 150 -idx: 138 entropy_left: 0.9544340029249649 entropy_right : 0 -> 106 150 -cut: 6.3 index: 107 -start: 106 cut: 107 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8453509366224365 ent1= 0 ent2= 0.8203636429576732 -ig= 0.043631921913801386 delta= 2.7573803347280776 N 44 term 0.18599193385068583 -idx: 109 entropy_left: 0 entropy_right : 0.8390040613676977 -> 107 150 -idx: 110 entropy_left: 0.9182958340544896 entropy_right : 0.8112781244591328 -> 107 150 -idx: 113 entropy_left: 0.6500224216483541 entropy_right : 0.8418521897563207 -> 107 150 -idx: 114 entropy_left: 0.863120568566631 entropy_right : 0.8112781244591328 -> 107 150 -idx: 117 entropy_left: 0.7219280948873623 entropy_right : 0.8453509366224365 -> 107 150 -idx: 118 entropy_left: 0.8453509366224365 entropy_right : 0.8112781244591328 -> 107 150 -idx: 120 entropy_left: 0.7793498372920852 entropy_right : 0.8366407419411673 -> 107 150 -idx: 122 entropy_left: 0.9182958340544896 entropy_right : 0.74959525725948 -> 107 150 -idx: 127 entropy_left: 0.8112781244591328 entropy_right : 0.828055725379504 -> 107 150 -idx: 130 entropy_left: 0.9321115676166747 entropy_right : 0.6098403047164004 -> 107 150 -idx: 132 entropy_left: 0.904381457724494 entropy_right : 0.6500224216483541 -> 107 150 -idx: 133 entropy_left: 0.930586129131993 entropy_right : 0.5225593745369408 -> 107 150 -idx: 134 entropy_left: 0.9182958340544896 entropy_right : 0.5435644431995964 -> 107 150 -idx: 135 entropy_left: 0.9402859586706309 entropy_right : 0.35335933502142136 -> 107 150 -idx: 137 entropy_left: 0.9182958340544896 entropy_right : 0.39124356362925566 -> 107 150 -idx: 138 entropy_left: 0.9383153522334069 entropy_right : 0 -> 107 150 -cut: 6.4 index: 109 -start: 107 cut: 109 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8203636429576732 ent1= 0 ent2= 0.8390040613676977 -ig= 0.020383026304752083 delta= 2.8446357588776534 N 43 term 0.19155705073619567 -idx: 110 entropy_left: 0 entropy_right : 0.8112781244591328 -> 109 150 -idx: 113 entropy_left: 0.8112781244591328 entropy_right : 0.8418521897563207 -> 109 150 -idx: 114 entropy_left: 0.9709505944546686 entropy_right : 0.8112781244591328 -> 109 150 -idx: 117 entropy_left: 0.8112781244591328 entropy_right : 0.8453509366224365 -> 109 150 -idx: 118 entropy_left: 0.9182958340544896 entropy_right : 0.8112781244591328 -> 109 150 -idx: 120 entropy_left: 0.8453509366224365 entropy_right : 0.8366407419411673 -> 109 150 -idx: 122 entropy_left: 0.961236604722876 entropy_right : 0.74959525725948 -> 109 150 -idx: 127 entropy_left: 0.8524051786494786 entropy_right : 0.828055725379504 -> 109 150 -idx: 130 entropy_left: 0.9587118829771318 entropy_right : 0.6098403047164004 -> 109 150 -idx: 132 entropy_left: 0.9321115676166747 entropy_right : 0.6500224216483541 -> 109 150 -idx: 133 entropy_left: 0.9544340029249649 entropy_right : 0.5225593745369408 -> 109 150 -idx: 134 entropy_left: 0.9426831892554922 entropy_right : 0.5435644431995964 -> 109 150 -idx: 135 entropy_left: 0.961236604722876 entropy_right : 0.35335933502142136 -> 109 150 -idx: 137 entropy_left: 0.9402859586706309 entropy_right : 0.39124356362925566 -> 109 150 -idx: 138 entropy_left: 0.9575534837147482 entropy_right : 0 -> 109 150 -cut: 6.4 index: 110 -start: 109 cut: 110 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8390040613676977 ent1= 0 ent2= 0.8112781244591328 -ig= 0.04751320823683636 delta= 2.7519030482404743 N 41 term 0.19692271080799603 -idx: 113 entropy_left: 0 entropy_right : 0.8418521897563207 -> 110 150 -idx: 114 entropy_left: 0.8112781244591328 entropy_right : 0.8112781244591328 -> 110 150 -idx: 117 entropy_left: 0.5916727785823275 entropy_right : 0.8453509366224365 -> 110 150 -idx: 118 entropy_left: 0.8112781244591328 entropy_right : 0.8112781244591328 -> 110 150 -idx: 120 entropy_left: 0.7219280948873623 entropy_right : 0.8366407419411673 -> 110 150 -idx: 122 entropy_left: 0.9182958340544896 entropy_right : 0.74959525725948 -> 110 150 -idx: 127 entropy_left: 0.7871265862012691 entropy_right : 0.828055725379504 -> 110 150 -idx: 130 entropy_left: 0.934068055375491 entropy_right : 0.6098403047164004 -> 110 150 -idx: 132 entropy_left: 0.9023932827949789 entropy_right : 0.6500224216483541 -> 110 150 -idx: 133 entropy_left: 0.9321115676166747 entropy_right : 0.5225593745369408 -> 110 150 -idx: 134 entropy_left: 0.9182958340544896 entropy_right : 0.5435644431995964 -> 110 150 -idx: 135 entropy_left: 0.9426831892554922 entropy_right : 0.35335933502142136 -> 110 150 -idx: 137 entropy_left: 0.9182958340544896 entropy_right : 0.39124356362925566 -> 110 150 -idx: 138 entropy_left: 0.9402859586706309 entropy_right : 0 -> 110 150 -cut: 6.4 index: 113 -start: 110 cut: 113 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8112781244591328 ent1= 0 ent2= 0.8418521897563207 -ig= 0.03256484893453615 delta= 2.86850305265198 N 40 term 0.20384763178785575 -idx: 114 entropy_left: 0 entropy_right : 0.8112781244591328 -> 113 150 -idx: 117 entropy_left: 0.8112781244591328 entropy_right : 0.8453509366224365 -> 113 150 -idx: 118 entropy_left: 0.9709505944546686 entropy_right : 0.8112781244591328 -> 113 150 -idx: 120 entropy_left: 0.863120568566631 entropy_right : 0.8366407419411673 -> 113 150 -idx: 122 entropy_left: 0.9910760598382222 entropy_right : 0.74959525725948 -> 113 150 -idx: 127 entropy_left: 0.863120568566631 entropy_right : 0.828055725379504 -> 113 150 -idx: 130 entropy_left: 0.9774178175281716 entropy_right : 0.6098403047164004 -> 113 150 -idx: 132 entropy_left: 0.9494520153879484 entropy_right : 0.6500224216483541 -> 113 150 -idx: 133 entropy_left: 0.9709505944546686 entropy_right : 0.5225593745369408 -> 113 150 -idx: 134 entropy_left: 0.9587118829771318 entropy_right : 0.5435644431995964 -> 113 150 -idx: 135 entropy_left: 0.976020648236615 entropy_right : 0.35335933502142136 -> 113 150 -idx: 137 entropy_left: 0.9544340029249649 entropy_right : 0.39124356362925566 -> 113 150 -idx: 138 entropy_left: 0.9709505944546686 entropy_right : 0 -> 113 150 -cut: 6.4 index: 114 -start: 113 cut: 114 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8418521897563207 ent1= 0 ent2= 0.8112781244591328 -ig= 0.05250050109338056 delta= 2.746206791463228 N 37 term 0.21394950791636597 -idx: 117 entropy_left: 0 entropy_right : 0.8453509366224365 -> 114 150 -idx: 118 entropy_left: 0.8112781244591328 entropy_right : 0.8112781244591328 -> 114 150 -idx: 120 entropy_left: 0.6500224216483541 entropy_right : 0.8366407419411673 -> 114 150 -idx: 122 entropy_left: 0.9544340029249649 entropy_right : 0.74959525725948 -> 114 150 -idx: 127 entropy_left: 0.7793498372920852 entropy_right : 0.828055725379504 -> 114 150 -idx: 130 entropy_left: 0.9544340029249649 entropy_right : 0.6098403047164004 -> 114 150 -idx: 132 entropy_left: 0.9182958340544896 entropy_right : 0.6500224216483541 -> 114 150 -idx: 133 entropy_left: 0.9494520153879484 entropy_right : 0.5225593745369408 -> 114 150 -idx: 134 entropy_left: 0.934068055375491 entropy_right : 0.5435644431995964 -> 114 150 -idx: 135 entropy_left: 0.9587118829771318 entropy_right : 0.35335933502142136 -> 114 150 -idx: 137 entropy_left: 0.9321115676166747 entropy_right : 0.39124356362925566 -> 114 150 -idx: 138 entropy_left: 0.9544340029249649 entropy_right : 0 -> 114 150 -cut: 6.5 index: 117 -start: 114 cut: 117 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8112781244591328 ent1= 0 ent2= 0.8453509366224365 -ig= 0.03637309922189935 delta= 2.8755005463842114 N 36 term 0.22235509898136602 -idx: 118 entropy_left: 0 entropy_right : 0.8112781244591328 -> 117 150 -idx: 120 entropy_left: 0.9182958340544896 entropy_right : 0.8366407419411673 -> 117 150 -idx: 122 entropy_left: 0.9709505944546686 entropy_right : 0.74959525725948 -> 117 150 -idx: 127 entropy_left: 0.8812908992306927 entropy_right : 0.828055725379504 -> 117 150 -idx: 130 entropy_left: 0.9957274520849256 entropy_right : 0.6098403047164004 -> 117 150 -idx: 132 entropy_left: 0.9709505944546686 entropy_right : 0.6500224216483541 -> 117 150 -idx: 133 entropy_left: 0.9886994082884974 entropy_right : 0.5225593745369408 -> 117 150 -idx: 134 entropy_left: 0.9774178175281716 entropy_right : 0.5435644431995964 -> 117 150 -idx: 135 entropy_left: 0.9910760598382222 entropy_right : 0.35335933502142136 -> 117 150 -idx: 137 entropy_left: 0.9709505944546686 entropy_right : 0.39124356362925566 -> 117 150 -idx: 138 entropy_left: 0.9852281360342516 entropy_right : 0 -> 117 150 -cut: 6.5 index: 118 -start: 117 cut: 118 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8453509366224365 ent1= 0 ent2= 0.8112781244591328 -ig= 0.058656997752974394 delta= 2.739209297730997 N 33 term 0.23452149387063628 -idx: 120 entropy_left: 0 entropy_right : 0.8366407419411673 -> 118 150 -idx: 122 entropy_left: 1.0 entropy_right : 0.74959525725948 -> 118 150 -idx: 127 entropy_left: 0.7642045065086203 entropy_right : 0.828055725379504 -> 118 150 -idx: 130 entropy_left: 0.9798687566511527 entropy_right : 0.6098403047164004 -> 118 150 -idx: 132 entropy_left: 0.9402859586706309 entropy_right : 0.6500224216483541 -> 118 150 -idx: 133 entropy_left: 0.9709505944546686 entropy_right : 0.5225593745369408 -> 118 150 -idx: 134 entropy_left: 0.9544340029249649 entropy_right : 0.5435644431995964 -> 118 150 -idx: 135 entropy_left: 0.9774178175281716 entropy_right : 0.35335933502142136 -> 118 150 -idx: 137 entropy_left: 0.9494520153879484 entropy_right : 0.39124356362925566 -> 118 150 -idx: 138 entropy_left: 0.9709505944546686 entropy_right : 0 -> 118 150 -cut: 6.55 index: 120 -start: 118 cut: 120 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8112781244591328 ent1= 0 ent2= 0.8366407419411673 -ig= 0.02692742888928845 delta= 2.858080157021673 N 32 term 0.24413363960651716 -idx: 122 entropy_left: 0 entropy_right : 0.74959525725948 -> 120 150 -idx: 127 entropy_left: 0.863120568566631 entropy_right : 0.828055725379504 -> 120 150 -idx: 130 entropy_left: 1.0 entropy_right : 0.6098403047164004 -> 120 150 -idx: 132 entropy_left: 0.9798687566511527 entropy_right : 0.6500224216483541 -> 120 150 -idx: 133 entropy_left: 0.9957274520849256 entropy_right : 0.5225593745369408 -> 120 150 -idx: 134 entropy_left: 0.9852281360342516 entropy_right : 0.5435644431995964 -> 120 150 -idx: 135 entropy_left: 0.9967916319816366 entropy_right : 0.35335933502142136 -> 120 150 -idx: 137 entropy_left: 0.9774178175281716 entropy_right : 0.39124356362925566 -> 120 150 -idx: 138 entropy_left: 0.9910760598382222 entropy_right : 0 -> 120 150 -cut: 6.65 index: 122 -start: 120 cut: 122 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8366407419411673 ent1= 0 ent2= 0.74959525725948 -ig= 0.13701850183231934 delta= 2.6332639526942296 N 30 term 0.24970816492739342 -idx: 127 entropy_left: 0 entropy_right : 0.828055725379504 -> 122 150 -idx: 130 entropy_left: 0.9544340029249649 entropy_right : 0.6098403047164004 -> 122 150 -idx: 132 entropy_left: 0.8812908992306927 entropy_right : 0.6500224216483541 -> 122 150 -idx: 133 entropy_left: 0.9456603046006402 entropy_right : 0.5225593745369408 -> 122 150 -idx: 134 entropy_left: 0.9182958340544896 entropy_right : 0.5435644431995964 -> 122 150 -idx: 135 entropy_left: 0.961236604722876 entropy_right : 0.35335933502142136 -> 122 150 -idx: 137 entropy_left: 0.9182958340544896 entropy_right : 0.39124356362925566 -> 122 150 -idx: 138 entropy_left: 0.9544340029249649 entropy_right : 0 -> 122 150 -cut: 6.7 index: 127 -start: 122 cut: 127 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.74959525725948 ent1= 0 ent2= 0.828055725379504 -ig= 0.06940662569774458 delta= 2.9642758582976523 N 28 term 0.2756844057307543 -idx: 130 entropy_left: 0 entropy_right : 0.6098403047164004 -> 127 150 -idx: 132 entropy_left: 0.9709505944546686 entropy_right : 0.6500224216483541 -> 127 150 -idx: 133 entropy_left: 0.9182958340544896 entropy_right : 0.5225593745369408 -> 127 150 -idx: 134 entropy_left: 0.9852281360342516 entropy_right : 0.5435644431995964 -> 127 150 -idx: 135 entropy_left: 0.9544340029249649 entropy_right : 0.35335933502142136 -> 127 150 -idx: 137 entropy_left: 1.0 entropy_right : 0.39124356362925566 -> 127 150 -idx: 138 entropy_left: 0.9940302114769565 entropy_right : 0 -> 127 150 -cut: 6.75 index: 130 -start: 127 cut: 130 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.828055725379504 ent1= 0 ent2= 0.6098403047164004 -ig= 0.2977598082348081 delta= 2.370924080731397 N 23 term 0.2969719869290737 -¡Ding! 6.75 130 -idx: 132 entropy_left: 0 entropy_right : 0.6500224216483541 -> 130 150 -idx: 133 entropy_left: 0.9182958340544896 entropy_right : 0.5225593745369408 -> 130 150 -idx: 134 entropy_left: 0.8112781244591328 entropy_right : 0.5435644431995964 -> 130 150 -idx: 135 entropy_left: 0.9709505944546686 entropy_right : 0.35335933502142136 -> 130 150 -idx: 137 entropy_left: 0.863120568566631 entropy_right : 0.39124356362925566 -> 130 150 -idx: 138 entropy_left: 0.9544340029249649 entropy_right : 0 -> 130 150 -cut: 6.8 index: 132 -start: 130 cut: 132 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.6098403047164004 ent1= 0 ent2= 0.6500224216483541 -ig= 0.024820125232881685 delta= 2.887719155921512 N 20 term 0.3567823334682549 -idx: 133 entropy_left: 0 entropy_right : 0.5225593745369408 -> 132 150 -idx: 134 entropy_left: 1.0 entropy_right : 0.5435644431995964 -> 132 150 -idx: 135 entropy_left: 0.9182958340544896 entropy_right : 0.35335933502142136 -> 132 150 -idx: 137 entropy_left: 0.9709505944546686 entropy_right : 0.39124356362925566 -> 132 150 -idx: 138 entropy_left: 1.0 entropy_right : 0 -> 132 150 -cut: 6.85 index: 133 -start: 132 cut: 133 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.6500224216483541 ent1= 0 ent2= 0.5225593745369408 -ig= 0.1564941234745767 delta= 2.5524288278347775 N 18 term 0.36888287050472873 -idx: 134 entropy_left: 0 entropy_right : 0.5435644431995964 -> 133 150 -idx: 135 entropy_left: 1.0 entropy_right : 0.35335933502142136 -> 133 150 -idx: 137 entropy_left: 0.8112781244591328 entropy_right : 0.39124356362925566 -> 133 150 -idx: 138 entropy_left: 0.9709505944546686 entropy_right : 0 -> 133 150 -cut: 6.9 index: 134 -start: 133 cut: 134 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.5225593745369408 ent1= 0 ent2= 0.5435644431995964 -ig= 0.010969310349085326 delta= 2.849365059382915 N 17 term 0.4029038270225244 -idx: 135 entropy_left: 0 entropy_right : 0.35335933502142136 -> 134 150 -idx: 137 entropy_left: 0.9182958340544896 entropy_right : 0.39124356362925566 -> 134 150 -idx: 138 entropy_left: 1.0 entropy_right : 0 -> 134 150 -cut: 6.9 index: 135 -start: 134 cut: 135 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.5435644431995964 ent1= 0 ent2= 0.35335933502142136 -ig= 0.21229006661701388 delta= 2.426944705701254 N 16 term 0.39586470633186077 -idx: 137 entropy_left: 0 entropy_right : 0.39124356362925566 -> 135 150 -idx: 138 entropy_left: 0.9182958340544896 entropy_right : 0 -> 135 150 -cut: 6.95 index: 137 -start: 135 cut: 137 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.35335933502142136 ent1= 0 ent2= 0.39124356362925566 -ig= 0.01428157987606643 delta= 2.8831233792732727 N 15 term 0.44603188675539174 -idx: 138 entropy_left: 0 entropy_right : 0 -> 137 150 -cut: 7.05 index: 138 -start: 137 cut: 138 end: 150 -k= 2 k1= 1 k2= 1 ent= 0.39124356362925566 ent1= 0 ent2= 0 -ig= 0.39124356362925566 delta= 2.0248677947990927 N 13 term 0.4315254073477115 -idx: 20 entropy_left: 0 entropy_right : 1.5485806065228545 -> 0 150 -idx: 21 entropy_left: 0.2761954276479391 entropy_right : 1.549829505666378 -> 0 150 -idx: 22 entropy_left: 0.5304060778306042 entropy_right : 1.5511852922535474 -> 0 150 -idx: 24 entropy_left: 0.4971501836369671 entropy_right : 1.5419822842863982 -> 0 150 -idx: 25 entropy_left: 0.6395563653739031 entropy_right : 1.5433449229510985 -> 0 150 -idx: 29 entropy_left: 0.574828144380386 entropy_right : 1.5202013991459298 -> 0 150 -idx: 30 entropy_left: 0.6746799231474564 entropy_right : 1.521677608876836 -> 0 150 -idx: 33 entropy_left: 0.6311718053929063 entropy_right : 1.4992098113026513 -> 0 150 -idx: 34 entropy_left: 0.7085966983474103 entropy_right : 1.5007111828980744 -> 0 150 -idx: 44 entropy_left: 0.5928251064639408 entropy_right : 1.3764263022492553 -> 0 150 -idx: 45 entropy_left: 0.6531791627726858 entropy_right : 1.3779796176519241 -> 0 150 -idx: 51 entropy_left: 0.5990326006132177 entropy_right : 1.2367928607774141 -> 0 150 -idx: 52 entropy_left: 0.6496096346956632 entropy_right : 1.2377158231343603 -> 0 150 -idx: 53 entropy_left: 0.6412482850735854 entropy_right : 1.2046986815511866 -> 0 150 -idx: 58 entropy_left: 0.8211258609270055 entropy_right : 1.2056112071736118 -> 0 150 -idx: 59 entropy_left: 0.8128223064150747 entropy_right : 1.167065448996099 -> 0 150 -idx: 61 entropy_left: 0.8623538561746379 entropy_right : 1.1653351793699953 -> 0 150 -idx: 62 entropy_left: 0.9353028851500502 entropy_right : 1.1687172769890006 -> 0 150 -idx: 68 entropy_left: 1.031929035599206 entropy_right : 1.1573913563403753 -> 0 150 -idx: 69 entropy_left: 1.0246284743137688 entropy_right : 1.109500797247481 -> 0 150 -idx: 70 entropy_left: 1.036186417911213 entropy_right : 1.105866621101474 -> 0 150 -idx: 71 entropy_left: 1.0895830429620594 entropy_right : 1.1104593064416028 -> 0 150 -idx: 72 entropy_left: 1.0822273380873693 entropy_right : 1.0511407586429597 -> 0 150 -idx: 74 entropy_left: 1.1015727511177442 entropy_right : 1.041722068095403 -> 0 150 -idx: 75 entropy_left: 1.1457749842070042 entropy_right : 1.0462881865460743 -> 0 150 -idx: 76 entropy_left: 1.1387129726704701 entropy_right : 0.9568886656798212 -> 0 150 -idx: 77 entropy_left: 1.1468549240968817 entropy_right : 0.9505668528932196 -> 0 150 -idx: 78 entropy_left: 1.1848333092150132 entropy_right : 0.9544340029249649 -> 0 150 -idx: 79 entropy_left: 1.1918623939938016 entropy_right : 0.9477073729342066 -> 0 150 -idx: 81 entropy_left: 1.2548698305334247 entropy_right : 0.9557589912150009 -> 0 150 -idx: 83 entropy_left: 1.2659342914094807 entropy_right : 0.9411864371816835 -> 0 150 -idx: 84 entropy_left: 1.2922669208691815 entropy_right : 0.9456603046006402 -> 0 150 -idx: 87 entropy_left: 1.3041589171425696 entropy_right : 0.9182958340544896 -> 0 150 -idx: 88 entropy_left: 1.327572716814381 entropy_right : 0.9235785996175947 -> 0 150 -idx: 89 entropy_left: 1.330465426809402 entropy_right : 0.9127341558073343 -> 0 150 -idx: 91 entropy_left: 1.3709454625942779 entropy_right : 0.9238422284571814 -> 0 150 -idx: 95 entropy_left: 1.378063041001916 entropy_right : 0.8698926856041563 -> 0 150 -idx: 97 entropy_left: 1.4115390027326744 entropy_right : 0.8835850861052532 -> 0 150 -idx: 99 entropy_left: 1.4130351465796736 entropy_right : 0.8478617451660526 -> 0 150 -idx: 101 entropy_left: 1.4412464483479606 entropy_right : 0.863120568566631 -> 0 150 -idx: 102 entropy_left: 1.4415827640191903 entropy_right : 0.8426578772022391 -> 0 150 -idx: 104 entropy_left: 1.4655411381577925 entropy_right : 0.8589810370425963 -> 0 150 -idx: 105 entropy_left: 1.465665295753282 entropy_right : 0.8366407419411673 -> 0 150 -idx: 106 entropy_left: 1.4762911618692924 entropy_right : 0.8453509366224365 -> 0 150 -idx: 107 entropy_left: 1.4762132849962355 entropy_right : 0.8203636429576732 -> 0 150 -idx: 109 entropy_left: 1.4951379218217782 entropy_right : 0.8390040613676977 -> 0 150 -idx: 110 entropy_left: 1.4949188482339508 entropy_right : 0.8112781244591328 -> 0 150 -idx: 113 entropy_left: 1.5183041104369397 entropy_right : 0.8418521897563207 -> 0 150 -idx: 114 entropy_left: 1.51802714866133 entropy_right : 0.8112781244591328 -> 0 150 -idx: 117 entropy_left: 1.5364854516368571 entropy_right : 0.8453509366224365 -> 0 150 -idx: 118 entropy_left: 1.5361890331151247 entropy_right : 0.8112781244591328 -> 0 150 -idx: 120 entropy_left: 1.5462566034163763 entropy_right : 0.8366407419411673 -> 0 150 -idx: 122 entropy_left: 1.545378825051491 entropy_right : 0.74959525725948 -> 0 150 -idx: 127 entropy_left: 1.5644893588382582 entropy_right : 0.828055725379504 -> 0 150 -idx: 130 entropy_left: 1.562956340286807 entropy_right : 0.6098403047164004 -> 0 150 -idx: 132 entropy_left: 1.5687623685201277 entropy_right : 0.6500224216483541 -> 0 150 -idx: 133 entropy_left: 1.5680951037987416 entropy_right : 0.5225593745369408 -> 0 150 -idx: 134 entropy_left: 1.5706540443736308 entropy_right : 0.5435644431995964 -> 0 150 -idx: 135 entropy_left: 1.5699201014782036 entropy_right : 0.35335933502142136 -> 0 150 -idx: 137 entropy_left: 1.5744201314186457 entropy_right : 0.39124356362925566 -> 0 150 -idx: 138 entropy_left: 1.5736921054134685 entropy_right : 0 -> 0 150 -cut: 4.9 index: 20 -start: 0 cut: 20 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.584962500721156 ent1= 0 ent2= 1.5485806065228545 -ig= 0.24285930840134884 delta= 4.5347105071798195 N 150 term 0.07835919351761322 -¡Ding! 4.9 20 -idx: 21 entropy_left: 0 entropy_right : 1.549829505666378 -> 20 150 -idx: 22 entropy_left: 1.0 entropy_right : 1.5511852922535474 -> 20 150 -idx: 24 entropy_left: 1.5 entropy_right : 1.5419822842863982 -> 20 150 -idx: 25 entropy_left: 1.5219280948873621 entropy_right : 1.5433449229510985 -> 20 150 -idx: 29 entropy_left: 1.224394445405986 entropy_right : 1.5202013991459298 -> 20 150 -idx: 30 entropy_left: 1.295461844238322 entropy_right : 1.521677608876836 -> 20 150 -idx: 33 entropy_left: 1.1401156785146092 entropy_right : 1.4992098113026513 -> 20 150 -idx: 34 entropy_left: 1.1981174211304033 entropy_right : 1.5007111828980744 -> 20 150 -idx: 44 entropy_left: 0.8886865525783176 entropy_right : 1.3764263022492553 -> 20 150 -idx: 45 entropy_left: 0.9510456605801272 entropy_right : 1.3779796176519241 -> 20 150 -idx: 51 entropy_left: 0.8346464646189744 entropy_right : 1.2367928607774141 -> 20 150 -idx: 52 entropy_left: 0.8873068828532795 entropy_right : 1.2377158231343603 -> 20 150 -idx: 53 entropy_left: 0.8710241897828374 entropy_right : 1.2046986815511866 -> 20 150 -idx: 58 entropy_left: 1.0304227640573047 entropy_right : 1.2056112071736118 -> 20 150 -idx: 59 entropy_left: 1.0178199018513787 entropy_right : 1.167065448996099 -> 20 150 -idx: 61 entropy_left: 1.0529744706120385 entropy_right : 1.1653351793699953 -> 20 150 -idx: 62 entropy_left: 1.142610782439526 entropy_right : 1.1687172769890006 -> 20 150 -idx: 68 entropy_left: 1.1872003066827859 entropy_right : 1.1573913563403753 -> 20 150 -idx: 69 entropy_left: 1.1796779956857995 entropy_right : 1.109500797247481 -> 20 150 -idx: 70 entropy_left: 1.1829661954675215 entropy_right : 1.105866621101474 -> 20 150 -idx: 71 entropy_left: 1.2449863769220126 entropy_right : 1.1104593064416028 -> 20 150 -idx: 72 entropy_left: 1.2374609054755092 entropy_right : 1.0511407586429597 -> 20 150 -idx: 74 entropy_left: 1.2411128360359944 entropy_right : 1.041722068095403 -> 20 150 -idx: 75 entropy_left: 1.2906516322752026 entropy_right : 1.0462881865460743 -> 20 150 -idx: 76 entropy_left: 1.2838868242312453 entropy_right : 0.9568886656798212 -> 20 150 -idx: 77 entropy_left: 1.2846682096460251 entropy_right : 0.9505668528932196 -> 20 150 -idx: 78 entropy_left: 1.3259416273344056 entropy_right : 0.9544340029249649 -> 20 150 -idx: 79 entropy_left: 1.325770873768619 entropy_right : 0.9477073729342066 -> 20 150 -idx: 81 entropy_left: 1.3914372992027793 entropy_right : 0.9557589912150009 -> 20 150 -idx: 83 entropy_left: 1.3888730188280565 entropy_right : 0.9411864371816835 -> 20 150 -idx: 84 entropy_left: 1.4153413978136884 entropy_right : 0.9456603046006402 -> 20 150 -idx: 87 entropy_left: 1.4080568512494867 entropy_right : 0.9182958340544896 -> 20 150 -idx: 88 entropy_left: 1.4313232568395167 entropy_right : 0.9235785996175947 -> 20 150 -idx: 89 entropy_left: 1.4281945908435036 entropy_right : 0.9127341558073343 -> 20 150 -idx: 91 entropy_left: 1.4671107315959304 entropy_right : 0.9238422284571814 -> 20 150 -idx: 95 entropy_left: 1.4523626601521826 entropy_right : 0.8698926856041563 -> 20 150 -idx: 97 entropy_left: 1.483849257492287 entropy_right : 0.8835850861052532 -> 20 150 -idx: 99 entropy_left: 1.475556263923774 entropy_right : 0.8478617451660526 -> 20 150 -idx: 101 entropy_left: 1.5012404120907166 entropy_right : 0.863120568566631 -> 20 150 -idx: 102 entropy_left: 1.497066012780834 entropy_right : 0.8426578772022391 -> 20 150 -idx: 104 entropy_left: 1.5179917001861118 entropy_right : 0.8589810370425963 -> 20 150 -idx: 105 entropy_left: 1.5139223281333773 entropy_right : 0.8366407419411673 -> 20 150 -idx: 106 entropy_left: 1.5229320406896163 entropy_right : 0.8453509366224365 -> 20 150 -idx: 107 entropy_left: 1.518850916195339 entropy_right : 0.8203636429576732 -> 20 150 -idx: 109 entropy_left: 1.5344304388132461 entropy_right : 0.8390040613676977 -> 20 150 -idx: 110 entropy_left: 1.5304930567574824 entropy_right : 0.8112781244591328 -> 20 150 -idx: 113 entropy_left: 1.5485591696772643 entropy_right : 0.8418521897563207 -> 20 150 -idx: 114 entropy_left: 1.5449263511786133 entropy_right : 0.8112781244591328 -> 20 150 -idx: 117 entropy_left: 1.5578738449782061 entropy_right : 0.8453509366224365 -> 20 150 -idx: 118 entropy_left: 1.554551861496516 entropy_right : 0.8112781244591328 -> 20 150 -idx: 120 entropy_left: 1.5609563153489605 entropy_right : 0.8366407419411673 -> 20 150 -idx: 122 entropy_left: 1.554507235050814 entropy_right : 0.74959525725948 -> 20 150 -idx: 127 entropy_left: 1.5649556310074497 entropy_right : 0.828055725379504 -> 20 150 -idx: 130 entropy_left: 1.556474260470719 entropy_right : 0.6098403047164004 -> 20 150 -idx: 132 entropy_left: 1.559164748038155 entropy_right : 0.6500224216483541 -> 20 150 -idx: 133 entropy_left: 1.556375214663463 entropy_right : 0.5225593745369408 -> 20 150 -idx: 134 entropy_left: 1.5574319619297041 entropy_right : 0.5435644431995964 -> 20 150 -idx: 135 entropy_left: 1.554665700667645 entropy_right : 0.35335933502142136 -> 20 150 -idx: 137 entropy_left: 1.5562728756453106 entropy_right : 0.39124356362925566 -> 20 150 -idx: 138 entropy_left: 1.553653448786858 entropy_right : 0 -> 20 150 -cut: 4.9 index: 21 -start: 20 cut: 21 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.5485806065228545 ent1= 0 ent2= 1.549829505666378 -ig= 0.010672866284679339 delta= 4.647602887205295 N 130 term 0.08968330878945038 -idx: 22 entropy_left: 0 entropy_right : 1.5511852922535474 -> 21 150 -idx: 24 entropy_left: 0.9182958340544896 entropy_right : 1.5419822842863982 -> 21 150 -idx: 25 entropy_left: 1.5 entropy_right : 1.5433449229510985 -> 21 150 -idx: 29 entropy_left: 1.061278124459133 entropy_right : 1.5202013991459298 -> 21 150 -idx: 30 entropy_left: 1.224394445405986 entropy_right : 1.521677608876836 -> 21 150 -idx: 33 entropy_left: 1.0408520829727552 entropy_right : 1.4992098113026513 -> 21 150 -idx: 34 entropy_left: 1.1401156785146092 entropy_right : 1.5007111828980744 -> 21 150 -idx: 44 entropy_left: 0.8076702057269436 entropy_right : 1.3764263022492553 -> 21 150 -idx: 45 entropy_left: 0.8886865525783176 entropy_right : 1.3779796176519241 -> 21 150 -idx: 51 entropy_left: 0.7703437707962479 entropy_right : 1.2367928607774141 -> 21 150 -idx: 52 entropy_left: 0.8346464646189744 entropy_right : 1.2377158231343603 -> 21 150 -idx: 53 entropy_left: 0.8180914641842123 entropy_right : 1.2046986815511866 -> 21 150 -idx: 58 entropy_left: 1.0086232677764626 entropy_right : 1.2056112071736118 -> 21 150 -idx: 59 entropy_left: 0.9952632106202363 entropy_right : 1.167065448996099 -> 21 150 -idx: 61 entropy_left: 1.0368902807106744 entropy_right : 1.1653351793699953 -> 21 150 -idx: 62 entropy_left: 1.1282468200554612 entropy_right : 1.1687172769890006 -> 21 150 -idx: 68 entropy_left: 1.1835119881802911 entropy_right : 1.1573913563403753 -> 21 150 -idx: 69 entropy_left: 1.1752835873133531 entropy_right : 1.109500797247481 -> 21 150 -idx: 70 entropy_left: 1.1796779956857995 entropy_right : 1.105866621101474 -> 21 150 -idx: 71 entropy_left: 1.2424272282706346 entropy_right : 1.1104593064416028 -> 21 150 -idx: 72 entropy_left: 1.2342496730246098 entropy_right : 1.0511407586429597 -> 21 150 -idx: 74 entropy_left: 1.23971286514401 entropy_right : 1.041722068095403 -> 21 150 -idx: 75 entropy_left: 1.2897001922180324 entropy_right : 1.0462881865460743 -> 21 150 -idx: 76 entropy_left: 1.2823527363135774 entropy_right : 0.9568886656798212 -> 21 150 -idx: 77 entropy_left: 1.2838868242312453 entropy_right : 0.9505668528932196 -> 21 150 -idx: 78 entropy_left: 1.3254539799066205 entropy_right : 0.9544340029249649 -> 21 150 -idx: 79 entropy_left: 1.3259416273344056 entropy_right : 0.9477073729342066 -> 21 150 -idx: 81 entropy_left: 1.3918884737423507 entropy_right : 0.9557589912150009 -> 21 150 -idx: 83 entropy_left: 1.3904123254348284 entropy_right : 0.9411864371816835 -> 21 150 -idx: 84 entropy_left: 1.4169128979027155 entropy_right : 0.9456603046006402 -> 21 150 -idx: 87 entropy_left: 1.410869033208931 entropy_right : 0.9182958340544896 -> 21 150 -idx: 88 entropy_left: 1.4341193292809176 entropy_right : 0.9235785996175947 -> 21 150 -idx: 89 entropy_left: 1.4313232568395167 entropy_right : 0.9127341558073343 -> 21 150 -idx: 91 entropy_left: 1.4701128093454605 entropy_right : 0.9238422284571814 -> 21 150 -idx: 95 entropy_left: 1.4564064519519933 entropy_right : 0.8698926856041563 -> 21 150 -idx: 97 entropy_left: 1.4876980378788656 entropy_right : 0.8835850861052532 -> 21 150 -idx: 99 entropy_left: 1.479795298385792 entropy_right : 0.8478617451660526 -> 21 150 -idx: 101 entropy_left: 1.5052408149441479 entropy_right : 0.863120568566631 -> 21 150 -idx: 102 entropy_left: 1.5012404120907166 entropy_right : 0.8426578772022391 -> 21 150 -idx: 104 entropy_left: 1.5218962238597613 entropy_right : 0.8589810370425963 -> 21 150 -idx: 105 entropy_left: 1.5179917001861118 entropy_right : 0.8366407419411673 -> 21 150 -idx: 106 entropy_left: 1.5268598488143097 entropy_right : 0.8453509366224365 -> 21 150 -idx: 107 entropy_left: 1.5229320406896163 entropy_right : 0.8203636429576732 -> 21 150 -idx: 109 entropy_left: 1.538221104127535 entropy_right : 0.8390040613676977 -> 21 150 -idx: 110 entropy_left: 1.5344304388132461 entropy_right : 0.8112781244591328 -> 21 150 -idx: 113 entropy_left: 1.5520475061309855 entropy_right : 0.8418521897563207 -> 21 150 -idx: 114 entropy_left: 1.5485591696772643 entropy_right : 0.8112781244591328 -> 21 150 -idx: 117 entropy_left: 1.5610533930605475 entropy_right : 0.8453509366224365 -> 21 150 -idx: 118 entropy_left: 1.5578738449782061 entropy_right : 0.8112781244591328 -> 21 150 -idx: 120 entropy_left: 1.5639799748754695 entropy_right : 0.8366407419411673 -> 21 150 -idx: 122 entropy_left: 1.5577952437611147 entropy_right : 0.74959525725948 -> 21 150 -idx: 127 entropy_left: 1.5675326407964567 entropy_right : 0.828055725379504 -> 21 150 -idx: 130 entropy_left: 1.559417592797962 entropy_right : 0.6098403047164004 -> 21 150 -idx: 132 entropy_left: 1.5618440335577457 entropy_right : 0.6500224216483541 -> 21 150 -idx: 133 entropy_left: 1.559164748038155 entropy_right : 0.5225593745369408 -> 21 150 -idx: 134 entropy_left: 1.5600931752556502 entropy_right : 0.5435644431995964 -> 21 150 -idx: 135 entropy_left: 1.5574319619297041 entropy_right : 0.35335933502142136 -> 21 150 -idx: 137 entropy_left: 1.55878993121613 entropy_right : 0.39124356362925566 -> 21 150 -idx: 138 entropy_left: 1.5562728756453106 entropy_right : 0 -> 21 150 -cut: 4.95 index: 22 -start: 21 cut: 22 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.549829505666378 ent1= 0 ent2= 1.5511852922535474 -ig= 0.01066890560084266 delta= 4.647923549536232 N 129 term 0.09029398100415684 -idx: 24 entropy_left: 0 entropy_right : 1.5419822842863982 -> 22 150 -idx: 25 entropy_left: 0.9182958340544896 entropy_right : 1.5433449229510985 -> 22 150 -idx: 29 entropy_left: 0.5916727785823275 entropy_right : 1.5202013991459298 -> 22 150 -idx: 30 entropy_left: 0.8112781244591328 entropy_right : 1.521677608876836 -> 22 150 -idx: 33 entropy_left: 0.6840384356390417 entropy_right : 1.4992098113026513 -> 22 150 -idx: 34 entropy_left: 0.8112781244591328 entropy_right : 1.5007111828980744 -> 22 150 -idx: 44 entropy_left: 0.5746356978376794 entropy_right : 1.3764263022492553 -> 22 150 -idx: 45 entropy_left: 0.6665783579949205 entropy_right : 1.3779796176519241 -> 22 150 -idx: 51 entropy_left: 0.5787946246321198 entropy_right : 1.2367928607774141 -> 22 150 -idx: 52 entropy_left: 0.6500224216483541 entropy_right : 1.2377158231343603 -> 22 150 -idx: 53 entropy_left: 0.6373874992221911 entropy_right : 1.2046986815511866 -> 22 150 -idx: 58 entropy_left: 0.8524051786494786 entropy_right : 1.2056112071736118 -> 22 150 -idx: 59 entropy_left: 0.8418521897563207 entropy_right : 1.167065448996099 -> 22 150 -idx: 61 entropy_left: 0.8904916402194913 entropy_right : 1.1653351793699953 -> 22 150 -idx: 62 entropy_left: 1.0368902807106744 entropy_right : 1.1687172769890006 -> 22 150 -idx: 68 entropy_left: 1.1009399433532026 entropy_right : 1.1573913563403753 -> 22 150 -idx: 69 entropy_left: 1.093640174154775 entropy_right : 1.109500797247481 -> 22 150 -idx: 70 entropy_left: 1.0992008221161345 entropy_right : 1.105866621101474 -> 22 150 -idx: 71 entropy_left: 1.1796779956857995 entropy_right : 1.1104593064416028 -> 22 150 -idx: 72 entropy_left: 1.1720147574921704 entropy_right : 1.0511407586429597 -> 22 150 -idx: 74 entropy_left: 1.1788990501208314 entropy_right : 1.041722068095403 -> 22 150 -idx: 75 entropy_left: 1.23971286514401 entropy_right : 1.0462881865460743 -> 22 150 -idx: 76 entropy_left: 1.2326602568158207 entropy_right : 0.9568886656798212 -> 22 150 -idx: 77 entropy_left: 1.2346487866075768 entropy_right : 0.9505668528932196 -> 22 150 -idx: 78 entropy_left: 1.2838868242312453 entropy_right : 0.9544340029249649 -> 22 150 -idx: 79 entropy_left: 1.2846682096460251 entropy_right : 0.9477073729342066 -> 22 150 -idx: 81 entropy_left: 1.3613139330585569 entropy_right : 0.9557589912150009 -> 22 150 -idx: 83 entropy_left: 1.3600340979407453 entropy_right : 0.9411864371816835 -> 22 150 -idx: 84 entropy_left: 1.3904123254348284 entropy_right : 0.9456603046006402 -> 22 150 -idx: 87 entropy_left: 1.3844579647165822 entropy_right : 0.9182958340544896 -> 22 150 -idx: 88 entropy_left: 1.410869033208931 entropy_right : 0.9235785996175947 -> 22 150 -idx: 89 entropy_left: 1.4080568512494867 entropy_right : 0.9127341558073343 -> 22 150 -idx: 91 entropy_left: 1.4518947803168825 entropy_right : 0.9238422284571814 -> 22 150 -idx: 95 entropy_left: 1.4378929868805908 entropy_right : 0.8698926856041563 -> 22 150 -idx: 97 entropy_left: 1.472935039619369 entropy_right : 0.8835850861052532 -> 22 150 -idx: 99 entropy_left: 1.4648232488769368 entropy_right : 0.8478617451660526 -> 22 150 -idx: 101 entropy_left: 1.4932162877956365 entropy_right : 0.863120568566631 -> 22 150 -idx: 102 entropy_left: 1.4890907595250464 entropy_right : 0.8426578772022391 -> 22 150 -idx: 104 entropy_left: 1.5121371519329765 entropy_right : 0.8589810370425963 -> 22 150 -idx: 105 entropy_left: 1.508093739822507 entropy_right : 0.8366407419411673 -> 22 150 -idx: 106 entropy_left: 1.5179917001861118 entropy_right : 0.8453509366224365 -> 22 150 -idx: 107 entropy_left: 1.5139223281333773 entropy_right : 0.8203636429576732 -> 22 150 -idx: 109 entropy_left: 1.5310057241873496 entropy_right : 0.8390040613676977 -> 22 150 -idx: 110 entropy_left: 1.5270676736451225 entropy_right : 0.8112781244591328 -> 22 150 -idx: 113 entropy_left: 1.5468616730129405 entropy_right : 0.8418521897563207 -> 22 150 -idx: 114 entropy_left: 1.5432213335160283 entropy_right : 0.8112781244591328 -> 22 150 -idx: 117 entropy_left: 1.5574319619297041 entropy_right : 0.8453509366224365 -> 22 150 -idx: 118 entropy_left: 1.5541004715340199 entropy_right : 0.8112781244591328 -> 22 150 -idx: 120 entropy_left: 1.5611556337477528 entropy_right : 0.8366407419411673 -> 22 150 -idx: 122 entropy_left: 1.5546755409861306 entropy_right : 0.74959525725948 -> 22 150 -idx: 127 entropy_left: 1.566282638423782 entropy_right : 0.828055725379504 -> 22 150 -idx: 130 entropy_left: 1.5577526146923748 entropy_right : 0.6098403047164004 -> 22 150 -idx: 132 entropy_left: 1.5607751276211168 entropy_right : 0.6500224216483541 -> 22 150 -idx: 133 entropy_left: 1.5579642402274387 entropy_right : 0.5225593745369408 -> 22 150 -idx: 134 entropy_left: 1.559164748038155 entropy_right : 0.5435644431995964 -> 22 150 -idx: 135 entropy_left: 1.556375214663463 entropy_right : 0.35335933502142136 -> 22 150 -idx: 137 entropy_left: 1.558231855890965 entropy_right : 0.39124356362925566 -> 22 150 -idx: 138 entropy_left: 1.5555906954881595 entropy_right : 0 -> 22 150 -cut: 5.0 index: 24 -start: 22 cut: 24 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.5511852922535474 ent1= 0 ent2= 1.5419822842863982 -ig= 0.033296481159124314 delta= 4.616247165873277 N 128 term 0.09066353009879252 -idx: 25 entropy_left: 0 entropy_right : 1.5433449229510985 -> 24 150 -idx: 29 entropy_left: 0.7219280948873623 entropy_right : 1.5202013991459298 -> 24 150 -idx: 30 entropy_left: 0.9182958340544896 entropy_right : 1.521677608876836 -> 24 150 -idx: 33 entropy_left: 0.7642045065086203 entropy_right : 1.4992098113026513 -> 24 150 -idx: 34 entropy_left: 0.8812908992306927 entropy_right : 1.5007111828980744 -> 24 150 -idx: 44 entropy_left: 0.6098403047164004 entropy_right : 1.3764263022492553 -> 24 150 -idx: 45 entropy_left: 0.7024665512903903 entropy_right : 1.3779796176519241 -> 24 150 -idx: 51 entropy_left: 0.6051865766334206 entropy_right : 1.2367928607774141 -> 24 150 -idx: 52 entropy_left: 0.676941869780886 entropy_right : 1.2377158231343603 -> 24 150 -idx: 53 entropy_left: 0.6631968402398287 entropy_right : 1.2046986815511866 -> 24 150 -idx: 58 entropy_left: 0.8739810481273578 entropy_right : 1.2056112071736118 -> 24 150 -idx: 59 entropy_left: 0.863120568566631 entropy_right : 1.167065448996099 -> 24 150 -idx: 61 entropy_left: 0.9090221560878149 entropy_right : 1.1653351793699953 -> 24 150 -idx: 62 entropy_left: 1.0606655462587962 entropy_right : 1.1687172769890006 -> 24 150 -idx: 68 entropy_left: 1.1149985556752577 entropy_right : 1.1573913563403753 -> 24 150 -idx: 69 entropy_left: 1.1080734808267854 entropy_right : 1.109500797247481 -> 24 150 -idx: 70 entropy_left: 1.1122129250331756 entropy_right : 1.105866621101474 -> 24 150 -idx: 71 entropy_left: 1.194545119186222 entropy_right : 1.1104593064416028 -> 24 150 -idx: 72 entropy_left: 1.1872003066827859 entropy_right : 1.0511407586429597 -> 24 150 -idx: 74 entropy_left: 1.1914436210393724 entropy_right : 1.041722068095403 -> 24 150 -idx: 75 entropy_left: 1.2532975784630431 entropy_right : 1.0462881865460743 -> 24 150 -idx: 76 entropy_left: 1.2466033489462778 entropy_right : 0.9568886656798212 -> 24 150 -idx: 77 entropy_left: 1.2473860973972195 entropy_right : 0.9505668528932196 -> 24 150 -idx: 78 entropy_left: 1.297231327577664 entropy_right : 0.9544340029249649 -> 24 150 -idx: 79 entropy_left: 1.2968531170351285 entropy_right : 0.9477073729342066 -> 24 150 -idx: 81 entropy_left: 1.3739840876515639 entropy_right : 0.9557589912150009 -> 24 150 -idx: 83 entropy_left: 1.3705732601023841 entropy_right : 0.9411864371816835 -> 24 150 -idx: 84 entropy_left: 1.4009934786687808 entropy_right : 0.9456603046006402 -> 24 150 -idx: 87 entropy_left: 1.3921472236645345 entropy_right : 0.9182958340544896 -> 24 150 -idx: 88 entropy_left: 1.4185644431995963 entropy_right : 0.9235785996175947 -> 24 150 -idx: 89 entropy_left: 1.4148695564698006 entropy_right : 0.9127341558073343 -> 24 150 -idx: 91 entropy_left: 1.4585269870967856 entropy_right : 0.9238422284571814 -> 24 150 -idx: 95 entropy_left: 1.4414340954861538 entropy_right : 0.8698926856041563 -> 24 150 -idx: 97 entropy_left: 1.4762561511389796 entropy_right : 0.8835850861052532 -> 24 150 -idx: 99 entropy_left: 1.4668134449046726 entropy_right : 0.8478617451660526 -> 24 150 -idx: 101 entropy_left: 1.4949188482339508 entropy_right : 0.863120568566631 -> 24 150 -idx: 102 entropy_left: 1.4901944396527276 entropy_right : 0.8426578772022391 -> 24 150 -idx: 104 entropy_left: 1.5128876215181606 entropy_right : 0.8589810370425963 -> 24 150 -idx: 105 entropy_left: 1.5082979986144511 entropy_right : 0.8366407419411673 -> 24 150 -idx: 106 entropy_left: 1.5180083381895495 entropy_right : 0.8453509366224365 -> 24 150 -idx: 107 entropy_left: 1.5134243514707206 entropy_right : 0.8203636429576732 -> 24 150 -idx: 109 entropy_left: 1.530122629268322 entropy_right : 0.8390040613676977 -> 24 150 -idx: 110 entropy_left: 1.5257153697175778 entropy_right : 0.8112781244591328 -> 24 150 -idx: 113 entropy_left: 1.54490062239043 entropy_right : 0.8418521897563207 -> 24 150 -idx: 114 entropy_left: 1.5408469049615863 entropy_right : 0.8112781244591328 -> 24 150 -idx: 117 entropy_left: 1.5544333664039933 entropy_right : 0.8453509366224365 -> 24 150 -idx: 118 entropy_left: 1.5507380564508026 entropy_right : 0.8112781244591328 -> 24 150 -idx: 120 entropy_left: 1.557384036498573 entropy_right : 0.8366407419411673 -> 24 150 -idx: 122 entropy_left: 1.5502477540313635 entropy_right : 0.74959525725948 -> 24 150 -idx: 127 entropy_left: 1.5609148740783336 entropy_right : 0.828055725379504 -> 24 150 -idx: 130 entropy_left: 1.5516017017685246 entropy_right : 0.6098403047164004 -> 24 150 -idx: 132 entropy_left: 1.5542993132861813 entropy_right : 0.6500224216483541 -> 24 150 -idx: 133 entropy_left: 1.551254504144143 entropy_right : 0.5225593745369408 -> 24 150 -idx: 134 entropy_left: 1.552300445892517 entropy_right : 0.5435644431995964 -> 24 150 -idx: 135 entropy_left: 1.5492893488248605 entropy_right : 0.35335933502142136 -> 24 150 -idx: 137 entropy_left: 1.5508523041806783 entropy_right : 0.39124356362925566 -> 24 150 -idx: 138 entropy_left: 1.5480084816425554 entropy_right : 0 -> 24 150 -cut: 5.0 index: 25 -start: 24 cut: 25 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.5419822842863982 ent1= 0 ent2= 1.5433449229510985 -ig= 0.010886130565070262 delta= 4.6479441057688256 N 126 term 0.09217244754310248 -idx: 29 entropy_left: 0 entropy_right : 1.5202013991459298 -> 25 150 -idx: 30 entropy_left: 0.7219280948873623 entropy_right : 1.521677608876836 -> 25 150 -idx: 33 entropy_left: 0.5435644431995964 entropy_right : 1.4992098113026513 -> 25 150 -idx: 34 entropy_left: 0.7642045065086203 entropy_right : 1.5007111828980744 -> 25 150 -idx: 44 entropy_left: 0.4854607607459134 entropy_right : 1.3764263022492553 -> 25 150 -idx: 45 entropy_left: 0.6098403047164004 entropy_right : 1.3779796176519241 -> 25 150 -idx: 51 entropy_left: 0.5159469300074474 entropy_right : 1.2367928607774141 -> 25 150 -idx: 52 entropy_left: 0.6051865766334206 entropy_right : 1.2377158231343603 -> 25 150 -idx: 53 entropy_left: 0.5916727785823275 entropy_right : 1.2046986815511866 -> 25 150 -idx: 58 entropy_left: 0.8453509366224365 entropy_right : 1.2056112071736118 -> 25 150 -idx: 59 entropy_left: 0.833764907210665 entropy_right : 1.167065448996099 -> 25 150 -idx: 61 entropy_left: 0.8879763195151351 entropy_right : 1.1653351793699953 -> 25 150 -idx: 62 entropy_left: 1.043233026456561 entropy_right : 1.1687172769890006 -> 25 150 -idx: 68 entropy_left: 1.1103746838736357 entropy_right : 1.1573913563403753 -> 25 150 -idx: 69 entropy_left: 1.102652051070839 entropy_right : 1.109500797247481 -> 25 150 -idx: 70 entropy_left: 1.1080734808267854 entropy_right : 1.105866621101474 -> 25 150 -idx: 71 entropy_left: 1.191603636543317 entropy_right : 1.1104593064416028 -> 25 150 -idx: 72 entropy_left: 1.1835119881802911 entropy_right : 1.0511407586429597 -> 25 150 -idx: 74 entropy_left: 1.1898011817445777 entropy_right : 1.041722068095403 -> 25 150 -idx: 75 entropy_left: 1.2523479506082373 entropy_right : 1.0462881865460743 -> 25 150 -idx: 76 entropy_left: 1.2449863769220126 entropy_right : 0.9568886656798212 -> 25 150 -idx: 77 entropy_left: 1.2466033489462778 entropy_right : 0.9505668528932196 -> 25 150 -idx: 78 entropy_left: 1.2968901961487296 entropy_right : 0.9544340029249649 -> 25 150 -idx: 79 entropy_left: 1.297231327577664 entropy_right : 0.9477073729342066 -> 25 150 -idx: 81 entropy_left: 1.3747976286297399 entropy_right : 0.9557589912150009 -> 25 150 -idx: 83 entropy_left: 1.3725531875543378 entropy_right : 0.9411864371816835 -> 25 150 -idx: 84 entropy_left: 1.4030409766614365 entropy_right : 0.9456603046006402 -> 25 150 -idx: 87 entropy_left: 1.3954965550573624 entropy_right : 0.9182958340544896 -> 25 150 -idx: 88 entropy_left: 1.4219164254677488 entropy_right : 0.9235785996175947 -> 25 150 -idx: 89 entropy_left: 1.4185644431995963 entropy_right : 0.9127341558073343 -> 25 150 -idx: 91 entropy_left: 1.4621038680842193 entropy_right : 0.9238422284571814 -> 25 150 -idx: 95 entropy_left: 1.4460656059951589 entropy_right : 0.8698926856041563 -> 25 150 -idx: 97 entropy_left: 1.4806821149663847 entropy_right : 0.8835850861052532 -> 25 150 -idx: 99 entropy_left: 1.4716260084832968 entropy_right : 0.8478617451660526 -> 25 150 -idx: 101 entropy_left: 1.4994716801681787 entropy_right : 0.863120568566631 -> 25 150 -idx: 102 entropy_left: 1.4949188482339508 entropy_right : 0.8426578772022391 -> 25 150 -idx: 104 entropy_left: 1.5173143758899288 entropy_right : 0.8589810370425963 -> 25 150 -idx: 105 entropy_left: 1.5128876215181606 entropy_right : 0.8366407419411673 -> 25 150 -idx: 106 entropy_left: 1.5224412847266997 entropy_right : 0.8453509366224365 -> 25 150 -idx: 107 entropy_left: 1.5180083381895495 entropy_right : 0.8203636429576732 -> 25 150 -idx: 109 entropy_left: 1.5343848620488534 entropy_right : 0.8390040613676977 -> 25 150 -idx: 110 entropy_left: 1.530122629268322 entropy_right : 0.8112781244591328 -> 25 150 -idx: 113 entropy_left: 1.5488102670635506 entropy_right : 0.8418521897563207 -> 25 150 -idx: 114 entropy_left: 1.54490062239043 entropy_right : 0.8112781244591328 -> 25 150 -idx: 117 entropy_left: 1.5579855528221356 entropy_right : 0.8453509366224365 -> 25 150 -idx: 118 entropy_left: 1.5544333664039933 entropy_right : 0.8112781244591328 -> 25 150 -idx: 120 entropy_left: 1.5607500907359895 entropy_right : 0.8366407419411673 -> 25 150 -idx: 122 entropy_left: 1.553879521231102 entropy_right : 0.74959525725948 -> 25 150 -idx: 127 entropy_left: 1.563765836340899 entropy_right : 0.828055725379504 -> 25 150 -idx: 130 entropy_left: 1.5548233543094725 entropy_right : 0.6098403047164004 -> 25 150 -idx: 132 entropy_left: 1.557232745700588 entropy_right : 0.6500224216483541 -> 25 150 -idx: 133 entropy_left: 1.5542993132861813 entropy_right : 0.5225593745369408 -> 25 150 -idx: 134 entropy_left: 1.5552054863428957 entropy_right : 0.5435644431995964 -> 25 150 -idx: 135 entropy_left: 1.552300445892517 entropy_right : 0.35335933502142136 -> 25 150 -idx: 137 entropy_left: 1.5535925258546306 entropy_right : 0.39124356362925566 -> 25 150 -idx: 138 entropy_left: 1.5508523041806783 entropy_right : 0 -> 25 150 -cut: 5.0 index: 29 -start: 25 cut: 29 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.5433449229510985 ent1= 0 ent2= 1.5202013991459298 -ig= 0.07178996857783848 delta= 4.574425618359218 N 125 term 0.09222897542996876 -idx: 30 entropy_left: 0 entropy_right : 1.521677608876836 -> 29 150 -idx: 33 entropy_left: 0.8112781244591328 entropy_right : 1.4992098113026513 -> 29 150 -idx: 34 entropy_left: 0.9709505944546686 entropy_right : 1.5007111828980744 -> 29 150 -idx: 44 entropy_left: 0.5665095065529053 entropy_right : 1.3764263022492553 -> 29 150 -idx: 45 entropy_left: 0.6962122601251458 entropy_right : 1.3779796176519241 -> 29 150 -idx: 51 entropy_left: 0.5746356978376794 entropy_right : 1.2367928607774141 -> 29 150 -idx: 52 entropy_left: 0.6665783579949205 entropy_right : 1.2377158231343603 -> 29 150 -idx: 53 entropy_left: 0.6500224216483541 entropy_right : 1.2046986815511866 -> 29 150 -idx: 58 entropy_left: 0.8935711016541907 entropy_right : 1.2056112071736118 -> 29 150 -idx: 59 entropy_left: 0.8812908992306927 entropy_right : 1.167065448996099 -> 29 150 -idx: 61 entropy_left: 0.9283620723948678 entropy_right : 1.1653351793699953 -> 29 150 -idx: 62 entropy_left: 1.096139159256507 entropy_right : 1.1687172769890006 -> 29 150 -idx: 68 entropy_left: 1.1385936501543064 entropy_right : 1.1573913563403753 -> 29 150 -idx: 69 entropy_left: 1.1320689971054545 entropy_right : 1.109500797247481 -> 29 150 -idx: 70 entropy_left: 1.1339874769112017 entropy_right : 1.105866621101474 -> 29 150 -idx: 71 entropy_left: 1.221694907636328 entropy_right : 1.1104593064416028 -> 29 150 -idx: 72 entropy_left: 1.2146234752771463 entropy_right : 1.0511407586429597 -> 29 150 -idx: 74 entropy_left: 1.2145089432839293 entropy_right : 1.041722068095403 -> 29 150 -idx: 75 entropy_left: 1.2793146867260998 entropy_right : 1.0462881865460743 -> 29 150 -idx: 76 entropy_left: 1.2730452470559679 entropy_right : 0.9568886656798212 -> 29 150 -idx: 77 entropy_left: 1.271782221599798 entropy_right : 0.9505668528932196 -> 29 150 -idx: 78 entropy_left: 1.323326866652724 entropy_right : 0.9544340029249649 -> 29 150 -idx: 79 entropy_left: 1.3209242772281589 entropy_right : 0.9477073729342066 -> 29 150 -idx: 81 entropy_left: 1.3993556675323378 entropy_right : 0.9557589912150009 -> 29 150 -idx: 83 entropy_left: 1.3921472236645345 entropy_right : 0.9411864371816835 -> 29 150 -idx: 84 entropy_left: 1.4226381773606827 entropy_right : 0.9456603046006402 -> 29 150 -idx: 87 entropy_left: 1.408454322194389 entropy_right : 0.9182958340544896 -> 29 150 -idx: 88 entropy_left: 1.4348284294343598 entropy_right : 0.9235785996175947 -> 29 150 -idx: 89 entropy_left: 1.4294732983598406 entropy_right : 0.9127341558073343 -> 29 150 -idx: 91 entropy_left: 1.4725137493579352 entropy_right : 0.9238422284571814 -> 29 150 -idx: 95 entropy_left: 1.4495701653254023 entropy_right : 0.8698926856041563 -> 29 150 -idx: 97 entropy_left: 1.4836591643979629 entropy_right : 0.8835850861052532 -> 29 150 -idx: 99 entropy_left: 1.4716774936810642 entropy_right : 0.8478617451660526 -> 29 150 -idx: 101 entropy_left: 1.498872146878066 entropy_right : 0.863120568566631 -> 29 150 -idx: 102 entropy_left: 1.4930166887541538 entropy_right : 0.8426578772022391 -> 29 150 -idx: 104 entropy_left: 1.5146319490241265 entropy_right : 0.8589810370425963 -> 29 150 -idx: 105 entropy_left: 1.5090275125326515 entropy_right : 0.8366407419411673 -> 29 150 -idx: 106 entropy_left: 1.518172665753515 entropy_right : 0.8453509366224365 -> 29 150 -idx: 107 entropy_left: 1.5126362849284707 entropy_right : 0.8203636429576732 -> 29 150 -idx: 109 entropy_left: 1.5281843786247746 entropy_right : 0.8390040613676977 -> 29 150 -idx: 110 entropy_left: 1.52292446851929 entropy_right : 0.8112781244591328 -> 29 150 -idx: 113 entropy_left: 1.540319313990849 entropy_right : 0.8418521897563207 -> 29 150 -idx: 114 entropy_left: 1.5355405577499845 entropy_right : 0.8112781244591328 -> 29 150 -idx: 117 entropy_left: 1.5473158084406657 entropy_right : 0.8453509366224365 -> 29 150 -idx: 118 entropy_left: 1.543007267402686 entropy_right : 0.8112781244591328 -> 29 150 -idx: 120 entropy_left: 1.5484739108446754 entropy_right : 0.8366407419411673 -> 29 150 -idx: 122 entropy_left: 1.5402513451679312 entropy_right : 0.74959525725948 -> 29 150 -idx: 127 entropy_left: 1.5482156423395383 entropy_right : 0.828055725379504 -> 29 150 -idx: 130 entropy_left: 1.5376917861959223 entropy_right : 0.6098403047164004 -> 29 150 -idx: 132 entropy_left: 1.539449789759387 entropy_right : 0.6500224216483541 -> 29 150 -idx: 133 entropy_left: 1.5360485008483817 entropy_right : 0.5225593745369408 -> 29 150 -idx: 134 entropy_left: 1.5366468930089403 entropy_right : 0.5435644431995964 -> 29 150 -idx: 135 entropy_left: 1.5333008164572508 entropy_right : 0.35335933502142136 -> 29 150 -idx: 137 entropy_left: 1.5340120338817291 entropy_right : 0.39124356362925566 -> 29 150 -idx: 138 entropy_left: 1.530871713949455 entropy_right : 0 -> 29 150 -cut: 5.0 index: 30 -start: 29 cut: 30 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.5202013991459298 ent1= 0 ent2= 1.521677608876836 -ig= 0.011099638276340196 delta= 4.6482848189674435 N 121 term 0.09549731747583441 -idx: 33 entropy_left: 0 entropy_right : 1.4992098113026513 -> 30 150 -idx: 34 entropy_left: 0.8112781244591328 entropy_right : 1.5007111828980744 -> 30 150 -idx: 44 entropy_left: 0.37123232664087563 entropy_right : 1.3764263022492553 -> 30 150 -idx: 45 entropy_left: 0.5665095065529053 entropy_right : 1.3779796176519241 -> 30 150 -idx: 51 entropy_left: 0.4537163391869448 entropy_right : 1.2367928607774141 -> 30 150 -idx: 52 entropy_left: 0.5746356978376794 entropy_right : 1.2377158231343603 -> 30 150 -idx: 53 entropy_left: 0.5586293734521992 entropy_right : 1.2046986815511866 -> 30 150 -idx: 58 entropy_left: 0.863120568566631 entropy_right : 1.2056112071736118 -> 30 150 -idx: 59 entropy_left: 0.8497511372532974 entropy_right : 1.167065448996099 -> 30 150 -idx: 61 entropy_left: 0.907165767573082 entropy_right : 1.1653351793699953 -> 30 150 -idx: 62 entropy_left: 1.079439161649138 entropy_right : 1.1687172769890006 -> 30 150 -idx: 68 entropy_left: 1.1363836745395337 entropy_right : 1.1573913563403753 -> 30 150 -idx: 69 entropy_left: 1.1287997673232602 entropy_right : 1.109500797247481 -> 30 150 -idx: 70 entropy_left: 1.1320689971054545 entropy_right : 1.105866621101474 -> 30 150 -idx: 71 entropy_left: 1.221104104343052 entropy_right : 1.1104593064416028 -> 30 150 -idx: 72 entropy_left: 1.2130604396700206 entropy_right : 1.0511407586429597 -> 30 150 -idx: 74 entropy_left: 1.215055533529583 entropy_right : 1.041722068095403 -> 30 150 -idx: 75 entropy_left: 1.2805767575096105 entropy_right : 1.0462881865460743 -> 30 150 -idx: 76 entropy_left: 1.273461732689636 entropy_right : 0.9568886656798212 -> 30 150 -idx: 77 entropy_left: 1.2730452470559679 entropy_right : 0.9505668528932196 -> 30 150 -idx: 78 entropy_left: 1.3250112108241772 entropy_right : 0.9544340029249649 -> 30 150 -idx: 79 entropy_left: 1.323326866652724 entropy_right : 0.9477073729342066 -> 30 150 -idx: 81 entropy_left: 1.402081402756032 entropy_right : 0.9557589912150009 -> 30 150 -idx: 83 entropy_left: 1.3960185675642185 entropy_right : 0.9411864371816835 -> 30 150 -idx: 84 entropy_left: 1.4265076973297228 entropy_right : 0.9456603046006402 -> 30 150 -idx: 87 entropy_left: 1.4135563800703668 entropy_right : 0.9182958340544896 -> 30 150 -idx: 88 entropy_left: 1.4398683625590178 entropy_right : 0.9235785996175947 -> 30 150 -idx: 89 entropy_left: 1.4348284294343598 entropy_right : 0.9127341558073343 -> 30 150 -idx: 91 entropy_left: 1.4776169519137876 entropy_right : 0.9238422284571814 -> 30 150 -idx: 95 entropy_left: 1.4556221732103853 entropy_right : 0.8698926856041563 -> 30 150 -idx: 97 entropy_left: 1.489391643473373 entropy_right : 0.8835850861052532 -> 30 150 -idx: 99 entropy_left: 1.4777468341000446 entropy_right : 0.8478617451660526 -> 30 150 -idx: 101 entropy_left: 1.504577050984356 entropy_right : 0.863120568566631 -> 30 150 -idx: 102 entropy_left: 1.498872146878066 entropy_right : 0.8426578772022391 -> 30 150 -idx: 104 entropy_left: 1.5200907086043647 entropy_right : 0.8589810370425963 -> 30 150 -idx: 105 entropy_left: 1.5146319490241265 entropy_right : 0.8366407419411673 -> 30 150 -idx: 106 entropy_left: 1.5235739093430942 entropy_right : 0.8453509366224365 -> 30 150 -idx: 107 entropy_left: 1.518172665753515 entropy_right : 0.8203636429576732 -> 30 150 -idx: 109 entropy_left: 1.5333121048269875 entropy_right : 0.8390040613676977 -> 30 150 -idx: 110 entropy_left: 1.5281843786247746 entropy_right : 0.8112781244591328 -> 30 150 -idx: 113 entropy_left: 1.544962682484281 entropy_right : 0.8418521897563207 -> 30 150 -idx: 114 entropy_left: 1.540319313990849 entropy_right : 0.8112781244591328 -> 30 150 -idx: 117 entropy_left: 1.551486596164451 entropy_right : 0.8453509366224365 -> 30 150 -idx: 118 entropy_left: 1.5473158084406657 entropy_right : 0.8112781244591328 -> 30 150 -idx: 120 entropy_left: 1.5523892173146852 entropy_right : 0.8366407419411673 -> 30 150 -idx: 122 entropy_left: 1.5444239694802433 entropy_right : 0.74959525725948 -> 30 150 -idx: 127 entropy_left: 1.5514723039742495 entropy_right : 0.828055725379504 -> 30 150 -idx: 130 entropy_left: 1.5413152774012366 entropy_right : 0.6098403047164004 -> 30 150 -idx: 132 entropy_left: 1.5427407553061978 entropy_right : 0.6500224216483541 -> 30 150 -idx: 133 entropy_left: 1.539449789759387 entropy_right : 0.5225593745369408 -> 30 150 -idx: 134 entropy_left: 1.5398878436678525 entropy_right : 0.5435644431995964 -> 30 150 -idx: 135 entropy_left: 1.5366468930089403 entropy_right : 0.35335933502142136 -> 30 150 -idx: 137 entropy_left: 1.5370490001936568 entropy_right : 0.39124356362925566 -> 30 150 -idx: 138 entropy_left: 1.5340120338817291 entropy_right : 0 -> 30 150 -cut: 5.1 index: 33 -start: 30 cut: 33 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.521677608876836 ent1= 0 ent2= 1.4992098113026513 -ig= 0.05994804285675093 delta= 4.57645279705217 N 120 term 0.09559392133633429 -idx: 34 entropy_left: 0 entropy_right : 1.5007111828980744 -> 33 150 -idx: 44 entropy_left: 0.4394969869215134 entropy_right : 1.3764263022492553 -> 33 150 -idx: 45 entropy_left: 0.6500224216483541 entropy_right : 1.3779796176519241 -> 33 150 -idx: 51 entropy_left: 0.5032583347756457 entropy_right : 1.2367928607774141 -> 33 150 -idx: 52 entropy_left: 0.6292492238560345 entropy_right : 1.2377158231343603 -> 33 150 -idx: 53 entropy_left: 0.6098403047164004 entropy_right : 1.2046986815511866 -> 33 150 -idx: 58 entropy_left: 0.904381457724494 entropy_right : 1.2056112071736118 -> 33 150 -idx: 59 entropy_left: 0.8904916402194913 entropy_right : 1.167065448996099 -> 33 150 -idx: 61 entropy_left: 0.9402859586706309 entropy_right : 1.1653351793699953 -> 33 150 -idx: 62 entropy_left: 1.1242592373746325 entropy_right : 1.1687172769890006 -> 33 150 -idx: 68 entropy_left: 1.1561787304889202 entropy_right : 1.1573913563403753 -> 33 150 -idx: 69 entropy_left: 1.1501854804581977 entropy_right : 1.109500797247481 -> 33 150 -idx: 70 entropy_left: 1.1500617154483042 entropy_right : 1.105866621101474 -> 33 150 -idx: 71 entropy_left: 1.2427303803729568 entropy_right : 1.1104593064416028 -> 33 150 -idx: 72 entropy_left: 1.236032213759607 entropy_right : 1.0511407586429597 -> 33 150 -idx: 74 entropy_left: 1.2319621350284407 entropy_right : 1.041722068095403 -> 33 150 -idx: 75 entropy_left: 1.2993633238421214 entropy_right : 1.0462881865460743 -> 33 150 -idx: 76 entropy_left: 1.2936094957266198 entropy_right : 0.9568886656798212 -> 33 150 -idx: 77 entropy_left: 1.2905199077676452 entropy_right : 0.9505668528932196 -> 33 150 -idx: 78 entropy_left: 1.3434702568607588 entropy_right : 0.9544340029249649 -> 33 150 -idx: 79 entropy_left: 1.3392721352590145 entropy_right : 0.9477073729342066 -> 33 150 -idx: 81 entropy_left: 1.4185644431995963 entropy_right : 0.9557589912150009 -> 33 150 -idx: 83 entropy_left: 1.4080488723348807 entropy_right : 0.9411864371816835 -> 33 150 -idx: 84 entropy_left: 1.4384630807544665 entropy_right : 0.9456603046006402 -> 33 150 -idx: 87 entropy_left: 1.4196730020815134 entropy_right : 0.9182958340544896 -> 33 150 -idx: 88 entropy_left: 1.4459033762515259 entropy_right : 0.9235785996175947 -> 33 150 -idx: 89 entropy_left: 1.4391294142581823 entropy_right : 0.9127341558073343 -> 33 150 -idx: 91 entropy_left: 1.4814308333061716 entropy_right : 0.9238422284571814 -> 33 150 -idx: 95 entropy_left: 1.4535828837865412 entropy_right : 0.8698926856041563 -> 33 150 -idx: 97 entropy_left: 1.4869015389218596 entropy_right : 0.8835850861052532 -> 33 150 -idx: 99 entropy_left: 1.47283015230032 entropy_right : 0.8478617451660526 -> 33 150 -idx: 101 entropy_left: 1.4991298893975544 entropy_right : 0.863120568566631 -> 33 150 -idx: 102 entropy_left: 1.4923596540293003 entropy_right : 0.8426578772022391 -> 33 150 -idx: 104 entropy_left: 1.5129527183657314 entropy_right : 0.8589810370425963 -> 33 150 -idx: 105 entropy_left: 1.5065420643391485 entropy_right : 0.8366407419411673 -> 33 150 -idx: 106 entropy_left: 1.5151610003501055 entropy_right : 0.8453509366224365 -> 33 150 -idx: 107 entropy_left: 1.5088745246622877 entropy_right : 0.8203636429576732 -> 33 150 -idx: 109 entropy_left: 1.5233671360000942 entropy_right : 0.8390040613676977 -> 33 150 -idx: 110 entropy_left: 1.5174480580708334 entropy_right : 0.8112781244591328 -> 33 150 -idx: 113 entropy_left: 1.5332288946792918 entropy_right : 0.8418521897563207 -> 33 150 -idx: 114 entropy_left: 1.5279067065978253 entropy_right : 0.8112781244591328 -> 33 150 -idx: 117 entropy_left: 1.538075564045685 entropy_right : 0.8453509366224365 -> 33 150 -idx: 118 entropy_left: 1.5333232048629988 entropy_right : 0.8112781244591328 -> 33 150 -idx: 120 entropy_left: 1.5377559674303916 entropy_right : 0.8366407419411673 -> 33 150 -idx: 122 entropy_left: 1.5287642104483186 entropy_right : 0.74959525725948 -> 33 150 -idx: 127 entropy_left: 1.5343941913830057 entropy_right : 0.828055725379504 -> 33 150 -idx: 130 entropy_left: 1.523071016430478 entropy_right : 0.6098403047164004 -> 33 150 -idx: 132 entropy_left: 1.5240294109795434 entropy_right : 0.6500224216483541 -> 33 150 -idx: 133 entropy_left: 1.520398271617716 entropy_right : 0.5225593745369408 -> 33 150 -idx: 134 entropy_left: 1.5206178114026545 entropy_right : 0.5435644431995964 -> 33 150 -idx: 135 entropy_left: 1.5170584650102175 entropy_right : 0.35335933502142136 -> 33 150 -idx: 137 entropy_left: 1.5170523105906335 entropy_right : 0.39124356362925566 -> 33 150 -idx: 138 entropy_left: 1.5137301230425602 entropy_right : 0 -> 33 150 -cut: 5.1 index: 34 -start: 33 cut: 34 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.4992098113026513 ent1= 0 ent2= 1.5007111828980744 -ig= 0.011325219711397994 delta= 4.648360304560994 N 117 term 0.0983447974332356 -idx: 44 entropy_left: 0 entropy_right : 1.3764263022492553 -> 34 150 -idx: 45 entropy_left: 0.4394969869215134 entropy_right : 1.3779796176519241 -> 34 150 -idx: 51 entropy_left: 0.3227569588973983 entropy_right : 1.2367928607774141 -> 34 150 -idx: 52 entropy_left: 0.5032583347756457 entropy_right : 1.2377158231343603 -> 34 150 -idx: 53 entropy_left: 0.4854607607459134 entropy_right : 1.2046986815511866 -> 34 150 -idx: 58 entropy_left: 0.8708644692353646 entropy_right : 1.2056112071736118 -> 34 150 -idx: 59 entropy_left: 0.8554508105601307 entropy_right : 1.167065448996099 -> 34 150 -idx: 61 entropy_left: 0.9182958340544896 entropy_right : 1.1653351793699953 -> 34 150 -idx: 62 entropy_left: 1.107784384952517 entropy_right : 1.1687172769890006 -> 34 150 -idx: 68 entropy_left: 1.1562272836006513 entropy_right : 1.1573913563403753 -> 34 150 -idx: 69 entropy_left: 1.1488835401005122 entropy_right : 1.109500797247481 -> 34 150 -idx: 70 entropy_left: 1.1501854804581977 entropy_right : 1.105866621101474 -> 34 150 -idx: 71 entropy_left: 1.2443013992660275 entropy_right : 1.1104593064416028 -> 34 150 -idx: 72 entropy_left: 1.2363864108712896 entropy_right : 1.0511407586429597 -> 34 150 -idx: 74 entropy_left: 1.2344977967946407 entropy_right : 1.041722068095403 -> 34 150 -idx: 75 entropy_left: 1.3026227503285144 entropy_right : 1.0462881865460743 -> 34 150 -idx: 76 entropy_left: 1.2958363892911637 entropy_right : 0.9568886656798212 -> 34 150 -idx: 77 entropy_left: 1.2936094957266198 entropy_right : 0.9505668528932196 -> 34 150 -idx: 78 entropy_left: 1.3469477860513406 entropy_right : 0.9544340029249649 -> 34 150 -idx: 79 entropy_left: 1.3434702568607588 entropy_right : 0.9477073729342066 -> 34 150 -idx: 81 entropy_left: 1.422950494647251 entropy_right : 0.9557589912150009 -> 34 150 -idx: 83 entropy_left: 1.4135682830396687 entropy_right : 0.9411864371816835 -> 34 150 -idx: 84 entropy_left: 1.4439032709191701 entropy_right : 0.9456603046006402 -> 34 150 -idx: 87 entropy_left: 1.4262873399004574 entropy_right : 0.9182958340544896 -> 34 150 -idx: 88 entropy_left: 1.4523861943352818 entropy_right : 0.9235785996175947 -> 34 150 -idx: 89 entropy_left: 1.4459033762515259 entropy_right : 0.9127341558073343 -> 34 150 -idx: 91 entropy_left: 1.4878131808507769 entropy_right : 0.9238422284571814 -> 34 150 -idx: 95 entropy_left: 1.4608248015713592 entropy_right : 0.8698926856041563 -> 34 150 -idx: 97 entropy_left: 1.4937095464322434 entropy_right : 0.8835850861052532 -> 34 150 -idx: 99 entropy_left: 1.4799337224591032 entropy_right : 0.8478617451660526 -> 34 150 -idx: 101 entropy_left: 1.5057662831867211 entropy_right : 0.863120568566631 -> 34 150 -idx: 102 entropy_left: 1.4991298893975544 entropy_right : 0.8426578772022391 -> 34 150 -idx: 104 entropy_left: 1.5192305624137816 entropy_right : 0.8589810370425963 -> 34 150 -idx: 105 entropy_left: 1.5129527183657314 entropy_right : 0.8366407419411673 -> 34 150 -idx: 106 entropy_left: 1.5213240183572947 entropy_right : 0.8453509366224365 -> 34 150 -idx: 107 entropy_left: 1.5151610003501055 entropy_right : 0.8203636429576732 -> 34 150 -idx: 109 entropy_left: 1.529162767471135 entropy_right : 0.8390040613676977 -> 34 150 -idx: 110 entropy_left: 1.5233671360000942 entropy_right : 0.8112781244591328 -> 34 150 -idx: 113 entropy_left: 1.5384204755151063 entropy_right : 0.8418521897563207 -> 34 150 -idx: 114 entropy_left: 1.5332288946792918 entropy_right : 0.8112781244591328 -> 34 150 -idx: 117 entropy_left: 1.5426918994072474 entropy_right : 0.8453509366224365 -> 34 150 -idx: 118 entropy_left: 1.538075564045685 entropy_right : 0.8112781244591328 -> 34 150 -idx: 120 entropy_left: 1.5420569181018204 entropy_right : 0.8366407419411673 -> 34 150 -idx: 122 entropy_left: 1.533320797816137 entropy_right : 0.74959525725948 -> 34 150 -idx: 127 entropy_left: 1.5379137608515965 entropy_right : 0.828055725379504 -> 34 150 -idx: 130 entropy_left: 1.5269619764446545 entropy_right : 0.6098403047164004 -> 34 150 -idx: 132 entropy_left: 1.5275487529615783 entropy_right : 0.6500224216483541 -> 34 150 -idx: 133 entropy_left: 1.5240294109795434 entropy_right : 0.5225593745369408 -> 34 150 -idx: 134 entropy_left: 1.524070562860036 entropy_right : 0.5435644431995964 -> 34 150 -idx: 135 entropy_left: 1.5206178114026545 entropy_right : 0.35335933502142136 -> 34 150 -idx: 137 entropy_left: 1.52026917047001 entropy_right : 0.39124356362925566 -> 34 150 -idx: 138 entropy_left: 1.5170523105906335 entropy_right : 0 -> 34 150 -cut: 5.2 index: 44 -start: 34 cut: 44 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.5007111828980744 ent1= 0 ent2= 1.3764263022492553 -ig= 0.24294232049789266 delta= 4.271001547828267 N 116 term 0.09583182412735038 -¡Ding! 5.2 44 -idx: 45 entropy_left: 0 entropy_right : 1.3779796176519241 -> 44 150 -idx: 51 entropy_left: 0.5916727785823275 entropy_right : 1.2367928607774141 -> 44 150 -idx: 52 entropy_left: 0.8112781244591328 entropy_right : 1.2377158231343603 -> 44 150 -idx: 53 entropy_left: 0.7642045065086203 entropy_right : 1.2046986815511866 -> 44 150 -idx: 58 entropy_left: 1.0 entropy_right : 1.2056112071736118 -> 44 150 -idx: 59 entropy_left: 0.9967916319816366 entropy_right : 1.167065448996099 -> 44 150 -idx: 61 entropy_left: 0.9975025463691153 entropy_right : 1.1653351793699953 -> 44 150 -idx: 62 entropy_left: 1.2516291673878228 entropy_right : 1.1687172769890006 -> 44 150 -idx: 68 entropy_left: 1.1431558784658322 entropy_right : 1.1573913563403753 -> 44 150 -idx: 69 entropy_left: 1.1585488318903812 entropy_right : 1.109500797247481 -> 44 150 -idx: 70 entropy_left: 1.1416195253341381 entropy_right : 1.105866621101474 -> 44 150 -idx: 71 entropy_left: 1.2538013905715866 entropy_right : 1.1104593064416028 -> 44 150 -idx: 72 entropy_left: 1.2638091738835462 entropy_right : 1.0511407586429597 -> 44 150 -idx: 74 entropy_left: 1.2309595631140104 entropy_right : 1.041722068095403 -> 44 150 -idx: 75 entropy_left: 1.307976359515949 entropy_right : 1.0462881865460743 -> 44 150 -idx: 76 entropy_left: 1.31664733333952 entropy_right : 0.9568886656798212 -> 44 150 -idx: 77 entropy_left: 1.3013862992796092 entropy_right : 0.9505668528932196 -> 44 150 -idx: 78 entropy_left: 1.3590990012374453 entropy_right : 0.9544340029249649 -> 44 150 -idx: 79 entropy_left: 1.3437884540090375 entropy_right : 0.9477073729342066 -> 44 150 -idx: 81 entropy_left: 1.4256132384104512 entropy_right : 0.9557589912150009 -> 44 150 -idx: 83 entropy_left: 1.3964017465710241 entropy_right : 0.9411864371816835 -> 44 150 -idx: 84 entropy_left: 1.4266098981515114 entropy_right : 0.9456603046006402 -> 44 150 -idx: 87 entropy_left: 1.3843662197304327 entropy_right : 0.9182958340544896 -> 44 150 -idx: 88 entropy_left: 1.4105645152423338 entropy_right : 0.9235785996175947 -> 44 150 -idx: 89 entropy_left: 1.3970713079590378 entropy_right : 0.9127341558073343 -> 44 150 -idx: 91 entropy_left: 1.4378981830488653 entropy_right : 0.9238422284571814 -> 44 150 -idx: 95 entropy_left: 1.3885087415373887 entropy_right : 0.8698926856041563 -> 44 150 -idx: 97 entropy_left: 1.4207503473571672 entropy_right : 0.8835850861052532 -> 44 150 -idx: 99 entropy_left: 1.3982088441853116 entropy_right : 0.8478617451660526 -> 44 150 -idx: 101 entropy_left: 1.4231230542732203 entropy_right : 0.863120568566631 -> 44 150 -idx: 102 entropy_left: 1.4127788804267845 entropy_right : 0.8426578772022391 -> 44 150 -idx: 104 entropy_left: 1.431578033211198 entropy_right : 0.8589810370425963 -> 44 150 -idx: 105 entropy_left: 1.4220900521936763 entropy_right : 0.8366407419411673 -> 44 150 -idx: 106 entropy_left: 1.4297712666969145 entropy_right : 0.8453509366224365 -> 44 150 -idx: 107 entropy_left: 1.4206843409707122 entropy_right : 0.8203636429576732 -> 44 150 -idx: 109 entropy_left: 1.4333020260513436 entropy_right : 0.8390040613676977 -> 44 150 -idx: 110 entropy_left: 1.4249748676560043 entropy_right : 0.8112781244591328 -> 44 150 -idx: 113 entropy_left: 1.4378209282715886 entropy_right : 0.8418521897563207 -> 44 150 -idx: 114 entropy_left: 1.43055418918351 entropy_right : 0.8112781244591328 -> 44 150 -idx: 117 entropy_left: 1.4377707632957772 entropy_right : 0.8453509366224365 -> 44 150 -idx: 118 entropy_left: 1.4314614999501034 entropy_right : 0.8112781244591328 -> 44 150 -idx: 120 entropy_left: 1.4340201993083201 entropy_right : 0.8366407419411673 -> 44 150 -idx: 122 entropy_left: 1.4224171655427815 entropy_right : 0.74959525725948 -> 44 150 -idx: 127 entropy_left: 1.4240650747143373 entropy_right : 0.828055725379504 -> 44 150 -idx: 130 entropy_left: 1.4101818214788366 entropy_right : 0.6098403047164004 -> 44 150 -idx: 132 entropy_left: 1.409921745231479 entropy_right : 0.6500224216483541 -> 44 150 -idx: 133 entropy_left: 1.4055932553758037 entropy_right : 0.5225593745369408 -> 44 150 -idx: 134 entropy_left: 1.4052570450171729 entropy_right : 0.5435644431995964 -> 44 150 -idx: 135 entropy_left: 1.4010688958809001 entropy_right : 0.35335933502142136 -> 44 150 -idx: 137 entropy_left: 1.400052234031507 entropy_right : 0.39124356362925566 -> 44 150 -idx: 138 entropy_left: 1.3962125504871692 entropy_right : 0 -> 44 150 -cut: 5.25 index: 45 -start: 44 cut: 45 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.3764263022492553 ent1= 0 ent2= 1.3779796176519241 -ig= 0.011446492311028678 delta= 4.648516135982731 N 106 term 0.10719586465706465 -idx: 51 entropy_left: 0 entropy_right : 1.2367928607774141 -> 45 150 -idx: 52 entropy_left: 0.5916727785823275 entropy_right : 1.2377158231343603 -> 45 150 -idx: 53 entropy_left: 0.5435644431995964 entropy_right : 1.2046986815511866 -> 45 150 -idx: 58 entropy_left: 0.9957274520849256 entropy_right : 1.2056112071736118 -> 45 150 -idx: 59 entropy_left: 0.9852281360342516 entropy_right : 1.167065448996099 -> 45 150 -idx: 61 entropy_left: 1.0 entropy_right : 1.1653351793699953 -> 45 150 -idx: 62 entropy_left: 1.2639334294856337 entropy_right : 1.1687172769890006 -> 45 150 -idx: 68 entropy_left: 1.1625633078480364 entropy_right : 1.1573913563403753 -> 45 150 -idx: 69 entropy_left: 1.1752835873133531 entropy_right : 1.109500797247481 -> 45 150 -idx: 70 entropy_left: 1.1585488318903812 entropy_right : 1.105866621101474 -> 45 150 -idx: 71 entropy_left: 1.2722595663292235 entropy_right : 1.1104593064416028 -> 45 150 -idx: 72 entropy_left: 1.2799749139041574 entropy_right : 1.0511407586429597 -> 45 150 -idx: 74 entropy_left: 1.2474241244334552 entropy_right : 1.041722068095403 -> 45 150 -idx: 75 entropy_left: 1.3248560371987566 entropy_right : 1.0462881865460743 -> 45 150 -idx: 76 entropy_left: 1.3317607101149553 entropy_right : 0.9568886656798212 -> 45 150 -idx: 77 entropy_left: 1.31664733333952 entropy_right : 0.9505668528932196 -> 45 150 -idx: 78 entropy_left: 1.3743214578138507 entropy_right : 0.9544340029249649 -> 45 150 -idx: 79 entropy_left: 1.3590990012374453 entropy_right : 0.9477073729342066 -> 45 150 -idx: 81 entropy_left: 1.4400876246432754 entropy_right : 0.9557589912150009 -> 45 150 -idx: 83 entropy_left: 1.4110278111359231 entropy_right : 0.9411864371816835 -> 45 150 -idx: 84 entropy_left: 1.440686881996416 entropy_right : 0.9456603046006402 -> 45 150 -idx: 87 entropy_left: 1.3984047495234926 entropy_right : 0.9182958340544896 -> 45 150 -idx: 88 entropy_left: 1.4241055030202836 entropy_right : 0.9235785996175947 -> 45 150 -idx: 89 entropy_left: 1.4105645152423338 entropy_right : 0.9127341558073343 -> 45 150 -idx: 91 entropy_left: 1.4503134017471866 entropy_right : 0.9238422284571814 -> 45 150 -idx: 95 entropy_left: 1.400766637523055 entropy_right : 0.8698926856041563 -> 45 150 -idx: 97 entropy_left: 1.4320792052110205 entropy_right : 0.8835850861052532 -> 45 150 -idx: 99 entropy_left: 1.4094544755772227 entropy_right : 0.8478617451660526 -> 45 150 -idx: 101 entropy_left: 1.4334834517752852 entropy_right : 0.863120568566631 -> 45 150 -idx: 102 entropy_left: 1.4231230542732203 entropy_right : 0.8426578772022391 -> 45 150 -idx: 104 entropy_left: 1.4410541035142095 entropy_right : 0.8589810370425963 -> 45 150 -idx: 105 entropy_left: 1.431578033211198 entropy_right : 0.8366407419411673 -> 45 150 -idx: 106 entropy_left: 1.438841894200673 entropy_right : 0.8453509366224365 -> 45 150 -idx: 107 entropy_left: 1.4297712666969145 entropy_right : 0.8203636429576732 -> 45 150 -idx: 109 entropy_left: 1.4415920755789071 entropy_right : 0.8390040613676977 -> 45 150 -idx: 110 entropy_left: 1.4333020260513436 entropy_right : 0.8112781244591328 -> 45 150 -idx: 113 entropy_left: 1.4450194734840949 entropy_right : 0.8418521897563207 -> 45 150 -idx: 114 entropy_left: 1.4378209282715886 entropy_right : 0.8112781244591328 -> 45 150 -idx: 117 entropy_left: 1.4439881597575672 entropy_right : 0.8453509366224365 -> 45 150 -idx: 118 entropy_left: 1.4377707632957772 entropy_right : 0.8112781244591328 -> 45 150 -idx: 120 entropy_left: 1.4396788919399468 entropy_right : 0.8366407419411673 -> 45 150 -idx: 122 entropy_left: 1.4282619056422832 entropy_right : 0.74959525725948 -> 45 150 -idx: 127 entropy_left: 1.4284735370493284 entropy_right : 0.828055725379504 -> 45 150 -idx: 130 entropy_left: 1.4149076471763113 entropy_right : 0.6098403047164004 -> 45 150 -idx: 132 entropy_left: 1.414152505455283 entropy_right : 0.6500224216483541 -> 45 150 -idx: 133 entropy_left: 1.409921745231479 entropy_right : 0.5225593745369408 -> 45 150 -idx: 134 entropy_left: 1.4093509832105067 entropy_right : 0.5435644431995964 -> 45 150 -idx: 135 entropy_left: 1.4052570450171729 entropy_right : 0.35335933502142136 -> 45 150 -idx: 137 entropy_left: 1.403795504390464 entropy_right : 0.39124356362925566 -> 45 150 -idx: 138 entropy_left: 1.400052234031507 entropy_right : 0 -> 45 150 -cut: 5.4 index: 51 -start: 45 cut: 51 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.3779796176519241 ent1= 0 ent2= 1.2367928607774141 -ig= 0.21186063463321947 delta= 4.220295919151194 N 105 term 0.10400700606945035 -¡Ding! 5.4 51 -idx: 52 entropy_left: 0 entropy_right : 1.2377158231343603 -> 51 150 -idx: 53 entropy_left: 1.0 entropy_right : 1.2046986815511866 -> 51 150 -idx: 58 entropy_left: 0.5916727785823275 entropy_right : 1.2056112071736118 -> 51 150 -idx: 59 entropy_left: 0.8112781244591328 entropy_right : 1.167065448996099 -> 51 150 -idx: 61 entropy_left: 0.7219280948873623 entropy_right : 1.1653351793699953 -> 51 150 -idx: 62 entropy_left: 1.0957952550009338 entropy_right : 1.1687172769890006 -> 51 150 -idx: 68 entropy_left: 0.8343470230852539 entropy_right : 1.1573913563403753 -> 51 150 -idx: 69 entropy_left: 0.9444885341662053 entropy_right : 1.109500797247481 -> 51 150 -idx: 70 entropy_left: 0.9132829641650988 entropy_right : 1.105866621101474 -> 51 150 -idx: 71 entropy_left: 1.0540157730728 entropy_right : 1.1104593064416028 -> 51 150 -idx: 72 entropy_left: 1.1254908068679135 entropy_right : 1.0511407586429597 -> 51 150 -idx: 74 entropy_left: 1.0676111603502403 entropy_right : 1.041722068095403 -> 51 150 -idx: 75 entropy_left: 1.158222675578688 entropy_right : 1.0462881865460743 -> 51 150 -idx: 76 entropy_left: 1.2098003386604828 entropy_right : 0.9568886656798212 -> 51 150 -idx: 77 entropy_left: 1.1841636411194805 entropy_right : 0.9505668528932196 -> 51 150 -idx: 78 entropy_left: 1.2486545206672304 entropy_right : 0.9544340029249649 -> 51 150 -idx: 79 entropy_left: 1.2244883781338565 entropy_right : 0.9477073729342066 -> 51 150 -idx: 81 entropy_left: 1.3125559878021227 entropy_right : 0.9557589912150009 -> 51 150 -idx: 83 entropy_left: 1.2700599575900715 entropy_right : 0.9411864371816835 -> 51 150 -idx: 84 entropy_left: 1.3019762161101505 entropy_right : 0.9456603046006402 -> 51 150 -idx: 87 entropy_left: 1.2449187529382073 entropy_right : 0.9182958340544896 -> 51 150 -idx: 88 entropy_left: 1.2730009199061236 entropy_right : 0.9235785996175947 -> 51 150 -idx: 89 entropy_left: 1.255663165580298 entropy_right : 0.9127341558073343 -> 51 150 -idx: 91 entropy_left: 1.2987949406953985 entropy_right : 0.9238422284571814 -> 51 150 -idx: 95 entropy_left: 1.2387413849552513 entropy_right : 0.8698926856041563 -> 51 150 -idx: 97 entropy_left: 1.2733306660180936 entropy_right : 0.8835850861052532 -> 51 150 -idx: 99 entropy_left: 1.24726924853191 entropy_right : 0.8478617451660526 -> 51 150 -idx: 101 entropy_left: 1.2740022896699967 entropy_right : 0.863120568566631 -> 51 150 -idx: 102 entropy_left: 1.2623741775941766 entropy_right : 0.8426578772022391 -> 51 150 -idx: 104 entropy_left: 1.2824555399511839 entropy_right : 0.8589810370425963 -> 51 150 -idx: 105 entropy_left: 1.2720236796955837 entropy_right : 0.8366407419411673 -> 51 150 -idx: 106 entropy_left: 1.2802412641697223 entropy_right : 0.8453509366224365 -> 51 150 -idx: 107 entropy_left: 1.2703862545896736 entropy_right : 0.8203636429576732 -> 51 150 -idx: 109 entropy_left: 1.2839465152590122 entropy_right : 0.8390040613676977 -> 51 150 -idx: 110 entropy_left: 1.2750978150747438 entropy_right : 0.8112781244591328 -> 51 150 -idx: 113 entropy_left: 1.2890020897815337 entropy_right : 0.8418521897563207 -> 51 150 -idx: 114 entropy_left: 1.2814952229224468 entropy_right : 0.8112781244591328 -> 51 150 -idx: 117 entropy_left: 1.2894949485898448 entropy_right : 0.8453509366224365 -> 51 150 -idx: 118 entropy_left: 1.2831665076655923 entropy_right : 0.8112781244591328 -> 51 150 -idx: 120 entropy_left: 1.2861856515445227 entropy_right : 0.8366407419411673 -> 51 150 -idx: 122 entropy_left: 1.274785294596539 entropy_right : 0.74959525725948 -> 51 150 -idx: 127 entropy_left: 1.277660052784842 entropy_right : 0.828055725379504 -> 51 150 -idx: 130 entropy_left: 1.2647051503145113 entropy_right : 0.6098403047164004 -> 51 150 -idx: 132 entropy_left: 1.2650264370370163 entropy_right : 0.6500224216483541 -> 51 150 -idx: 133 entropy_left: 1.2610549127993207 entropy_right : 0.5225593745369408 -> 51 150 -idx: 134 entropy_left: 1.2610161720734205 entropy_right : 0.5435644431995964 -> 51 150 -idx: 135 entropy_left: 1.2572038836412398 entropy_right : 0.35335933502142136 -> 51 150 -idx: 137 entropy_left: 1.2567949149026907 entropy_right : 0.39124356362925566 -> 51 150 -idx: 138 entropy_left: 1.2533710321988052 entropy_right : 0 -> 51 150 -cut: 5.45 index: 52 -start: 51 cut: 52 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.2367928607774141 ent1= 0 ent2= 1.2377158231343603 -ig= 0.011579217674714037 delta= 4.646625076845563 N 99 term 0.11375085778748256 -idx: 53 entropy_left: 0 entropy_right : 1.2046986815511866 -> 52 150 -idx: 58 entropy_left: 0.6500224216483541 entropy_right : 1.2056112071736118 -> 52 150 -idx: 59 entropy_left: 0.863120568566631 entropy_right : 1.167065448996099 -> 52 150 -idx: 61 entropy_left: 0.7642045065086203 entropy_right : 1.1653351793699953 -> 52 150 -idx: 62 entropy_left: 1.1567796494470395 entropy_right : 1.1687172769890006 -> 52 150 -idx: 68 entropy_left: 0.8683927290103626 entropy_right : 1.1573913563403753 -> 52 150 -idx: 69 entropy_left: 0.9780155566622415 entropy_right : 1.109500797247481 -> 52 150 -idx: 70 entropy_left: 0.9444885341662053 entropy_right : 1.105866621101474 -> 52 150 -idx: 71 entropy_left: 1.086987702339905 entropy_right : 1.1104593064416028 -> 52 150 -idx: 72 entropy_left: 1.1567796494470395 entropy_right : 1.0511407586429597 -> 52 150 -idx: 74 entropy_left: 1.0957952550009338 entropy_right : 1.041722068095403 -> 52 150 -idx: 75 entropy_left: 1.1863929342238186 entropy_right : 1.0462881865460743 -> 52 150 -idx: 76 entropy_left: 1.2364405016961446 entropy_right : 0.9568886656798212 -> 52 150 -idx: 77 entropy_left: 1.2098003386604828 entropy_right : 0.9505668528932196 -> 52 150 -idx: 78 entropy_left: 1.2736509190759928 entropy_right : 0.9544340029249649 -> 52 150 -idx: 79 entropy_left: 1.2486545206672304 entropy_right : 0.9477073729342066 -> 52 150 -idx: 81 entropy_left: 1.334599425999111 entropy_right : 0.9557589912150009 -> 52 150 -idx: 83 entropy_left: 1.2910357498542626 entropy_right : 0.9411864371816835 -> 52 150 -idx: 84 entropy_left: 1.3218847866691474 entropy_right : 0.9456603046006402 -> 52 150 -idx: 87 entropy_left: 1.2634815907120713 entropy_right : 0.9182958340544896 -> 52 150 -idx: 88 entropy_left: 1.2907148496715317 entropy_right : 0.9235785996175947 -> 52 150 -idx: 89 entropy_left: 1.2730009199061236 entropy_right : 0.9127341558073343 -> 52 150 -idx: 91 entropy_left: 1.314427310128449 entropy_right : 0.9238422284571814 -> 52 150 -idx: 95 entropy_left: 1.2533610514248106 entropy_right : 0.8698926856041563 -> 52 150 -idx: 97 entropy_left: 1.2866280229807059 entropy_right : 0.8835850861052532 -> 52 150 -idx: 99 entropy_left: 1.2602078229255897 entropy_right : 0.8478617451660526 -> 52 150 -idx: 101 entropy_left: 1.285743981839722 entropy_right : 0.863120568566631 -> 52 150 -idx: 102 entropy_left: 1.2740022896699967 entropy_right : 0.8426578772022391 -> 52 150 -idx: 104 entropy_left: 1.2929449855174395 entropy_right : 0.8589810370425963 -> 52 150 -idx: 105 entropy_left: 1.2824555399511839 entropy_right : 0.8366407419411673 -> 52 150 -idx: 106 entropy_left: 1.290137339650643 entropy_right : 0.8453509366224365 -> 52 150 -idx: 107 entropy_left: 1.2802412641697223 entropy_right : 0.8203636429576732 -> 52 150 -idx: 109 entropy_left: 1.2927975726087082 entropy_right : 0.8390040613676977 -> 52 150 -idx: 110 entropy_left: 1.2839465152590122 entropy_right : 0.8112781244591328 -> 52 150 -idx: 113 entropy_left: 1.2964607361371667 entropy_right : 0.8418521897563207 -> 52 150 -idx: 114 entropy_left: 1.2890020897815337 entropy_right : 0.8112781244591328 -> 52 150 -idx: 117 entropy_left: 1.2957378005380122 entropy_right : 0.8453509366224365 -> 52 150 -idx: 118 entropy_left: 1.2894949485898448 entropy_right : 0.8112781244591328 -> 52 150 -idx: 120 entropy_left: 1.2917436782389615 entropy_right : 0.8366407419411673 -> 52 150 -idx: 122 entropy_left: 1.2805280377491564 entropy_right : 0.74959525725948 -> 52 150 -idx: 127 entropy_left: 1.2817402106919733 entropy_right : 0.828055725379504 -> 52 150 -idx: 130 entropy_left: 1.269129492403553 entropy_right : 0.6098403047164004 -> 52 150 -idx: 132 entropy_left: 1.26889047905874 entropy_right : 0.6500224216483541 -> 52 150 -idx: 133 entropy_left: 1.2650264370370163 entropy_right : 0.5225593745369408 -> 52 150 -idx: 134 entropy_left: 1.2647242262739549 entropy_right : 0.5435644431995964 -> 52 150 -idx: 135 entropy_left: 1.2610161720734205 entropy_right : 0.35335933502142136 -> 52 150 -idx: 137 entropy_left: 1.2601109425506647 entropy_right : 0.39124356362925566 -> 52 150 -idx: 138 entropy_left: 1.2567949149026907 entropy_right : 0 -> 52 150 -cut: 5.5 index: 53 -start: 52 cut: 53 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.2377158231343603 ent1= 0 ent2= 1.2046986815511866 -ig= 0.04530998527247143 delta= 4.544804765025203 N 98 term 0.11372160823686052 -idx: 58 entropy_left: 0 entropy_right : 1.2056112071736118 -> 53 150 -idx: 59 entropy_left: 0.6500224216483541 entropy_right : 1.167065448996099 -> 53 150 -idx: 61 entropy_left: 0.5435644431995964 entropy_right : 1.1653351793699953 -> 53 150 -idx: 62 entropy_left: 0.9864267287308424 entropy_right : 1.1687172769890006 -> 53 150 -idx: 68 entropy_left: 0.6998428398862386 entropy_right : 1.1573913563403753 -> 53 150 -idx: 69 entropy_left: 0.8683927290103626 entropy_right : 1.109500797247481 -> 53 150 -idx: 70 entropy_left: 0.8343470230852539 entropy_right : 1.105866621101474 -> 53 150 -idx: 71 entropy_left: 0.9864267287308424 entropy_right : 1.1104593064416028 -> 53 150 -idx: 72 entropy_left: 1.086987702339905 entropy_right : 1.0511407586429597 -> 53 150 -idx: 74 entropy_left: 1.0230370655328809 entropy_right : 1.041722068095403 -> 53 150 -idx: 75 entropy_left: 1.1180782093497093 entropy_right : 1.0462881865460743 -> 53 150 -idx: 76 entropy_left: 1.1863929342238186 entropy_right : 0.9568886656798212 -> 53 150 -idx: 77 entropy_left: 1.158222675578688 entropy_right : 0.9505668528932196 -> 53 150 -idx: 78 entropy_left: 1.224381457724494 entropy_right : 0.9544340029249649 -> 53 150 -idx: 79 entropy_left: 1.198183947911799 entropy_right : 0.9477073729342066 -> 53 150 -idx: 81 entropy_left: 1.287054028118727 entropy_right : 0.9557589912150009 -> 53 150 -idx: 83 entropy_left: 1.2419460322060458 entropy_right : 0.9411864371816835 -> 53 150 -idx: 84 entropy_left: 1.2738722345110536 entropy_right : 0.9456603046006402 -> 53 150 -idx: 87 entropy_left: 1.2141272693763827 entropy_right : 0.9182958340544896 -> 53 150 -idx: 88 entropy_left: 1.2423708743932154 entropy_right : 0.9235785996175947 -> 53 150 -idx: 89 entropy_left: 1.224394445405986 entropy_right : 0.9127341558073343 -> 53 150 -idx: 91 entropy_left: 1.2674438038072338 entropy_right : 0.9238422284571814 -> 53 150 -idx: 95 entropy_left: 1.2060026902433665 entropy_right : 0.8698926856041563 -> 53 150 -idx: 97 entropy_left: 1.2406705316766886 entropy_right : 0.8835850861052532 -> 53 150 -idx: 99 entropy_left: 1.214295263080721 entropy_right : 0.8478617451660526 -> 53 150 -idx: 101 entropy_left: 1.2410106928656977 entropy_right : 0.863120568566631 -> 53 150 -idx: 102 entropy_left: 1.2293413843029717 entropy_right : 0.8426578772022391 -> 53 150 -idx: 104 entropy_left: 1.2492864082069246 entropy_right : 0.8589810370425963 -> 53 150 -idx: 105 entropy_left: 1.2389012566026305 entropy_right : 0.8366407419411673 -> 53 150 -idx: 106 entropy_left: 1.2470361469923357 entropy_right : 0.8453509366224365 -> 53 150 -idx: 107 entropy_left: 1.237260201421159 entropy_right : 0.8203636429576732 -> 53 150 -idx: 109 entropy_left: 1.2506472668030133 entropy_right : 0.8390040613676977 -> 53 150 -idx: 110 entropy_left: 1.2419363412184317 entropy_right : 0.8112781244591328 -> 53 150 -idx: 113 entropy_left: 1.2555367253996503 entropy_right : 0.8418521897563207 -> 53 150 -idx: 114 entropy_left: 1.2482389571842902 entropy_right : 0.8112781244591328 -> 53 150 -idx: 117 entropy_left: 1.2559170259774697 entropy_right : 0.8453509366224365 -> 53 150 -idx: 118 entropy_left: 1.2498492777008952 entropy_right : 0.8112781244591328 -> 53 150 -idx: 120 entropy_left: 1.2526673604527443 entropy_right : 0.8366407419411673 -> 53 150 -idx: 122 entropy_left: 1.2418112963539676 entropy_right : 0.74959525725948 -> 53 150 -idx: 127 entropy_left: 1.2443013992660277 entropy_right : 0.828055725379504 -> 53 150 -idx: 130 entropy_left: 1.2322458629112465 entropy_right : 0.6098403047164004 -> 53 150 -idx: 132 entropy_left: 1.232472282457445 entropy_right : 0.6500224216483541 -> 53 150 -idx: 133 entropy_left: 1.228789740397119 entropy_right : 0.5225593745369408 -> 53 150 -idx: 134 entropy_left: 1.22871127017127 entropy_right : 0.5435644431995964 -> 53 150 -idx: 135 entropy_left: 1.2251826138221809 entropy_right : 0.35335933502142136 -> 53 150 -idx: 137 entropy_left: 1.2247083872970776 entropy_right : 0.39124356362925566 -> 53 150 -idx: 138 entropy_left: 1.2215701626281463 entropy_right : 0 -> 53 150 -cut: 5.5 index: 58 -start: 53 cut: 58 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.2046986815511866 ent1= 0 ent2= 1.2056112071736118 -ig= 0.06123238196384362 delta= 4.646593766642 N 97 term 0.11578923986972327 -idx: 59 entropy_left: 0 entropy_right : 1.167065448996099 -> 58 150 -idx: 61 entropy_left: 0.9182958340544896 entropy_right : 1.1653351793699953 -> 58 150 -idx: 62 entropy_left: 1.5 entropy_right : 1.1687172769890006 -> 58 150 -idx: 68 entropy_left: 0.9219280948873623 entropy_right : 1.1573913563403753 -> 58 150 -idx: 69 entropy_left: 1.0957952550009338 entropy_right : 1.109500797247481 -> 58 150 -idx: 70 entropy_left: 1.0408520829727552 entropy_right : 1.105866621101474 -> 58 150 -idx: 71 entropy_left: 1.198183947911799 entropy_right : 1.1104593064416028 -> 58 150 -idx: 72 entropy_left: 1.287054028118727 entropy_right : 1.0511407586429597 -> 58 150 -idx: 74 entropy_left: 1.1994602933016414 entropy_right : 1.041722068095403 -> 58 150 -idx: 75 entropy_left: 1.289608558348151 entropy_right : 1.0462881865460743 -> 58 150 -idx: 76 entropy_left: 1.3472230399326601 entropy_right : 0.9568886656798212 -> 58 150 -idx: 77 entropy_left: 1.312430802347936 entropy_right : 0.9505668528932196 -> 58 150 -idx: 78 entropy_left: 1.3709505944546687 entropy_right : 0.9544340029249649 -> 58 150 -idx: 79 entropy_left: 1.3396642639295127 entropy_right : 0.9477073729342066 -> 58 150 -idx: 81 entropy_left: 1.4098449412673983 entropy_right : 0.9557589912150009 -> 58 150 -idx: 83 entropy_left: 1.359330832236536 entropy_right : 0.9411864371816835 -> 58 150 -idx: 84 entropy_left: 1.3829457416591304 entropy_right : 0.9456603046006402 -> 58 150 -idx: 87 entropy_left: 1.3162522199425772 entropy_right : 0.9182958340544896 -> 58 150 -idx: 88 entropy_left: 1.3382689280764646 entropy_right : 0.9235785996175947 -> 58 150 -idx: 89 entropy_left: 1.3183697698891939 entropy_right : 0.9127341558073343 -> 58 150 -idx: 91 entropy_left: 1.3495485525614308 entropy_right : 0.9238422284571814 -> 58 150 -idx: 95 entropy_left: 1.283474826759087 entropy_right : 0.8698926856041563 -> 58 150 -idx: 97 entropy_left: 1.309466962504167 entropy_right : 0.8835850861052532 -> 58 150 -idx: 99 entropy_left: 1.2815531082029132 entropy_right : 0.8478617451660526 -> 58 150 -idx: 101 entropy_left: 1.3006979255585032 entropy_right : 0.863120568566631 -> 58 150 -idx: 102 entropy_left: 1.288649764535596 entropy_right : 0.8426578772022391 -> 58 150 -idx: 104 entropy_left: 1.301574289281613 entropy_right : 0.8589810370425963 -> 58 150 -idx: 105 entropy_left: 1.2911428397964957 entropy_right : 0.8366407419411673 -> 58 150 -idx: 106 entropy_left: 1.2960285244780434 entropy_right : 0.8453509366224365 -> 58 150 -idx: 107 entropy_left: 1.286285229444419 entropy_right : 0.8203636429576732 -> 58 150 -idx: 109 entropy_left: 1.2936692523040243 entropy_right : 0.8390040613676977 -> 58 150 -idx: 110 entropy_left: 1.285207571715559 entropy_right : 0.8112781244591328 -> 58 150 -idx: 113 entropy_left: 1.2906516322752029 entropy_right : 0.8418521897563207 -> 58 150 -idx: 114 entropy_left: 1.2838868242312453 entropy_right : 0.8112781244591328 -> 58 150 -idx: 117 entropy_left: 1.284285038978389 entropy_right : 0.8453509366224365 -> 58 150 -idx: 118 entropy_left: 1.2789490895024977 entropy_right : 0.8112781244591328 -> 58 150 -idx: 120 entropy_left: 1.2773890816706368 entropy_right : 0.8366407419411673 -> 58 150 -idx: 122 entropy_left: 1.2680161172305842 entropy_right : 0.74959525725948 -> 58 150 -idx: 127 entropy_left: 1.261205530128474 entropy_right : 0.828055725379504 -> 58 150 -idx: 130 entropy_left: 1.2516291673878228 entropy_right : 0.6098403047164004 -> 58 150 -idx: 132 entropy_left: 1.2487636811095608 entropy_right : 0.6500224216483541 -> 58 150 -idx: 133 entropy_left: 1.2458385420854454 entropy_right : 0.5225593745369408 -> 58 150 -idx: 134 entropy_left: 1.2443133013206253 entropy_right : 0.5435644431995964 -> 58 150 -idx: 135 entropy_left: 1.2415118510334717 entropy_right : 0.35335933502142136 -> 58 150 -idx: 137 entropy_left: 1.238324798314731 entropy_right : 0.39124356362925566 -> 58 150 -idx: 138 entropy_left: 1.235922331588627 entropy_right : 0 -> 58 150 -cut: 5.55 index: 59 -start: 58 cut: 59 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.2056112071736118 ent1= 0 ent2= 1.167065448996099 -ig= 0.051231252188340015 delta= 4.528218915242186 N 92 term 0.11995666908087914 -idx: 61 entropy_left: 0 entropy_right : 1.1653351793699953 -> 59 150 -idx: 62 entropy_left: 0.9182958340544896 entropy_right : 1.1687172769890006 -> 59 150 -idx: 68 entropy_left: 0.5032583347756457 entropy_right : 1.1573913563403753 -> 59 150 -idx: 69 entropy_left: 0.9219280948873623 entropy_right : 1.109500797247481 -> 59 150 -idx: 70 entropy_left: 0.8658566174572235 entropy_right : 1.105866621101474 -> 59 150 -idx: 71 entropy_left: 1.0408520829727552 entropy_right : 1.1104593064416028 -> 59 150 -idx: 72 entropy_left: 1.198183947911799 entropy_right : 1.0511407586429597 -> 59 150 -idx: 74 entropy_left: 1.103307408607834 entropy_right : 1.041722068095403 -> 59 150 -idx: 75 entropy_left: 1.1994602933016414 entropy_right : 1.0462881865460743 -> 59 150 -idx: 76 entropy_left: 1.289608558348151 entropy_right : 0.9568886656798212 -> 59 150 -idx: 77 entropy_left: 1.2516291673878228 entropy_right : 0.9505668528932196 -> 59 150 -idx: 78 entropy_left: 1.3124308023479359 entropy_right : 0.9544340029249649 -> 59 150 -idx: 79 entropy_left: 1.278897902987479 entropy_right : 0.9477073729342066 -> 59 150 -idx: 81 entropy_left: 1.3516871258043608 entropy_right : 0.9557589912150009 -> 59 150 -idx: 83 entropy_left: 1.2987949406953985 entropy_right : 0.9411864371816835 -> 59 150 -idx: 84 entropy_left: 1.3234669541469457 entropy_right : 0.9456603046006402 -> 59 150 -idx: 87 entropy_left: 1.2550327083958783 entropy_right : 0.9182958340544896 -> 59 150 -idx: 88 entropy_left: 1.2782038389853276 entropy_right : 0.9235785996175947 -> 59 150 -idx: 89 entropy_left: 1.258040253688799 entropy_right : 0.9127341558073343 -> 59 150 -idx: 91 entropy_left: 1.2911002747979619 entropy_right : 0.9238422284571814 -> 59 150 -idx: 95 entropy_left: 1.2250335169881907 entropy_right : 0.8698926856041563 -> 59 150 -idx: 97 entropy_left: 1.252760079229674 entropy_right : 0.8835850861052532 -> 59 150 -idx: 99 entropy_left: 1.2251570385077257 entropy_right : 0.8478617451660526 -> 59 150 -idx: 101 entropy_left: 1.2457873952707117 entropy_right : 0.863120568566631 -> 59 150 -idx: 102 entropy_left: 1.2339557062686486 entropy_right : 0.8426578772022391 -> 59 150 -idx: 104 entropy_left: 1.2481570924667444 entropy_right : 0.8589810370425963 -> 59 150 -idx: 105 entropy_left: 1.237978259087945 entropy_right : 0.8366407419411673 -> 59 150 -idx: 106 entropy_left: 1.2434459078088524 entropy_right : 0.8453509366224365 -> 59 150 -idx: 107 entropy_left: 1.2339688836163196 entropy_right : 0.8203636429576732 -> 59 150 -idx: 109 entropy_left: 1.2424272282706346 entropy_right : 0.8390040613676977 -> 59 150 -idx: 110 entropy_left: 1.2342496730246095 entropy_right : 0.8112781244591328 -> 59 150 -idx: 113 entropy_left: 1.2411128360359944 entropy_right : 0.8418521897563207 -> 59 150 -idx: 114 entropy_left: 1.2346487866075766 entropy_right : 0.8112781244591328 -> 59 150 -idx: 117 entropy_left: 1.2362911655622766 entropy_right : 0.8453509366224365 -> 59 150 -idx: 118 entropy_left: 1.2312637634546426 entropy_right : 0.8112781244591328 -> 59 150 -idx: 120 entropy_left: 1.2304597034223903 entropy_right : 0.8366407419411673 -> 59 150 -idx: 122 entropy_left: 1.221694907636328 entropy_right : 0.74959525725948 -> 59 150 -idx: 127 entropy_left: 1.216582055353392 entropy_right : 0.828055725379504 -> 59 150 -idx: 130 entropy_left: 1.2078853229682496 entropy_right : 0.6098403047164004 -> 59 150 -idx: 132 entropy_left: 1.2056338170088083 entropy_right : 0.6500224216483541 -> 59 150 -idx: 133 entropy_left: 1.2029885192377856 entropy_right : 0.5225593745369408 -> 59 150 -idx: 134 entropy_left: 1.2017577888491018 entropy_right : 0.5435644431995964 -> 59 150 -idx: 135 entropy_left: 1.1992296370476179 entropy_right : 0.35335933502142136 -> 59 150 -idx: 137 entropy_left: 1.1966085324354425 entropy_right : 0.39124356362925566 -> 59 150 -idx: 138 entropy_left: 1.1944725384801118 entropy_right : 0 -> 59 150 -cut: 5.6 index: 61 -start: 59 cut: 61 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.167065448996099 ent1= 0 ent2= 1.1653351793699953 -ig= 0.027342031810059675 delta= 4.638665380896414 N 91 term 0.12231338985962735 -idx: 62 entropy_left: 0 entropy_right : 1.1687172769890006 -> 61 150 -idx: 68 entropy_left: 0.5916727785823275 entropy_right : 1.1573913563403753 -> 61 150 -idx: 69 entropy_left: 1.061278124459133 entropy_right : 1.109500797247481 -> 61 150 -idx: 70 entropy_left: 0.9864267287308424 entropy_right : 1.105866621101474 -> 61 150 -idx: 71 entropy_left: 1.1567796494470395 entropy_right : 1.1104593064416028 -> 61 150 -idx: 72 entropy_left: 1.3092966682370037 entropy_right : 1.0511407586429597 -> 61 150 -idx: 74 entropy_left: 1.198183947911799 entropy_right : 1.041722068095403 -> 61 150 -idx: 75 entropy_left: 1.287054028118727 entropy_right : 1.0462881865460743 -> 61 150 -idx: 76 entropy_left: 1.3709505944546687 entropy_right : 0.9568886656798212 -> 61 150 -idx: 77 entropy_left: 1.3294340029249652 entropy_right : 0.9505668528932196 -> 61 150 -idx: 78 entropy_left: 1.383099991189334 entropy_right : 0.9544340029249649 -> 61 150 -idx: 79 entropy_left: 1.3472230399326601 entropy_right : 0.9477073729342066 -> 61 150 -idx: 81 entropy_left: 1.4060075793123286 entropy_right : 0.9557589912150009 -> 61 150 -idx: 83 entropy_left: 1.3516871258043608 entropy_right : 0.9411864371816835 -> 61 150 -idx: 84 entropy_left: 1.370862465083061 entropy_right : 0.9456603046006402 -> 61 150 -idx: 87 entropy_left: 1.3001946428885267 entropy_right : 0.9182958340544896 -> 61 150 -idx: 88 entropy_left: 1.3195212983796363 entropy_right : 0.9235785996175947 -> 61 150 -idx: 89 entropy_left: 1.2987207862212027 entropy_right : 0.9127341558073343 -> 61 150 -idx: 91 entropy_left: 1.3248560371987566 entropy_right : 0.9238422284571814 -> 61 150 -idx: 95 entropy_left: 1.2576735962682495 entropy_right : 0.8698926856041563 -> 61 150 -idx: 97 entropy_left: 1.280672129520887 entropy_right : 0.8835850861052532 -> 61 150 -idx: 99 entropy_left: 1.252760079229674 entropy_right : 0.8478617451660526 -> 61 150 -idx: 101 entropy_left: 1.269433559880332 entropy_right : 0.863120568566631 -> 61 150 -idx: 102 entropy_left: 1.2576262380747258 entropy_right : 0.8426578772022391 -> 61 150 -idx: 104 entropy_left: 1.2682650449469532 entropy_right : 0.8589810370425963 -> 61 150 -idx: 105 entropy_left: 1.2582658857615794 entropy_right : 0.8366407419411673 -> 61 150 -idx: 106 entropy_left: 1.2621161952677336 entropy_right : 0.8453509366224365 -> 61 150 -idx: 107 entropy_left: 1.2528404674681515 entropy_right : 0.8203636429576732 -> 61 150 -idx: 109 entropy_left: 1.2583595230282398 entropy_right : 0.8390040613676977 -> 61 150 -idx: 110 entropy_left: 1.2504757050130606 entropy_right : 0.8112781244591328 -> 61 150 -idx: 113 entropy_left: 1.2534330706295986 entropy_right : 0.8418521897563207 -> 61 150 -idx: 114 entropy_left: 1.2473860973972197 entropy_right : 0.8112781244591328 -> 61 150 -idx: 117 entropy_left: 1.2456186709121666 entropy_right : 0.8453509366224365 -> 61 150 -idx: 118 entropy_left: 1.2410875386343703 entropy_right : 0.8112781244591328 -> 61 150 -idx: 120 entropy_left: 1.2382651015774901 entropy_right : 0.8366407419411673 -> 61 150 -idx: 122 entropy_left: 1.2304597034223903 entropy_right : 0.74959525725948 -> 61 150 -idx: 127 entropy_left: 1.2211369508106262 entropy_right : 0.828055725379504 -> 61 150 -idx: 130 entropy_left: 1.213906716130705 entropy_right : 0.6098403047164004 -> 61 150 -idx: 132 entropy_left: 1.2102772503893786 entropy_right : 0.6500224216483541 -> 61 150 -idx: 133 entropy_left: 1.2080704223069119 entropy_right : 0.5225593745369408 -> 61 150 -idx: 134 entropy_left: 1.206198549451098 entropy_right : 0.5435644431995964 -> 61 150 -idx: 135 entropy_left: 1.2040872420186723 entropy_right : 0.35335933502142136 -> 61 150 -idx: 137 entropy_left: 1.2002701176230874 entropy_right : 0.39124356362925566 -> 61 150 -idx: 138 entropy_left: 1.198547104867554 entropy_right : 0 -> 61 150 -cut: 5.6 index: 62 -start: 61 cut: 62 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.1653351793699953 ent1= 0 ent2= 1.1687172769890006 -ig= 0.009749557178623913 delta= 4.65400248263174 N 89 term 0.1248700460816746 -idx: 68 entropy_left: 0 entropy_right : 1.1573913563403753 -> 62 150 -idx: 69 entropy_left: 0.5916727785823275 entropy_right : 1.109500797247481 -> 62 150 -idx: 70 entropy_left: 0.5435644431995964 entropy_right : 1.105866621101474 -> 62 150 -idx: 71 entropy_left: 0.9864267287308424 entropy_right : 1.1104593064416028 -> 62 150 -idx: 72 entropy_left: 1.1567796494470395 entropy_right : 1.0511407586429597 -> 62 150 -idx: 74 entropy_left: 1.0408520829727552 entropy_right : 1.041722068095403 -> 62 150 -idx: 75 entropy_left: 1.198183947911799 entropy_right : 1.0462881865460743 -> 62 150 -idx: 76 entropy_left: 1.287054028118727 entropy_right : 0.9568886656798212 -> 62 150 -idx: 77 entropy_left: 1.2419460322060458 entropy_right : 0.9505668528932196 -> 62 150 -idx: 78 entropy_left: 1.3294340029249652 entropy_right : 0.9544340029249649 -> 62 150 -idx: 79 entropy_left: 1.289608558348151 entropy_right : 0.9477073729342066 -> 62 150 -idx: 81 entropy_left: 1.383807735464083 entropy_right : 0.9557589912150009 -> 62 150 -idx: 83 entropy_left: 1.322305788853309 entropy_right : 0.9411864371816835 -> 62 150 -idx: 84 entropy_left: 1.3516871258043608 entropy_right : 0.9456603046006402 -> 62 150 -idx: 87 entropy_left: 1.2732696895151085 entropy_right : 0.9182958340544896 -> 62 150 -idx: 88 entropy_left: 1.3001946428885267 entropy_right : 0.9235785996175947 -> 62 150 -idx: 89 entropy_left: 1.2773600852070808 entropy_right : 0.9127341558073343 -> 62 150 -idx: 91 entropy_left: 1.3141506221482602 entropy_right : 0.9238422284571814 -> 62 150 -idx: 95 entropy_left: 1.2406705316766886 entropy_right : 0.8698926856041563 -> 62 150 -idx: 97 entropy_left: 1.2707886973584608 entropy_right : 0.8835850861052532 -> 62 150 -idx: 99 entropy_left: 1.2405193035617867 entropy_right : 0.8478617451660526 -> 62 150 -idx: 101 entropy_left: 1.2622604540594544 entropy_right : 0.863120568566631 -> 62 150 -idx: 102 entropy_left: 1.249435498504727 entropy_right : 0.8426578772022391 -> 62 150 -idx: 104 entropy_left: 1.2638091738835462 entropy_right : 0.8589810370425963 -> 62 150 -idx: 105 entropy_left: 1.2529007737565314 entropy_right : 0.8366407419411673 -> 62 150 -idx: 106 entropy_left: 1.2582658857615794 entropy_right : 0.8453509366224365 -> 62 150 -idx: 107 entropy_left: 1.2481570924667444 entropy_right : 0.8203636429576732 -> 62 150 -idx: 109 entropy_left: 1.2561852304054355 entropy_right : 0.8390040613676977 -> 62 150 -idx: 110 entropy_left: 1.2475562489182657 entropy_right : 0.8112781244591328 -> 62 150 -idx: 113 entropy_left: 1.2532975784630431 entropy_right : 0.8418521897563207 -> 62 150 -idx: 114 entropy_left: 1.2466033489462778 entropy_right : 0.8112781244591328 -> 62 150 -idx: 117 entropy_left: 1.2468156164867663 entropy_right : 0.8453509366224365 -> 62 150 -idx: 118 entropy_left: 1.2417221295902683 entropy_right : 0.8112781244591328 -> 62 150 -idx: 120 entropy_left: 1.2399160118080643 entropy_right : 0.8366407419411673 -> 62 150 -idx: 122 entropy_left: 1.2311171656781021 entropy_right : 0.74959525725948 -> 62 150 -idx: 127 entropy_left: 1.223674601549228 entropy_right : 0.828055725379504 -> 62 150 -idx: 130 entropy_left: 1.2152759335052197 entropy_right : 0.6098403047164004 -> 62 150 -idx: 132 entropy_left: 1.212231159180624 entropy_right : 0.6500224216483541 -> 62 150 -idx: 133 entropy_left: 1.2096795274755798 entropy_right : 0.5225593745369408 -> 62 150 -idx: 134 entropy_left: 1.2080704223069119 entropy_right : 0.5435644431995964 -> 62 150 -idx: 135 entropy_left: 1.2056338170088083 entropy_right : 0.35335933502142136 -> 62 150 -idx: 137 entropy_left: 1.2022921890824148 entropy_right : 0.39124356362925566 -> 62 150 -idx: 138 entropy_left: 1.2002701176230874 entropy_right : 0 -> 62 150 -cut: 5.7 index: 68 -start: 62 cut: 68 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.1687172769890006 ent1= 0 ent2= 1.1573913563403753 -ig= 0.09023896767183293 delta= 4.609878427828848 N 88 term 0.12560024913269974 -idx: 69 entropy_left: 0 entropy_right : 1.109500797247481 -> 68 150 -idx: 70 entropy_left: 1.0 entropy_right : 1.105866621101474 -> 68 150 -idx: 71 entropy_left: 1.584962500721156 entropy_right : 1.1104593064416028 -> 68 150 -idx: 72 entropy_left: 1.5 entropy_right : 1.0511407586429597 -> 68 150 -idx: 74 entropy_left: 1.4591479170272448 entropy_right : 1.041722068095403 -> 68 150 -idx: 75 entropy_left: 1.5566567074628228 entropy_right : 1.0462881865460743 -> 68 150 -idx: 76 entropy_left: 1.5612781244591327 entropy_right : 0.9568886656798212 -> 68 150 -idx: 77 entropy_left: 1.5304930567574824 entropy_right : 0.9505668528932196 -> 68 150 -idx: 78 entropy_left: 1.5709505944546684 entropy_right : 0.9544340029249649 -> 68 150 -idx: 79 entropy_left: 1.5394847569315018 entropy_right : 0.9477073729342066 -> 68 150 -idx: 81 entropy_left: 1.5485806065228545 entropy_right : 0.9557589912150009 -> 68 150 -idx: 83 entropy_left: 1.5058231002082845 entropy_right : 0.9411864371816835 -> 68 150 -idx: 84 entropy_left: 1.5052408149441479 entropy_right : 0.9456603046006402 -> 68 150 -idx: 87 entropy_left: 1.432983121056005 entropy_right : 0.9182958340544896 -> 68 150 -idx: 88 entropy_left: 1.4406454496153462 entropy_right : 0.9235785996175947 -> 68 150 -idx: 89 entropy_left: 1.4180260055608096 entropy_right : 0.9127341558073343 -> 68 150 -idx: 91 entropy_left: 1.4219115073546411 entropy_right : 0.9238422284571814 -> 68 150 -idx: 95 entropy_left: 1.3516441151533924 entropy_right : 0.8698926856041563 -> 68 150 -idx: 97 entropy_left: 1.3610156764620025 entropy_right : 0.8835850861052532 -> 68 150 -idx: 99 entropy_left: 1.3317607101149556 entropy_right : 0.8478617451660526 -> 68 150 -idx: 101 entropy_left: 1.336894963623501 entropy_right : 0.863120568566631 -> 68 150 -idx: 102 entropy_left: 1.3251318452515368 entropy_right : 0.8426578772022391 -> 68 150 -idx: 104 entropy_left: 1.3250112108241772 entropy_right : 0.8589810370425963 -> 68 150 -idx: 105 entropy_left: 1.315700144231129 entropy_right : 0.8366407419411673 -> 68 150 -idx: 106 entropy_left: 1.3146246119280174 entropy_right : 0.8453509366224365 -> 68 150 -idx: 107 entropy_left: 1.3060830034799225 entropy_right : 0.8203636429576732 -> 68 150 -idx: 109 entropy_left: 1.3026227503285146 entropy_right : 0.8390040613676977 -> 68 150 -idx: 110 entropy_left: 1.2958363892911637 entropy_right : 0.8112781244591328 -> 68 150 -idx: 113 entropy_left: 1.2866926683547546 entropy_right : 0.8418521897563207 -> 68 150 -idx: 114 entropy_left: 1.2822348040887959 entropy_right : 0.8112781244591328 -> 68 150 -idx: 117 entropy_left: 1.2697816169827234 entropy_right : 0.8453509366224365 -> 68 150 -idx: 118 entropy_left: 1.2671379395990745 entropy_right : 0.8112781244591328 -> 68 150 -idx: 120 entropy_left: 1.2579734650037238 entropy_right : 0.8366407419411673 -> 68 150 -idx: 122 entropy_left: 1.2537259296042096 entropy_right : 0.74959525725948 -> 68 150 -idx: 127 entropy_left: 1.2312637634546426 entropy_right : 0.828055725379504 -> 68 150 -idx: 130 entropy_left: 1.22934290810027 entropy_right : 0.6098403047164004 -> 68 150 -idx: 132 entropy_left: 1.2214713865842914 entropy_right : 0.6500224216483541 -> 68 150 -idx: 133 entropy_left: 1.2208087007255004 entropy_right : 0.5225593745369408 -> 68 150 -idx: 134 entropy_left: 1.2169687714285353 entropy_right : 0.5435644431995964 -> 68 150 -idx: 135 entropy_left: 1.216307966981197 entropy_right : 0.35335933502142136 -> 68 150 -idx: 137 entropy_left: 1.2088301752949477 entropy_right : 0.39124356362925566 -> 68 150 -idx: 138 entropy_left: 1.208536257286683 entropy_right : 0 -> 68 150 -cut: 5.7 index: 69 -start: 68 cut: 69 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.1573913563403753 ent1= 0 ent2= 1.109500797247481 -ig= 0.061421056620302616 delta= 4.500184512496042 N 82 term 0.13219554287049595 -idx: 70 entropy_left: 0 entropy_right : 1.105866621101474 -> 69 150 -idx: 71 entropy_left: 1.0 entropy_right : 1.1104593064416028 -> 69 150 -idx: 72 entropy_left: 1.584962500721156 entropy_right : 1.0511407586429597 -> 69 150 -idx: 74 entropy_left: 1.3709505944546687 entropy_right : 1.041722068095403 -> 69 150 -idx: 75 entropy_left: 1.4591479170272446 entropy_right : 1.0462881865460743 -> 69 150 -idx: 76 entropy_left: 1.5566567074628228 entropy_right : 0.9568886656798212 -> 69 150 -idx: 77 entropy_left: 1.5 entropy_right : 0.9505668528932196 -> 69 150 -idx: 78 entropy_left: 1.5304930567574826 entropy_right : 0.9544340029249649 -> 69 150 -idx: 79 entropy_left: 1.4854752972273344 entropy_right : 0.9477073729342066 -> 69 150 -idx: 81 entropy_left: 1.4833557549816874 entropy_right : 0.9557589912150009 -> 69 150 -idx: 83 entropy_left: 1.4315602842833155 entropy_right : 0.9411864371816835 -> 69 150 -idx: 84 entropy_left: 1.4294732983598406 entropy_right : 0.9456603046006402 -> 69 150 -idx: 87 entropy_left: 1.3516441151533924 entropy_right : 0.9182958340544896 -> 69 150 -idx: 88 entropy_left: 1.3599924922184878 entropy_right : 0.9235785996175947 -> 69 150 -idx: 89 entropy_left: 1.3366664819166876 entropy_right : 0.9127341558073343 -> 69 150 -idx: 91 entropy_left: 1.342019217819521 entropy_right : 0.9238422284571814 -> 69 150 -idx: 95 entropy_left: 1.2722595663292235 entropy_right : 0.8698926856041563 -> 69 150 -idx: 97 entropy_left: 1.2838868242312453 entropy_right : 0.8835850861052532 -> 69 150 -idx: 99 entropy_left: 1.2555367253996503 entropy_right : 0.8478617451660526 -> 69 150 -idx: 101 entropy_left: 1.2627317300909384 entropy_right : 0.863120568566631 -> 69 150 -idx: 102 entropy_left: 1.251534532637368 entropy_right : 0.8426578772022391 -> 69 150 -idx: 104 entropy_left: 1.2532256180852694 entropy_right : 0.8589810370425963 -> 69 150 -idx: 105 entropy_left: 1.2445366211768707 entropy_right : 0.8366407419411673 -> 69 150 -idx: 106 entropy_left: 1.2443013992660277 entropy_right : 0.8453509366224365 -> 69 150 -idx: 107 entropy_left: 1.2363864108712896 entropy_right : 0.8203636429576732 -> 69 150 -idx: 109 entropy_left: 1.2344977967946407 entropy_right : 0.8390040613676977 -> 69 150 -idx: 110 entropy_left: 1.2283491776835573 entropy_right : 0.8112781244591328 -> 69 150 -idx: 113 entropy_left: 1.2213104423484806 entropy_right : 0.8418521897563207 -> 69 150 -idx: 114 entropy_left: 1.2174939521435744 entropy_right : 0.8112781244591328 -> 69 150 -idx: 117 entropy_left: 1.206908425151817 entropy_right : 0.8453509366224365 -> 69 150 -idx: 118 entropy_left: 1.2048930072454316 entropy_right : 0.8112781244591328 -> 69 150 -idx: 120 entropy_left: 1.1968693094032665 entropy_right : 0.8366407419411673 -> 69 150 -idx: 122 entropy_left: 1.193810314637982 entropy_right : 0.74959525725948 -> 69 150 -idx: 127 entropy_left: 1.1739035750178954 entropy_right : 0.828055725379504 -> 69 150 -idx: 130 entropy_left: 1.1735894123234432 entropy_right : 0.6098403047164004 -> 69 150 -idx: 132 entropy_left: 1.1666300226040138 entropy_right : 0.6500224216483541 -> 69 150 -idx: 133 entropy_left: 1.1664616437886164 entropy_right : 0.5225593745369408 -> 69 150 -idx: 134 entropy_left: 1.16305726747136 entropy_right : 0.5435644431995964 -> 69 150 -idx: 135 entropy_left: 1.1628720819225884 entropy_right : 0.35335933502142136 -> 69 150 -idx: 137 entropy_left: 1.1562272836006513 entropy_right : 0.39124356362925566 -> 69 150 -idx: 138 entropy_left: 1.1563884325185114 entropy_right : 0 -> 69 150 -cut: 5.7 index: 70 -start: 69 cut: 70 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.109500797247481 ent1= 0 ent2= 1.105866621101474 -ig= 0.017286850480593197 delta= 4.632953661336703 N 81 term 0.135245453780544 -idx: 71 entropy_left: 0 entropy_right : 1.1104593064416028 -> 70 150 -idx: 72 entropy_left: 1.0 entropy_right : 1.0511407586429597 -> 70 150 -idx: 74 entropy_left: 1.5 entropy_right : 1.041722068095403 -> 70 150 -idx: 75 entropy_left: 1.5219280948873621 entropy_right : 1.0462881865460743 -> 70 150 -idx: 76 entropy_left: 1.584962500721156 entropy_right : 0.9568886656798212 -> 70 150 -idx: 77 entropy_left: 1.5566567074628228 entropy_right : 0.9505668528932196 -> 70 150 -idx: 78 entropy_left: 1.5612781244591325 entropy_right : 0.9544340029249649 -> 70 150 -idx: 79 entropy_left: 1.5304930567574826 entropy_right : 0.9477073729342066 -> 70 150 -idx: 81 entropy_left: 1.4949188482339508 entropy_right : 0.9557589912150009 -> 70 150 -idx: 83 entropy_left: 1.4604846813131114 entropy_right : 0.9411864371816835 -> 70 150 -idx: 84 entropy_left: 1.4488156357251847 entropy_right : 0.9456603046006402 -> 70 150 -idx: 87 entropy_left: 1.3792804872910602 entropy_right : 0.9182958340544896 -> 70 150 -idx: 88 entropy_left: 1.3821022532543101 entropy_right : 0.9235785996175947 -> 70 150 -idx: 89 entropy_left: 1.3599924922184878 entropy_right : 0.9127341558073343 -> 70 150 -idx: 91 entropy_left: 1.3566695198333112 entropy_right : 0.9238422284571814 -> 70 150 -idx: 95 entropy_left: 1.290564432903234 entropy_right : 0.8698926856041563 -> 70 150 -idx: 97 entropy_left: 1.2972313275776637 entropy_right : 0.8835850861052532 -> 70 150 -idx: 99 entropy_left: 1.2699207259892868 entropy_right : 0.8478617451660526 -> 70 150 -idx: 101 entropy_left: 1.2733667511664173 entropy_right : 0.863120568566631 -> 70 150 -idx: 102 entropy_left: 1.2627317300909384 entropy_right : 0.8426578772022391 -> 70 150 -idx: 104 entropy_left: 1.2612796872684706 entropy_right : 0.8589810370425963 -> 70 150 -idx: 105 entropy_left: 1.2532256180852694 entropy_right : 0.8366407419411673 -> 70 150 -idx: 106 entropy_left: 1.2516291673878228 entropy_right : 0.8453509366224365 -> 70 150 -idx: 107 entropy_left: 1.2443013992660277 entropy_right : 0.8203636429576732 -> 70 150 -idx: 109 entropy_left: 1.2400362501086653 entropy_right : 0.8390040613676977 -> 70 150 -idx: 110 entropy_left: 1.2344977967946407 entropy_right : 0.8112781244591328 -> 70 150 -idx: 113 entropy_left: 1.2244687599090465 entropy_right : 0.8418521897563207 -> 70 150 -idx: 114 entropy_left: 1.2213104423484806 entropy_right : 0.8112781244591328 -> 70 150 -idx: 117 entropy_left: 1.2082534070890902 entropy_right : 0.8453509366224365 -> 70 150 -idx: 118 entropy_left: 1.206908425151817 entropy_right : 0.8112781244591328 -> 70 150 -idx: 120 entropy_left: 1.1974776241409462 entropy_right : 0.8366407419411673 -> 70 150 -idx: 122 entropy_left: 1.1956217818146277 entropy_right : 0.74959525725948 -> 70 150 -idx: 127 entropy_left: 1.172904301194551 entropy_right : 0.828055725379504 -> 70 150 -idx: 130 entropy_left: 1.174189792601739 entropy_right : 0.6098403047164004 -> 70 150 -idx: 132 entropy_left: 1.1663419797861878 entropy_right : 0.6500224216483541 -> 70 150 -idx: 133 entropy_left: 1.1666300226040138 entropy_right : 0.5225593745369408 -> 70 150 -idx: 134 entropy_left: 1.1628175871855553 entropy_right : 0.5435644431995964 -> 70 150 -idx: 135 entropy_left: 1.16305726747136 entropy_right : 0.35335933502142136 -> 70 150 -idx: 137 entropy_left: 1.1556601022395212 entropy_right : 0.39124356362925566 -> 70 150 -idx: 138 entropy_left: 1.1562272836006513 entropy_right : 0 -> 70 150 -cut: 5.7 index: 71 -start: 70 cut: 71 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.105866621101474 ent1= 0 ent2= 1.1104593064416028 -ig= 0.009288055990391175 delta= 4.65763424579511 N 80 term 0.13701768742465267 -idx: 72 entropy_left: 0 entropy_right : 1.0511407586429597 -> 71 150 -idx: 74 entropy_left: 0.9182958340544896 entropy_right : 1.041722068095403 -> 71 150 -idx: 75 entropy_left: 1.5 entropy_right : 1.0462881865460743 -> 71 150 -idx: 76 entropy_left: 1.5219280948873621 entropy_right : 0.9568886656798212 -> 71 150 -idx: 77 entropy_left: 1.4591479170272448 entropy_right : 0.9505668528932196 -> 71 150 -idx: 78 entropy_left: 1.5566567074628228 entropy_right : 0.9544340029249649 -> 71 150 -idx: 79 entropy_left: 1.5 entropy_right : 0.9477073729342066 -> 71 150 -idx: 81 entropy_left: 1.5219280948873621 entropy_right : 0.9557589912150009 -> 71 150 -idx: 83 entropy_left: 1.4591479170272446 entropy_right : 0.9411864371816835 -> 71 150 -idx: 84 entropy_left: 1.4604846813131114 entropy_right : 0.9456603046006402 -> 71 150 -idx: 87 entropy_left: 1.3663146570363986 entropy_right : 0.9182958340544896 -> 71 150 -idx: 88 entropy_left: 1.3792804872910602 entropy_right : 0.9235785996175947 -> 71 150 -idx: 89 entropy_left: 1.3516441151533924 entropy_right : 0.9127341558073343 -> 71 150 -idx: 91 entropy_left: 1.360964047443681 entropy_right : 0.9238422284571814 -> 71 150 -idx: 95 entropy_left: 1.280672129520887 entropy_right : 0.8698926856041563 -> 71 150 -idx: 97 entropy_left: 1.2957378005380122 entropy_right : 0.8835850861052532 -> 71 150 -idx: 99 entropy_left: 1.2638091738835462 entropy_right : 0.8478617451660526 -> 71 150 -idx: 101 entropy_left: 1.272905595320056 entropy_right : 0.863120568566631 -> 71 150 -idx: 102 entropy_left: 1.2604408810349512 entropy_right : 0.8426578772022391 -> 71 150 -idx: 104 entropy_left: 1.2628839008717194 entropy_right : 0.8589810370425963 -> 71 150 -idx: 105 entropy_left: 1.2532975784630431 entropy_right : 0.8366407419411673 -> 71 150 -idx: 106 entropy_left: 1.2532256180852694 entropy_right : 0.8453509366224365 -> 71 150 -idx: 107 entropy_left: 1.2445366211768707 entropy_right : 0.8203636429576732 -> 71 150 -idx: 109 entropy_left: 1.2427303803729566 entropy_right : 0.8390040613676977 -> 71 150 -idx: 110 entropy_left: 1.236032213759607 entropy_right : 0.8112781244591328 -> 71 150 -idx: 113 entropy_left: 1.2285763800288914 entropy_right : 0.8418521897563207 -> 71 150 -idx: 114 entropy_left: 1.2244687599090465 entropy_right : 0.8112781244591328 -> 71 150 -idx: 117 entropy_left: 1.2131143284990724 entropy_right : 0.8453509366224365 -> 71 150 -idx: 118 entropy_left: 1.2109841580748322 entropy_right : 0.8112781244591328 -> 71 150 -idx: 120 entropy_left: 1.2023853470868684 entropy_right : 0.8366407419411673 -> 71 150 -idx: 122 entropy_left: 1.1991801505660864 entropy_right : 0.74959525725948 -> 71 150 -idx: 127 entropy_left: 1.1779653169582593 entropy_right : 0.828055725379504 -> 71 150 -idx: 130 entropy_left: 1.1777501607742278 entropy_right : 0.6098403047164004 -> 71 150 -idx: 132 entropy_left: 1.170377295621679 entropy_right : 0.6500224216483541 -> 71 150 -idx: 133 entropy_left: 1.1702295713931186 entropy_right : 0.5225593745369408 -> 71 150 -idx: 134 entropy_left: 1.1666300226040138 entropy_right : 0.5435644431995964 -> 71 150 -idx: 135 entropy_left: 1.1664616437886164 entropy_right : 0.35335933502142136 -> 71 150 -idx: 137 entropy_left: 1.1594493549376441 entropy_right : 0.39124356362925566 -> 71 150 -idx: 138 entropy_left: 1.159647049243901 entropy_right : 0 -> 71 150 -cut: 5.7 index: 72 -start: 71 cut: 72 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.1104593064416028 ent1= 0 ent2= 1.0511407586429597 -ig= 0.07262412702197163 delta= 4.465900546378795 N 79 term 0.1360924400663423 -idx: 74 entropy_left: 0 entropy_right : 1.041722068095403 -> 72 150 -idx: 75 entropy_left: 0.9182958340544896 entropy_right : 1.0462881865460743 -> 72 150 -idx: 76 entropy_left: 1.5 entropy_right : 0.9568886656798212 -> 72 150 -idx: 77 entropy_left: 1.3709505944546687 entropy_right : 0.9505668528932196 -> 72 150 -idx: 78 entropy_left: 1.4591479170272446 entropy_right : 0.9544340029249649 -> 72 150 -idx: 79 entropy_left: 1.3787834934861758 entropy_right : 0.9477073729342066 -> 72 150 -idx: 81 entropy_left: 1.3921472236645345 entropy_right : 0.9557589912150009 -> 72 150 -idx: 83 entropy_left: 1.3221793455166668 entropy_right : 0.9411864371816835 -> 72 150 -idx: 84 entropy_left: 1.3250112108241772 entropy_right : 0.9456603046006402 -> 72 150 -idx: 87 entropy_left: 1.2309595631140104 entropy_right : 0.9182958340544896 -> 72 150 -idx: 88 entropy_left: 1.2475562489182657 entropy_right : 0.9235785996175947 -> 72 150 -idx: 89 entropy_left: 1.2210477851797181 entropy_right : 0.9127341558073343 -> 72 150 -idx: 91 entropy_left: 1.2363864108712896 entropy_right : 0.9238422284571814 -> 72 150 -idx: 95 entropy_left: 1.1625633078480364 entropy_right : 0.8698926856041563 -> 72 150 -idx: 97 entropy_left: 1.1829661954675212 entropy_right : 0.8835850861052532 -> 72 150 -idx: 99 entropy_left: 1.154173392945927 entropy_right : 0.8478617451660526 -> 72 150 -idx: 101 entropy_left: 1.1676516844843352 entropy_right : 0.863120568566631 -> 72 150 -idx: 102 entropy_left: 1.1566766519448637 entropy_right : 0.8426578772022391 -> 72 150 -idx: 104 entropy_left: 1.1628175871855553 entropy_right : 0.8589810370425963 -> 72 150 -idx: 105 entropy_left: 1.154648091032148 entropy_right : 0.8366407419411673 -> 72 150 -idx: 106 entropy_left: 1.1562272836006513 entropy_right : 0.8453509366224365 -> 72 150 -idx: 107 entropy_left: 1.148883540100512 entropy_right : 0.8203636429576732 -> 72 150 -idx: 109 entropy_left: 1.1500617154483042 entropy_right : 0.8390040613676977 -> 72 150 -idx: 110 entropy_left: 1.14462671873298 entropy_right : 0.8112781244591328 -> 72 150 -idx: 113 entropy_left: 1.1410367900938279 entropy_right : 0.8418521897563207 -> 72 150 -idx: 114 entropy_left: 1.1380977138239694 entropy_right : 0.8112781244591328 -> 72 150 -idx: 117 entropy_left: 1.1300621881593356 entropy_right : 0.8453509366224365 -> 72 150 -idx: 118 entropy_left: 1.1290093343324077 entropy_right : 0.8112781244591328 -> 72 150 -idx: 120 entropy_left: 1.1223812433380593 entropy_right : 0.8366407419411673 -> 72 150 -idx: 122 entropy_left: 1.1211460945412073 entropy_right : 0.74959525725948 -> 72 150 -idx: 127 entropy_left: 1.104163024696236 entropy_right : 0.828055725379504 -> 72 150 -idx: 130 entropy_left: 1.106452022253965 entropy_right : 0.6098403047164004 -> 72 150 -idx: 132 entropy_left: 1.1005245529682912 entropy_right : 0.6500224216483541 -> 72 150 -idx: 133 entropy_left: 1.1011317995692322 entropy_right : 0.5225593745369408 -> 72 150 -idx: 134 entropy_left: 1.0982133465732966 entropy_right : 0.5435644431995964 -> 72 150 -idx: 135 entropy_left: 1.0987647679835901 entropy_right : 0.35335933502142136 -> 72 150 -idx: 137 entropy_left: 1.093039283001171 entropy_right : 0.39124356362925566 -> 72 150 -idx: 138 entropy_left: 1.093914976004978 entropy_right : 0 -> 72 150 -cut: 5.8 index: 74 -start: 72 cut: 74 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.0511407586429597 ent1= 0 ent2= 1.041722068095403 -ig= 0.03612951280641341 delta= 4.615600118132054 N 78 term 0.13951777767726867 -idx: 75 entropy_left: 0 entropy_right : 1.0462881865460743 -> 74 150 -idx: 76 entropy_left: 1.0 entropy_right : 0.9568886656798212 -> 74 150 -idx: 77 entropy_left: 1.584962500721156 entropy_right : 0.9505668528932196 -> 74 150 -idx: 78 entropy_left: 1.5 entropy_right : 0.9544340029249649 -> 74 150 -idx: 79 entropy_left: 1.5219280948873621 entropy_right : 0.9477073729342066 -> 74 150 -idx: 81 entropy_left: 1.3787834934861756 entropy_right : 0.9557589912150009 -> 74 150 -idx: 83 entropy_left: 1.3921472236645345 entropy_right : 0.9411864371816835 -> 74 150 -idx: 84 entropy_left: 1.360964047443681 entropy_right : 0.9456603046006402 -> 74 150 -idx: 87 entropy_left: 1.2957378005380122 entropy_right : 0.9182958340544896 -> 74 150 -idx: 88 entropy_left: 1.2958363892911637 entropy_right : 0.9235785996175947 -> 74 150 -idx: 89 entropy_left: 1.272905595320056 entropy_right : 0.9127341558073343 -> 74 150 -idx: 91 entropy_left: 1.2639334294856335 entropy_right : 0.9238422284571814 -> 74 150 -idx: 95 entropy_left: 1.2009102795095283 entropy_right : 0.8698926856041563 -> 74 150 -idx: 97 entropy_left: 1.2088301752949477 entropy_right : 0.8835850861052532 -> 74 150 -idx: 99 entropy_left: 1.1829661954675212 entropy_right : 0.8478617451660526 -> 74 150 -idx: 101 entropy_left: 1.1873868015167897 entropy_right : 0.863120568566631 -> 74 150 -idx: 102 entropy_left: 1.1779653169582593 entropy_right : 0.8426578772022391 -> 74 150 -idx: 104 entropy_left: 1.1766796675107107 entropy_right : 0.8589810370425963 -> 74 150 -idx: 105 entropy_left: 1.1702295713931186 entropy_right : 0.8366407419411673 -> 74 150 -idx: 106 entropy_left: 1.168645033308507 entropy_right : 0.8453509366224365 -> 74 150 -idx: 107 entropy_left: 1.1628720819225884 entropy_right : 0.8203636429576732 -> 74 150 -idx: 109 entropy_left: 1.1586048283017796 entropy_right : 0.8390040613676977 -> 74 150 -idx: 110 entropy_left: 1.1547717145751626 entropy_right : 0.8112781244591328 -> 74 150 -idx: 113 entropy_left: 1.1444480669722774 entropy_right : 0.8418521897563207 -> 74 150 -idx: 114 entropy_left: 1.143198478557978 entropy_right : 0.8112781244591328 -> 74 150 -idx: 117 entropy_left: 1.1296938769174603 entropy_right : 0.8453509366224365 -> 74 150 -idx: 118 entropy_left: 1.1303296439314212 entropy_right : 0.8112781244591328 -> 74 150 -idx: 120 entropy_left: 1.1206278986197225 entropy_right : 0.8366407419411673 -> 74 150 -idx: 122 entropy_left: 1.1223812433380593 entropy_right : 0.74959525725948 -> 74 150 -idx: 127 entropy_left: 1.0993503889353484 entropy_right : 0.828055725379504 -> 74 150 -idx: 130 entropy_left: 1.1055134468321814 entropy_right : 0.6098403047164004 -> 74 150 -idx: 132 entropy_left: 1.097698154707432 entropy_right : 0.6500224216483541 -> 74 150 -idx: 133 entropy_left: 1.0993984278081397 entropy_right : 0.5225593745369408 -> 74 150 -idx: 134 entropy_left: 1.0956166187668959 entropy_right : 0.5435644431995964 -> 74 150 -idx: 135 entropy_left: 1.0971804769523517 entropy_right : 0.35335933502142136 -> 74 150 -idx: 137 entropy_left: 1.0898693179207501 entropy_right : 0.39124356362925566 -> 74 150 -idx: 138 entropy_left: 1.0917055717080197 entropy_right : 0 -> 74 150 -cut: 5.8 index: 75 -start: 74 cut: 75 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.041722068095403 ent1= 0 ent2= 1.0462881865460743 -ig= 0.00920083137230332 delta= 4.657554545126739 N 76 term 0.1432417531002976 -idx: 76 entropy_left: 0 entropy_right : 0.9568886656798212 -> 75 150 -idx: 77 entropy_left: 1.0 entropy_right : 0.9505668528932196 -> 75 150 -idx: 78 entropy_left: 1.584962500721156 entropy_right : 0.9544340029249649 -> 75 150 -idx: 79 entropy_left: 1.5 entropy_right : 0.9477073729342066 -> 75 150 -idx: 81 entropy_left: 1.4591479170272448 entropy_right : 0.9557589912150009 -> 75 150 -idx: 83 entropy_left: 1.4056390622295662 entropy_right : 0.9411864371816835 -> 75 150 -idx: 84 entropy_left: 1.3921472236645345 entropy_right : 0.9456603046006402 -> 75 150 -idx: 87 entropy_left: 1.280672129520887 entropy_right : 0.9182958340544896 -> 75 150 -idx: 88 entropy_left: 1.2957378005380122 entropy_right : 0.9235785996175947 -> 75 150 -idx: 89 entropy_left: 1.2638091738835462 entropy_right : 0.9127341558073343 -> 75 150 -idx: 91 entropy_left: 1.271782221599798 entropy_right : 0.9238422284571814 -> 75 150 -idx: 95 entropy_left: 1.1883763717345075 entropy_right : 0.8698926856041563 -> 75 150 -idx: 97 entropy_left: 1.2072100267448116 entropy_right : 0.8835850861052532 -> 75 150 -idx: 99 entropy_left: 1.1752835873133534 entropy_right : 0.8478617451660526 -> 75 150 -idx: 101 entropy_left: 1.1867198445327565 entropy_right : 0.863120568566631 -> 75 150 -idx: 102 entropy_left: 1.1749946599731707 entropy_right : 0.8426578772022391 -> 75 150 -idx: 104 entropy_left: 1.1783577099564695 entropy_right : 0.8589810370425963 -> 75 150 -idx: 105 entropy_left: 1.1700333844140454 entropy_right : 0.8366407419411673 -> 75 150 -idx: 106 entropy_left: 1.1702295713931186 entropy_right : 0.8453509366224365 -> 75 150 -idx: 107 entropy_left: 1.1628175871855553 entropy_right : 0.8203636429576732 -> 75 150 -idx: 109 entropy_left: 1.1613784794486992 entropy_right : 0.8390040613676977 -> 75 150 -idx: 110 entropy_left: 1.1561787304889202 entropy_right : 0.8112781244591328 -> 75 150 -idx: 113 entropy_left: 1.1487361244596448 entropy_right : 0.8418521897563207 -> 75 150 -idx: 114 entropy_left: 1.1463959237120882 entropy_right : 0.8112781244591328 -> 75 150 -idx: 117 entropy_left: 1.1347431759823636 entropy_right : 0.8453509366224365 -> 75 150 -idx: 118 entropy_left: 1.1344959754516843 entropy_right : 0.8112781244591328 -> 75 150 -idx: 120 entropy_left: 1.1256828315506748 entropy_right : 0.8366407419411673 -> 75 150 -idx: 122 entropy_left: 1.1259378808834186 entropy_right : 0.74959525725948 -> 75 150 -idx: 127 entropy_left: 1.1044984783580127 entropy_right : 0.828055725379504 -> 75 150 -idx: 130 entropy_left: 1.1090351025597922 entropy_right : 0.6098403047164004 -> 75 150 -idx: 132 entropy_left: 1.1017235165092814 entropy_right : 0.6500224216483541 -> 75 150 -idx: 133 entropy_left: 1.1029548176506492 entropy_right : 0.5225593745369408 -> 75 150 -idx: 134 entropy_left: 1.0993984278081397 entropy_right : 0.5435644431995964 -> 75 150 -idx: 135 entropy_left: 1.1005245529682912 entropy_right : 0.35335933502142136 -> 75 150 -idx: 137 entropy_left: 1.093620517468727 entropy_right : 0.39124356362925566 -> 75 150 -idx: 138 entropy_left: 1.0950628692122266 entropy_right : 0 -> 75 150 -cut: 5.8 index: 76 -start: 75 cut: 76 end: 150 -k= 3 k1= 1 k2= 2 ent= 1.0462881865460743 ent1= 0 ent2= 0.9568886656798212 -ig= 0.10215803640865062 delta= 3.418768961496144 N 75 term 0.12837629769500125 -idx: 77 entropy_left: 0 entropy_right : 0.9505668528932196 -> 76 150 -idx: 78 entropy_left: 1.0 entropy_right : 0.9544340029249649 -> 76 150 -idx: 79 entropy_left: 0.9182958340544896 entropy_right : 0.9477073729342066 -> 76 150 -idx: 81 entropy_left: 0.9709505944546686 entropy_right : 0.9557589912150009 -> 76 150 -idx: 83 entropy_left: 0.9852281360342516 entropy_right : 0.9411864371816835 -> 76 150 -idx: 84 entropy_left: 1.0 entropy_right : 0.9456603046006402 -> 76 150 -idx: 87 entropy_left: 0.9456603046006402 entropy_right : 0.9182958340544896 -> 76 150 -idx: 88 entropy_left: 0.9798687566511527 entropy_right : 0.9235785996175947 -> 76 150 -idx: 89 entropy_left: 0.961236604722876 entropy_right : 0.9127341558073343 -> 76 150 -idx: 91 entropy_left: 0.9967916319816366 entropy_right : 0.9238422284571814 -> 76 150 -idx: 95 entropy_left: 0.9494520153879484 entropy_right : 0.8698926856041563 -> 76 150 -idx: 97 entropy_left: 0.9852281360342516 entropy_right : 0.8835850861052532 -> 76 150 -idx: 99 entropy_left: 0.9656361333706098 entropy_right : 0.8478617451660526 -> 76 150 -idx: 101 entropy_left: 0.9895875212220557 entropy_right : 0.863120568566631 -> 76 150 -idx: 102 entropy_left: 0.9828586897127056 entropy_right : 0.8426578772022391 -> 76 150 -idx: 104 entropy_left: 0.996316519558962 entropy_right : 0.8589810370425963 -> 76 150 -idx: 105 entropy_left: 0.9922666387194963 entropy_right : 0.8366407419411673 -> 76 150 -idx: 106 entropy_left: 0.9967916319816366 entropy_right : 0.8453509366224365 -> 76 150 -idx: 107 entropy_left: 0.9932338197397066 entropy_right : 0.8203636429576732 -> 76 150 -idx: 109 entropy_left: 0.9993375041688847 entropy_right : 0.8390040613676977 -> 76 150 -idx: 110 entropy_left: 0.9975025463691153 entropy_right : 0.8112781244591328 -> 76 150 -idx: 113 entropy_left: 0.9994730201859836 entropy_right : 0.8418521897563207 -> 76 150 -idx: 114 entropy_left: 1.0 entropy_right : 0.8112781244591328 -> 76 150 -idx: 117 entropy_left: 0.9961344835095796 entropy_right : 0.8453509366224365 -> 76 150 -idx: 118 entropy_left: 0.9983636725938131 entropy_right : 0.8112781244591328 -> 76 150 -idx: 120 entropy_left: 0.9940302114769565 entropy_right : 0.8366407419411673 -> 76 150 -idx: 122 entropy_left: 0.9986359641585718 entropy_right : 0.74959525725948 -> 76 150 -idx: 127 entropy_left: 0.9863676072907088 entropy_right : 0.828055725379504 -> 76 150 -idx: 130 entropy_left: 0.9960383613659183 entropy_right : 0.6098403047164004 -> 76 150 -idx: 132 entropy_left: 0.9917033083725818 entropy_right : 0.6500224216483541 -> 76 150 -idx: 133 entropy_left: 0.9944423248022588 entropy_right : 0.5225593745369408 -> 76 150 -idx: 134 entropy_left: 0.9922666387194963 entropy_right : 0.5435644431995964 -> 76 150 -idx: 135 entropy_left: 0.9948131754904235 entropy_right : 0.35335933502142136 -> 76 150 -idx: 137 entropy_left: 0.9904799742690307 entropy_right : 0.39124356362925566 -> 76 150 -idx: 138 entropy_left: 0.9932338197397066 entropy_right : 0 -> 76 150 -cut: 5.8 index: 77 -start: 76 cut: 77 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9568886656798212 ent1= 0 ent2= 0.9505668528932196 -ig= 0.019167310798672066 delta= 2.794711296484401 N 74 term 0.12141264669411377 -idx: 78 entropy_left: 0 entropy_right : 0.9544340029249649 -> 77 150 -idx: 79 entropy_left: 1.0 entropy_right : 0.9477073729342066 -> 77 150 -idx: 81 entropy_left: 0.8112781244591328 entropy_right : 0.9557589912150009 -> 77 150 -idx: 83 entropy_left: 1.0 entropy_right : 0.9411864371816835 -> 77 150 -idx: 84 entropy_left: 0.9852281360342516 entropy_right : 0.9456603046006402 -> 77 150 -idx: 87 entropy_left: 0.9709505944546686 entropy_right : 0.9182958340544896 -> 77 150 -idx: 88 entropy_left: 0.9940302114769565 entropy_right : 0.9235785996175947 -> 77 150 -idx: 89 entropy_left: 0.9798687566511527 entropy_right : 0.9127341558073343 -> 77 150 -idx: 91 entropy_left: 1.0 entropy_right : 0.9238422284571814 -> 77 150 -idx: 95 entropy_left: 0.9640787648082292 entropy_right : 0.8698926856041563 -> 77 150 -idx: 97 entropy_left: 0.9927744539878084 entropy_right : 0.8835850861052532 -> 77 150 -idx: 99 entropy_left: 0.976020648236615 entropy_right : 0.8478617451660526 -> 77 150 -idx: 101 entropy_left: 0.9949848281859701 entropy_right : 0.863120568566631 -> 77 150 -idx: 102 entropy_left: 0.9895875212220557 entropy_right : 0.8426578772022391 -> 77 150 -idx: 104 entropy_left: 0.9990102708804813 entropy_right : 0.8589810370425963 -> 77 150 -idx: 105 entropy_left: 0.996316519558962 entropy_right : 0.8366407419411673 -> 77 150 -idx: 106 entropy_left: 0.9991421039919088 entropy_right : 0.8453509366224365 -> 77 150 -idx: 107 entropy_left: 0.9967916319816366 entropy_right : 0.8203636429576732 -> 77 150 -idx: 109 entropy_left: 1.0 entropy_right : 0.8390040613676977 -> 77 150 -idx: 110 entropy_left: 0.9993375041688847 entropy_right : 0.8112781244591328 -> 77 150 -idx: 113 entropy_left: 0.9977724720899821 entropy_right : 0.8418521897563207 -> 77 150 -idx: 114 entropy_left: 0.9994730201859836 entropy_right : 0.8112781244591328 -> 77 150 -idx: 117 entropy_left: 0.9927744539878084 entropy_right : 0.8453509366224365 -> 77 150 -idx: 118 entropy_left: 0.9961344835095796 entropy_right : 0.8112781244591328 -> 77 150 -idx: 120 entropy_left: 0.9902246902198684 entropy_right : 0.8366407419411673 -> 77 150 -idx: 122 entropy_left: 0.9967916319816366 entropy_right : 0.74959525725948 -> 77 150 -idx: 127 entropy_left: 0.9814538950336535 entropy_right : 0.828055725379504 -> 77 150 -idx: 130 entropy_left: 0.9935704757706079 entropy_right : 0.6098403047164004 -> 77 150 -idx: 132 entropy_left: 0.9882836109919162 entropy_right : 0.6500224216483541 -> 77 150 -idx: 133 entropy_left: 0.9917033083725818 entropy_right : 0.5225593745369408 -> 77 150 -idx: 134 entropy_left: 0.9890934397021431 entropy_right : 0.5435644431995964 -> 77 150 -idx: 135 entropy_left: 0.9922666387194963 entropy_right : 0.35335933502142136 -> 77 150 -idx: 137 entropy_left: 0.9871377743721863 entropy_right : 0.39124356362925566 -> 77 150 -idx: 138 entropy_left: 0.9904799742690307 entropy_right : 0 -> 77 150 -cut: 5.8 index: 78 -start: 77 cut: 78 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9505668528932196 ent1= 0 ent2= 0.9544340029249649 -ig= 0.009207288364487143 delta= 2.815089222121095 N 73 term 0.12308238662415626 -idx: 79 entropy_left: 0 entropy_right : 0.9477073729342066 -> 78 150 -idx: 81 entropy_left: 0.9182958340544896 entropy_right : 0.9557589912150009 -> 78 150 -idx: 83 entropy_left: 0.9709505944546686 entropy_right : 0.9411864371816835 -> 78 150 -idx: 84 entropy_left: 1.0 entropy_right : 0.9456603046006402 -> 78 150 -idx: 87 entropy_left: 0.9182958340544896 entropy_right : 0.9182958340544896 -> 78 150 -idx: 88 entropy_left: 0.9709505944546686 entropy_right : 0.9235785996175947 -> 78 150 -idx: 89 entropy_left: 0.9456603046006402 entropy_right : 0.9127341558073343 -> 78 150 -idx: 91 entropy_left: 0.9957274520849256 entropy_right : 0.9238422284571814 -> 78 150 -idx: 95 entropy_left: 0.9366673818775626 entropy_right : 0.8698926856041563 -> 78 150 -idx: 97 entropy_left: 0.9819407868640977 entropy_right : 0.8835850861052532 -> 78 150 -idx: 99 entropy_left: 0.9587118829771318 entropy_right : 0.8478617451660526 -> 78 150 -idx: 101 entropy_left: 0.9876925088958034 entropy_right : 0.863120568566631 -> 78 150 -idx: 102 entropy_left: 0.9798687566511527 entropy_right : 0.8426578772022391 -> 78 150 -idx: 104 entropy_left: 0.9957274520849256 entropy_right : 0.8589810370425963 -> 78 150 -idx: 105 entropy_left: 0.9910760598382222 entropy_right : 0.8366407419411673 -> 78 150 -idx: 106 entropy_left: 0.996316519558962 entropy_right : 0.8453509366224365 -> 78 150 -idx: 107 entropy_left: 0.9922666387194963 entropy_right : 0.8203636429576732 -> 78 150 -idx: 109 entropy_left: 0.9992492479956565 entropy_right : 0.8390040613676977 -> 78 150 -idx: 110 entropy_left: 0.9971803988942642 entropy_right : 0.8112781244591328 -> 78 150 -idx: 113 entropy_left: 0.9994110647387553 entropy_right : 0.8418521897563207 -> 78 150 -idx: 114 entropy_left: 1.0 entropy_right : 0.8112781244591328 -> 78 150 -idx: 117 entropy_left: 0.9957274520849256 entropy_right : 0.8453509366224365 -> 78 150 -idx: 118 entropy_left: 0.99819587904281 entropy_right : 0.8112781244591328 -> 78 150 -idx: 120 entropy_left: 0.9934472383802027 entropy_right : 0.8366407419411673 -> 78 150 -idx: 122 entropy_left: 0.9985090989176322 entropy_right : 0.74959525725948 -> 78 150 -idx: 127 entropy_left: 0.9852281360342516 entropy_right : 0.828055725379504 -> 78 150 -idx: 130 entropy_left: 0.9957274520849256 entropy_right : 0.6098403047164004 -> 78 150 -idx: 132 entropy_left: 0.9910760598382222 entropy_right : 0.6500224216483541 -> 78 150 -idx: 133 entropy_left: 0.9940302114769565 entropy_right : 0.5225593745369408 -> 78 150 -idx: 134 entropy_left: 0.9917033083725818 entropy_right : 0.5435644431995964 -> 78 150 -idx: 135 entropy_left: 0.9944423248022588 entropy_right : 0.35335933502142136 -> 78 150 -idx: 137 entropy_left: 0.9898220559635811 entropy_right : 0.39124356362925566 -> 78 150 -idx: 138 entropy_left: 0.9927744539878084 entropy_right : 0 -> 78 150 -cut: 5.8 index: 79 -start: 78 cut: 79 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9544340029249649 ent1= 0 ent2= 0.9477073729342066 -ig= 0.019889232392622302 delta= 2.7939016620760873 N 72 term 0.12421734418862179 -idx: 81 entropy_left: 0 entropy_right : 0.9557589912150009 -> 79 150 -idx: 83 entropy_left: 1.0 entropy_right : 0.9411864371816835 -> 79 150 -idx: 84 entropy_left: 0.9709505944546686 entropy_right : 0.9456603046006402 -> 79 150 -idx: 87 entropy_left: 0.9544340029249649 entropy_right : 0.9182958340544896 -> 79 150 -idx: 88 entropy_left: 0.9910760598382222 entropy_right : 0.9235785996175947 -> 79 150 -idx: 89 entropy_left: 0.9709505944546686 entropy_right : 0.9127341558073343 -> 79 150 -idx: 91 entropy_left: 1.0 entropy_right : 0.9238422284571814 -> 79 150 -idx: 95 entropy_left: 0.9544340029249649 entropy_right : 0.8698926856041563 -> 79 150 -idx: 97 entropy_left: 0.9910760598382222 entropy_right : 0.8835850861052532 -> 79 150 -idx: 99 entropy_left: 0.9709505944546686 entropy_right : 0.8478617451660526 -> 79 150 -idx: 101 entropy_left: 0.9940302114769565 entropy_right : 0.863120568566631 -> 79 150 -idx: 102 entropy_left: 0.9876925088958034 entropy_right : 0.8426578772022391 -> 79 150 -idx: 104 entropy_left: 0.9988455359952018 entropy_right : 0.8589810370425963 -> 79 150 -idx: 105 entropy_left: 0.9957274520849256 entropy_right : 0.8366407419411673 -> 79 150 -idx: 106 entropy_left: 0.9990102708804813 entropy_right : 0.8453509366224365 -> 79 150 -idx: 107 entropy_left: 0.996316519558962 entropy_right : 0.8203636429576732 -> 79 150 -idx: 109 entropy_left: 1.0 entropy_right : 0.8390040613676977 -> 79 150 -idx: 110 entropy_left: 0.9992492479956565 entropy_right : 0.8112781244591328 -> 79 150 -idx: 113 entropy_left: 0.9975025463691153 entropy_right : 0.8418521897563207 -> 79 150 -idx: 114 entropy_left: 0.9994110647387553 entropy_right : 0.8112781244591328 -> 79 150 -idx: 117 entropy_left: 0.9919924034538556 entropy_right : 0.8453509366224365 -> 79 150 -idx: 118 entropy_left: 0.9957274520849256 entropy_right : 0.8112781244591328 -> 79 150 -idx: 120 entropy_left: 0.9892452969285004 entropy_right : 0.8366407419411673 -> 79 150 -idx: 122 entropy_left: 0.996485989886783 entropy_right : 0.74959525725948 -> 79 150 -idx: 127 entropy_left: 0.9798687566511527 entropy_right : 0.828055725379504 -> 79 150 -idx: 130 entropy_left: 0.9930554830121974 entropy_right : 0.6098403047164004 -> 79 150 -idx: 132 entropy_left: 0.987380023288353 entropy_right : 0.6500224216483541 -> 79 150 -idx: 133 entropy_left: 0.9910760598382222 entropy_right : 0.5225593745369408 -> 79 150 -idx: 134 entropy_left: 0.9882836109919162 entropy_right : 0.5435644431995964 -> 79 150 -idx: 135 entropy_left: 0.9917033083725818 entropy_right : 0.35335933502142136 -> 79 150 -idx: 137 entropy_left: 0.9862325350724501 entropy_right : 0.39124356362925566 -> 79 150 -idx: 138 entropy_left: 0.9898220559635811 entropy_right : 0 -> 79 150 -cut: 5.9 index: 81 -start: 79 cut: 81 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9477073729342066 ent1= 0 ent2= 0.9557589912150009 -ig= 0.018871170204135312 delta= 2.823458158619193 N 71 term 0.12609494613470648 -idx: 83 entropy_left: 0 entropy_right : 0.9411864371816835 -> 81 150 -idx: 84 entropy_left: 0.9182958340544896 entropy_right : 0.9456603046006402 -> 81 150 -idx: 87 entropy_left: 0.6500224216483541 entropy_right : 0.9182958340544896 -> 81 150 -idx: 88 entropy_left: 0.863120568566631 entropy_right : 0.9235785996175947 -> 81 150 -idx: 89 entropy_left: 0.8112781244591328 entropy_right : 0.9127341558073343 -> 81 150 -idx: 91 entropy_left: 0.9709505944546686 entropy_right : 0.9238422284571814 -> 81 150 -idx: 95 entropy_left: 0.863120568566631 entropy_right : 0.8698926856041563 -> 81 150 -idx: 97 entropy_left: 0.9544340029249649 entropy_right : 0.8835850861052532 -> 81 150 -idx: 99 entropy_left: 0.9182958340544896 entropy_right : 0.8478617451660526 -> 81 150 -idx: 101 entropy_left: 0.9709505944546686 entropy_right : 0.863120568566631 -> 81 150 -idx: 102 entropy_left: 0.9587118829771318 entropy_right : 0.8426578772022391 -> 81 150 -idx: 104 entropy_left: 0.9876925088958034 entropy_right : 0.8589810370425963 -> 81 150 -idx: 105 entropy_left: 0.9798687566511527 entropy_right : 0.8366407419411673 -> 81 150 -idx: 106 entropy_left: 0.9895875212220557 entropy_right : 0.8453509366224365 -> 81 150 -idx: 107 entropy_left: 0.9828586897127056 entropy_right : 0.8203636429576732 -> 81 150 -idx: 109 entropy_left: 0.996316519558962 entropy_right : 0.8390040613676977 -> 81 150 -idx: 110 entropy_left: 0.9922666387194963 entropy_right : 0.8112781244591328 -> 81 150 -idx: 113 entropy_left: 1.0 entropy_right : 0.8418521897563207 -> 81 150 -idx: 114 entropy_left: 0.9993375041688847 entropy_right : 0.8112781244591328 -> 81 150 -idx: 117 entropy_left: 0.9977724720899821 entropy_right : 0.8453509366224365 -> 81 150 -idx: 118 entropy_left: 0.9994730201859836 entropy_right : 0.8112781244591328 -> 81 150 -idx: 120 entropy_left: 0.9957274520849256 entropy_right : 0.8366407419411673 -> 81 150 -idx: 122 entropy_left: 0.9995708393473224 entropy_right : 0.74959525725948 -> 81 150 -idx: 127 entropy_left: 0.9876925088958034 entropy_right : 0.828055725379504 -> 81 150 -idx: 130 entropy_left: 0.997294381646235 entropy_right : 0.6098403047164004 -> 81 150 -idx: 132 entropy_left: 0.9930554830121974 entropy_right : 0.6500224216483541 -> 81 150 -idx: 133 entropy_left: 0.9957274520849256 entropy_right : 0.5225593745369408 -> 81 150 -idx: 134 entropy_left: 0.9935704757706079 entropy_right : 0.5435644431995964 -> 81 150 -idx: 135 entropy_left: 0.9960383613659183 entropy_right : 0.35335933502142136 -> 81 150 -idx: 137 entropy_left: 0.9917033083725818 entropy_right : 0.39124356362925566 -> 81 150 -idx: 138 entropy_left: 0.9944423248022588 entropy_right : 0 -> 81 150 -cut: 5.95 index: 83 -start: 81 cut: 83 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9557589912150009 ent1= 0 ent2= 0.9411864371816835 -ig= 0.04185332032843869 delta= 2.7782098139909692 N 69 term 0.12848800949625086 -idx: 84 entropy_left: 0 entropy_right : 0.9456603046006402 -> 83 150 -idx: 87 entropy_left: 0.8112781244591328 entropy_right : 0.9182958340544896 -> 83 150 -idx: 88 entropy_left: 0.9709505944546686 entropy_right : 0.9235785996175947 -> 83 150 -idx: 89 entropy_left: 0.9182958340544896 entropy_right : 0.9127341558073343 -> 83 150 -idx: 91 entropy_left: 1.0 entropy_right : 0.9238422284571814 -> 83 150 -idx: 95 entropy_left: 0.9182958340544896 entropy_right : 0.8698926856041563 -> 83 150 -idx: 97 entropy_left: 0.9852281360342516 entropy_right : 0.8835850861052532 -> 83 150 -idx: 99 entropy_left: 0.9544340029249649 entropy_right : 0.8478617451660526 -> 83 150 -idx: 101 entropy_left: 0.9910760598382222 entropy_right : 0.863120568566631 -> 83 150 -idx: 102 entropy_left: 0.9819407868640977 entropy_right : 0.8426578772022391 -> 83 150 -idx: 104 entropy_left: 0.9983636725938131 entropy_right : 0.8589810370425963 -> 83 150 -idx: 105 entropy_left: 0.9940302114769565 entropy_right : 0.8366407419411673 -> 83 150 -idx: 106 entropy_left: 0.9986359641585718 entropy_right : 0.8453509366224365 -> 83 150 -idx: 107 entropy_left: 0.9949848281859701 entropy_right : 0.8203636429576732 -> 83 150 -idx: 109 entropy_left: 1.0 entropy_right : 0.8390040613676977 -> 83 150 -idx: 110 entropy_left: 0.9990102708804813 entropy_right : 0.8112781244591328 -> 83 150 -idx: 113 entropy_left: 0.9967916319816366 entropy_right : 0.8418521897563207 -> 83 150 -idx: 114 entropy_left: 0.9992492479956565 entropy_right : 0.8112781244591328 -> 83 150 -idx: 117 entropy_left: 0.9899927915575188 entropy_right : 0.8453509366224365 -> 83 150 -idx: 118 entropy_left: 0.9946937953613058 entropy_right : 0.8112781244591328 -> 83 150 -idx: 120 entropy_left: 0.9867867202680318 entropy_right : 0.8366407419411673 -> 83 150 -idx: 122 entropy_left: 0.9957274520849256 entropy_right : 0.74959525725948 -> 83 150 -idx: 127 entropy_left: 0.976020648236615 entropy_right : 0.828055725379504 -> 83 150 -idx: 130 entropy_left: 0.9918207974218424 entropy_right : 0.6098403047164004 -> 83 150 -idx: 132 entropy_left: 0.9852281360342516 entropy_right : 0.6500224216483541 -> 83 150 -idx: 133 entropy_left: 0.9895875212220557 entropy_right : 0.5225593745369408 -> 83 150 -idx: 134 entropy_left: 0.9863676072907088 entropy_right : 0.5435644431995964 -> 83 150 -idx: 135 entropy_left: 0.990374836448575 entropy_right : 0.35335933502142136 -> 83 150 -idx: 137 entropy_left: 0.9841095278800533 entropy_right : 0.39124356362925566 -> 83 150 -idx: 138 entropy_left: 0.9882836109919162 entropy_right : 0 -> 83 150 -cut: 6.0 index: 84 -start: 83 cut: 84 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9411864371816835 ent1= 0 ent2= 0.9456603046006402 -ig= 0.009640465485530436 delta= 2.816302656895518 N 67 term 0.1322492056157309 -idx: 87 entropy_left: 0 entropy_right : 0.9182958340544896 -> 84 150 -idx: 88 entropy_left: 0.8112781244591328 entropy_right : 0.9235785996175947 -> 84 150 -idx: 89 entropy_left: 0.7219280948873623 entropy_right : 0.9127341558073343 -> 84 150 -idx: 91 entropy_left: 0.9852281360342516 entropy_right : 0.9238422284571814 -> 84 150 -idx: 95 entropy_left: 0.8453509366224365 entropy_right : 0.8698926856041563 -> 84 150 -idx: 97 entropy_left: 0.961236604722876 entropy_right : 0.8835850861052532 -> 84 150 -idx: 99 entropy_left: 0.9182958340544896 entropy_right : 0.8478617451660526 -> 84 150 -idx: 101 entropy_left: 0.9774178175281716 entropy_right : 0.863120568566631 -> 84 150 -idx: 102 entropy_left: 0.9640787648082292 entropy_right : 0.8426578772022391 -> 84 150 -idx: 104 entropy_left: 0.9927744539878084 entropy_right : 0.8589810370425963 -> 84 150 -idx: 105 entropy_left: 0.9852281360342516 entropy_right : 0.8366407419411673 -> 84 150 -idx: 106 entropy_left: 0.9940302114769565 entropy_right : 0.8453509366224365 -> 84 150 -idx: 107 entropy_left: 0.9876925088958034 entropy_right : 0.8203636429576732 -> 84 150 -idx: 109 entropy_left: 0.9988455359952018 entropy_right : 0.8390040613676977 -> 84 150 -idx: 110 entropy_left: 0.9957274520849256 entropy_right : 0.8112781244591328 -> 84 150 -idx: 113 entropy_left: 0.9991421039919088 entropy_right : 0.8418521897563207 -> 84 150 -idx: 114 entropy_left: 1.0 entropy_right : 0.8112781244591328 -> 84 150 -idx: 117 entropy_left: 0.9940302114769565 entropy_right : 0.8453509366224365 -> 84 150 -idx: 118 entropy_left: 0.9975025463691153 entropy_right : 0.8112781244591328 -> 84 150 -idx: 120 entropy_left: 0.9910760598382222 entropy_right : 0.8366407419411673 -> 84 150 -idx: 122 entropy_left: 0.9980008838722996 entropy_right : 0.74959525725948 -> 84 150 -idx: 127 entropy_left: 0.9807983646944296 entropy_right : 0.828055725379504 -> 84 150 -idx: 130 entropy_left: 0.9945386816500111 entropy_right : 0.6098403047164004 -> 84 150 -idx: 132 entropy_left: 0.9886994082884974 entropy_right : 0.6500224216483541 -> 84 150 -idx: 133 entropy_left: 0.992476003943082 entropy_right : 0.5225593745369408 -> 84 150 -idx: 134 entropy_left: 0.9895875212220557 entropy_right : 0.5435644431995964 -> 84 150 -idx: 135 entropy_left: 0.9930554830121974 entropy_right : 0.35335933502142136 -> 84 150 -idx: 137 entropy_left: 0.987380023288353 entropy_right : 0.39124356362925566 -> 84 150 -idx: 138 entropy_left: 0.9910760598382222 entropy_right : 0 -> 84 150 -cut: 6.0 index: 87 -start: 84 cut: 87 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9456603046006402 ent1= 0 ent2= 0.9182958340544896 -ig= 0.06910519027590012 delta= 2.752625980965303 N 66 term 0.13295445142414786 -idx: 88 entropy_left: 0 entropy_right : 0.9235785996175947 -> 87 150 -idx: 89 entropy_left: 1.0 entropy_right : 0.9127341558073343 -> 87 150 -idx: 91 entropy_left: 0.8112781244591328 entropy_right : 0.9238422284571814 -> 87 150 -idx: 95 entropy_left: 0.9544340029249649 entropy_right : 0.8698926856041563 -> 87 150 -idx: 97 entropy_left: 1.0 entropy_right : 0.8835850861052532 -> 87 150 -idx: 99 entropy_left: 0.9798687566511527 entropy_right : 0.8478617451660526 -> 87 150 -idx: 101 entropy_left: 1.0 entropy_right : 0.863120568566631 -> 87 150 -idx: 102 entropy_left: 0.9967916319816366 entropy_right : 0.8426578772022391 -> 87 150 -idx: 104 entropy_left: 0.9975025463691153 entropy_right : 0.8589810370425963 -> 87 150 -idx: 105 entropy_left: 1.0 entropy_right : 0.8366407419411673 -> 87 150 -idx: 106 entropy_left: 0.9980008838722996 entropy_right : 0.8453509366224365 -> 87 150 -idx: 107 entropy_left: 1.0 entropy_right : 0.8203636429576732 -> 87 150 -idx: 109 entropy_left: 0.9940302114769565 entropy_right : 0.8390040613676977 -> 87 150 -idx: 110 entropy_left: 0.9986359641585718 entropy_right : 0.8112781244591328 -> 87 150 -idx: 113 entropy_left: 0.9828586897127056 entropy_right : 0.8418521897563207 -> 87 150 -idx: 114 entropy_left: 0.9910760598382222 entropy_right : 0.8112781244591328 -> 87 150 -idx: 117 entropy_left: 0.9709505944546686 entropy_right : 0.8453509366224365 -> 87 150 -idx: 118 entropy_left: 0.9811522341999133 entropy_right : 0.8112781244591328 -> 87 150 -idx: 120 entropy_left: 0.9672947789468944 entropy_right : 0.8366407419411673 -> 87 150 -idx: 122 entropy_left: 0.9852281360342516 entropy_right : 0.74959525725948 -> 87 150 -idx: 127 entropy_left: 0.9544340029249649 entropy_right : 0.828055725379504 -> 87 150 -idx: 130 entropy_left: 0.9807983646944296 entropy_right : 0.6098403047164004 -> 87 150 -idx: 132 entropy_left: 0.9709505944546686 entropy_right : 0.6500224216483541 -> 87 150 -idx: 133 entropy_left: 0.978070970973496 entropy_right : 0.5225593745369408 -> 87 150 -idx: 134 entropy_left: 0.9733854352299557 entropy_right : 0.5435644431995964 -> 87 150 -idx: 135 entropy_left: 0.9798687566511527 entropy_right : 0.35335933502142136 -> 87 150 -idx: 137 entropy_left: 0.9709505944546686 entropy_right : 0.39124356362925566 -> 87 150 -idx: 138 entropy_left: 0.9774178175281716 entropy_right : 0 -> 87 150 -cut: 6.0 index: 88 -start: 87 cut: 88 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9182958340544896 ent1= 0 ent2= 0.9235785996175947 -ig= 0.00937721220860277 delta= 2.8179204531838145 N 63 term 0.13923994862810618 -idx: 89 entropy_left: 0 entropy_right : 0.9127341558073343 -> 88 150 -idx: 91 entropy_left: 0.9182958340544896 entropy_right : 0.9238422284571814 -> 88 150 -idx: 95 entropy_left: 0.863120568566631 entropy_right : 0.8698926856041563 -> 88 150 -idx: 97 entropy_left: 0.9910760598382222 entropy_right : 0.8835850861052532 -> 88 150 -idx: 99 entropy_left: 0.9456603046006402 entropy_right : 0.8478617451660526 -> 88 150 -idx: 101 entropy_left: 0.9957274520849256 entropy_right : 0.863120568566631 -> 88 150 -idx: 102 entropy_left: 0.9852281360342516 entropy_right : 0.8426578772022391 -> 88 150 -idx: 104 entropy_left: 1.0 entropy_right : 0.8589810370425963 -> 88 150 -idx: 105 entropy_left: 0.9975025463691153 entropy_right : 0.8366407419411673 -> 88 150 -idx: 106 entropy_left: 1.0 entropy_right : 0.8453509366224365 -> 88 150 -idx: 107 entropy_left: 0.9980008838722996 entropy_right : 0.8203636429576732 -> 88 150 -idx: 109 entropy_left: 0.9983636725938131 entropy_right : 0.8390040613676977 -> 88 150 -idx: 110 entropy_left: 1.0 entropy_right : 0.8112781244591328 -> 88 150 -idx: 113 entropy_left: 0.9895875212220557 entropy_right : 0.8418521897563207 -> 88 150 -idx: 114 entropy_left: 0.9957274520849256 entropy_right : 0.8112781244591328 -> 88 150 -idx: 117 entropy_left: 0.9784493292686189 entropy_right : 0.8453509366224365 -> 88 150 -idx: 118 entropy_left: 0.9871377743721863 entropy_right : 0.8112781244591328 -> 88 150 -idx: 120 entropy_left: 0.9744894033980523 entropy_right : 0.8366407419411673 -> 88 150 -idx: 122 entropy_left: 0.9899927915575188 entropy_right : 0.74959525725948 -> 88 150 -idx: 127 entropy_left: 0.961236604722876 entropy_right : 0.828055725379504 -> 88 150 -idx: 130 entropy_left: 0.9852281360342516 entropy_right : 0.6098403047164004 -> 88 150 -idx: 132 entropy_left: 0.976020648236615 entropy_right : 0.6500224216483541 -> 88 150 -idx: 133 entropy_left: 0.9824740868386409 entropy_right : 0.5225593745369408 -> 88 150 -idx: 134 entropy_left: 0.978070970973496 entropy_right : 0.5435644431995964 -> 88 150 -idx: 135 entropy_left: 0.9839393951635756 entropy_right : 0.35335933502142136 -> 88 150 -idx: 137 entropy_left: 0.9755259511264972 entropy_right : 0.39124356362925566 -> 88 150 -idx: 138 entropy_left: 0.9814538950336535 entropy_right : 0 -> 88 150 -cut: 6.05 index: 89 -start: 88 cut: 89 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9235785996175947 ent1= 0 ent2= 0.9127341558073343 -ig= 0.025565962452314128 delta= 2.7856660344370834 N 62 term 0.14058715116128984 -idx: 91 entropy_left: 0 entropy_right : 0.9238422284571814 -> 89 150 -idx: 95 entropy_left: 0.9182958340544896 entropy_right : 0.8698926856041563 -> 89 150 -idx: 97 entropy_left: 1.0 entropy_right : 0.8835850861052532 -> 89 150 -idx: 99 entropy_left: 0.9709505944546686 entropy_right : 0.8478617451660526 -> 89 150 -idx: 101 entropy_left: 1.0 entropy_right : 0.863120568566631 -> 89 150 -idx: 102 entropy_left: 0.9957274520849256 entropy_right : 0.8426578772022391 -> 89 150 -idx: 104 entropy_left: 0.9967916319816366 entropy_right : 0.8589810370425963 -> 89 150 -idx: 105 entropy_left: 1.0 entropy_right : 0.8366407419411673 -> 89 150 -idx: 106 entropy_left: 0.9975025463691153 entropy_right : 0.8453509366224365 -> 89 150 -idx: 107 entropy_left: 1.0 entropy_right : 0.8203636429576732 -> 89 150 -idx: 109 entropy_left: 0.9927744539878084 entropy_right : 0.8390040613676977 -> 89 150 -idx: 110 entropy_left: 0.9983636725938131 entropy_right : 0.8112781244591328 -> 89 150 -idx: 113 entropy_left: 0.9798687566511527 entropy_right : 0.8418521897563207 -> 89 150 -idx: 114 entropy_left: 0.9895875212220557 entropy_right : 0.8112781244591328 -> 89 150 -idx: 117 entropy_left: 0.9666186325481028 entropy_right : 0.8453509366224365 -> 89 150 -idx: 118 entropy_left: 0.9784493292686189 entropy_right : 0.8112781244591328 -> 89 150 -idx: 120 entropy_left: 0.9629004147713269 entropy_right : 0.8366407419411673 -> 89 150 -idx: 122 entropy_left: 0.9833761901392237 entropy_right : 0.74959525725948 -> 89 150 -idx: 127 entropy_left: 0.9494520153879484 entropy_right : 0.828055725379504 -> 89 150 -idx: 130 entropy_left: 0.9788698505067785 entropy_right : 0.6098403047164004 -> 89 150 -idx: 132 entropy_left: 0.9681647320759548 entropy_right : 0.6500224216483541 -> 89 150 -idx: 133 entropy_left: 0.976020648236615 entropy_right : 0.5225593745369408 -> 89 150 -idx: 134 entropy_left: 0.9709505944546686 entropy_right : 0.5435644431995964 -> 89 150 -idx: 135 entropy_left: 0.978070970973496 entropy_right : 0.35335933502142136 -> 89 150 -idx: 137 entropy_left: 0.9684610087601622 entropy_right : 0.39124356362925566 -> 89 150 -idx: 138 entropy_left: 0.9755259511264972 entropy_right : 0 -> 89 150 -cut: 6.1 index: 91 -start: 89 cut: 91 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9127341558073343 ent1= 0 ent2= 0.9238422284571814 -ig= 0.019181836479896575 delta= 2.8295710673572985 N 61 term 0.14322068299943963 -idx: 95 entropy_left: 0 entropy_right : 0.8698926856041563 -> 91 150 -idx: 97 entropy_left: 0.9182958340544896 entropy_right : 0.8835850861052532 -> 91 150 -idx: 99 entropy_left: 0.8112781244591328 entropy_right : 0.8478617451660526 -> 91 150 -idx: 101 entropy_left: 0.9709505944546686 entropy_right : 0.863120568566631 -> 91 150 -idx: 102 entropy_left: 0.9456603046006402 entropy_right : 0.8426578772022391 -> 91 150 -idx: 104 entropy_left: 0.9957274520849256 entropy_right : 0.8589810370425963 -> 91 150 -idx: 105 entropy_left: 0.9852281360342516 entropy_right : 0.8366407419411673 -> 91 150 -idx: 106 entropy_left: 0.9967916319816366 entropy_right : 0.8453509366224365 -> 91 150 -idx: 107 entropy_left: 0.9886994082884974 entropy_right : 0.8203636429576732 -> 91 150 -idx: 109 entropy_left: 1.0 entropy_right : 0.8390040613676977 -> 91 150 -idx: 110 entropy_left: 0.9980008838722996 entropy_right : 0.8112781244591328 -> 91 150 -idx: 113 entropy_left: 0.9940302114769565 entropy_right : 0.8418521897563207 -> 91 150 -idx: 114 entropy_left: 0.9986359641585718 entropy_right : 0.8112781244591328 -> 91 150 -idx: 117 entropy_left: 0.9828586897127056 entropy_right : 0.8453509366224365 -> 91 150 -idx: 118 entropy_left: 0.9910760598382222 entropy_right : 0.8112781244591328 -> 91 150 -idx: 120 entropy_left: 0.9784493292686189 entropy_right : 0.8366407419411673 -> 91 150 -idx: 122 entropy_left: 0.9932338197397066 entropy_right : 0.74959525725948 -> 91 150 -idx: 127 entropy_left: 0.9640787648082292 entropy_right : 0.828055725379504 -> 91 150 -idx: 130 entropy_left: 0.9881108365218301 entropy_right : 0.6098403047164004 -> 91 150 -idx: 132 entropy_left: 0.9788698505067785 entropy_right : 0.6500224216483541 -> 91 150 -idx: 133 entropy_left: 0.9852281360342516 entropy_right : 0.5225593745369408 -> 91 150 -idx: 134 entropy_left: 0.9807983646944296 entropy_right : 0.5435644431995964 -> 91 150 -idx: 135 entropy_left: 0.9865446300055645 entropy_right : 0.35335933502142136 -> 91 150 -idx: 137 entropy_left: 0.978070970973496 entropy_right : 0.39124356362925566 -> 91 150 -idx: 138 entropy_left: 0.9839393951635756 entropy_right : 0 -> 91 150 -cut: 6.15 index: 95 -start: 91 cut: 95 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9238422284571814 ent1= 0 ent2= 0.8698926856041563 -ig= 0.11292531814822215 delta= 2.6994558363515537 N 59 term 0.14504130222845976 -idx: 97 entropy_left: 0 entropy_right : 0.8835850861052532 -> 95 150 -idx: 99 entropy_left: 1.0 entropy_right : 0.8478617451660526 -> 95 150 -idx: 101 entropy_left: 0.9182958340544896 entropy_right : 0.863120568566631 -> 95 150 -idx: 102 entropy_left: 0.9852281360342516 entropy_right : 0.8426578772022391 -> 95 150 -idx: 104 entropy_left: 0.9182958340544896 entropy_right : 0.8589810370425963 -> 95 150 -idx: 105 entropy_left: 0.9709505944546686 entropy_right : 0.8366407419411673 -> 95 150 -idx: 106 entropy_left: 0.9456603046006402 entropy_right : 0.8453509366224365 -> 95 150 -idx: 107 entropy_left: 0.9798687566511527 entropy_right : 0.8203636429576732 -> 95 150 -idx: 109 entropy_left: 0.9402859586706309 entropy_right : 0.8390040613676977 -> 95 150 -idx: 110 entropy_left: 0.9709505944546686 entropy_right : 0.8112781244591328 -> 95 150 -idx: 113 entropy_left: 0.9182958340544896 entropy_right : 0.8418521897563207 -> 95 150 -idx: 114 entropy_left: 0.9494520153879484 entropy_right : 0.8112781244591328 -> 95 150 -idx: 117 entropy_left: 0.9023932827949789 entropy_right : 0.8453509366224365 -> 95 150 -idx: 118 entropy_left: 0.9321115676166747 entropy_right : 0.8112781244591328 -> 95 150 -idx: 120 entropy_left: 0.904381457724494 entropy_right : 0.8366407419411673 -> 95 150 -idx: 122 entropy_left: 0.9509560484549725 entropy_right : 0.74959525725948 -> 95 150 -idx: 127 entropy_left: 0.8960382325345575 entropy_right : 0.828055725379504 -> 95 150 -idx: 130 entropy_left: 0.9517626756348311 entropy_right : 0.6098403047164004 -> 95 150 -idx: 132 entropy_left: 0.9352691398683566 entropy_right : 0.6500224216483541 -> 95 150 -idx: 133 entropy_left: 0.9494520153879484 entropy_right : 0.5225593745369408 -> 95 150 -idx: 134 entropy_left: 0.9418285354475157 entropy_right : 0.5435644431995964 -> 95 150 -idx: 135 entropy_left: 0.9544340029249649 entropy_right : 0.35335933502142136 -> 95 150 -idx: 137 entropy_left: 0.9402859586706309 entropy_right : 0.39124356362925566 -> 95 150 -idx: 138 entropy_left: 0.9522656254366642 entropy_right : 0 -> 95 150 -cut: 6.2 index: 97 -start: 95 cut: 97 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8698926856041563 ent1= 0 ent2= 0.8835850861052532 -ig= 0.018437966266366845 delta= 2.8347397230597977 N 55 term 0.15617504045860486 -idx: 99 entropy_left: 0 entropy_right : 0.8478617451660526 -> 97 150 -idx: 101 entropy_left: 1.0 entropy_right : 0.863120568566631 -> 97 150 -idx: 102 entropy_left: 0.9709505944546686 entropy_right : 0.8426578772022391 -> 97 150 -idx: 104 entropy_left: 0.9852281360342516 entropy_right : 0.8589810370425963 -> 97 150 -idx: 105 entropy_left: 1.0 entropy_right : 0.8366407419411673 -> 97 150 -idx: 106 entropy_left: 0.9910760598382222 entropy_right : 0.8453509366224365 -> 97 150 -idx: 107 entropy_left: 1.0 entropy_right : 0.8203636429576732 -> 97 150 -idx: 109 entropy_left: 0.9798687566511527 entropy_right : 0.8390040613676977 -> 97 150 -idx: 110 entropy_left: 0.9957274520849256 entropy_right : 0.8112781244591328 -> 97 150 -idx: 113 entropy_left: 0.9544340029249649 entropy_right : 0.8418521897563207 -> 97 150 -idx: 114 entropy_left: 0.9774178175281716 entropy_right : 0.8112781244591328 -> 97 150 -idx: 117 entropy_left: 0.934068055375491 entropy_right : 0.8453509366224365 -> 97 150 -idx: 118 entropy_left: 0.9587118829771318 entropy_right : 0.8112781244591328 -> 97 150 -idx: 120 entropy_left: 0.9321115676166747 entropy_right : 0.8366407419411673 -> 97 150 -idx: 122 entropy_left: 0.9709505944546686 entropy_right : 0.74959525725948 -> 97 150 -idx: 127 entropy_left: 0.9182958340544896 entropy_right : 0.828055725379504 -> 97 150 -idx: 130 entropy_left: 0.9672947789468944 entropy_right : 0.6098403047164004 -> 97 150 -idx: 132 entropy_left: 0.9517626756348311 entropy_right : 0.6500224216483541 -> 97 150 -idx: 133 entropy_left: 0.9640787648082292 entropy_right : 0.5225593745369408 -> 97 150 -idx: 134 entropy_left: 0.9568886656798212 entropy_right : 0.5435644431995964 -> 97 150 -idx: 135 entropy_left: 0.9677884628267679 entropy_right : 0.35335933502142136 -> 97 150 -idx: 137 entropy_left: 0.9544340029249649 entropy_right : 0.39124356362925566 -> 97 150 -idx: 138 entropy_left: 0.9649567669505688 entropy_right : 0 -> 97 150 -cut: 6.25 index: 99 -start: 97 cut: 99 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8835850861052532 ent1= 0 ent2= 0.8478617451660526 -ig= 0.06771812377565545 delta= 2.735908240179203 N 53 term 0.15917637657208103 -idx: 101 entropy_left: 0 entropy_right : 0.863120568566631 -> 99 150 -idx: 102 entropy_left: 0.9182958340544896 entropy_right : 0.8426578772022391 -> 99 150 -idx: 104 entropy_left: 0.7219280948873623 entropy_right : 0.8589810370425963 -> 99 150 -idx: 105 entropy_left: 0.9182958340544896 entropy_right : 0.8366407419411673 -> 99 150 -idx: 106 entropy_left: 0.863120568566631 entropy_right : 0.8453509366224365 -> 99 150 -idx: 107 entropy_left: 0.9544340029249649 entropy_right : 0.8203636429576732 -> 99 150 -idx: 109 entropy_left: 0.8812908992306927 entropy_right : 0.8390040613676977 -> 99 150 -idx: 110 entropy_left: 0.9456603046006402 entropy_right : 0.8112781244591328 -> 99 150 -idx: 113 entropy_left: 0.863120568566631 entropy_right : 0.8418521897563207 -> 99 150 -idx: 114 entropy_left: 0.9182958340544896 entropy_right : 0.8112781244591328 -> 99 150 -idx: 117 entropy_left: 0.8524051786494786 entropy_right : 0.8453509366224365 -> 99 150 -idx: 118 entropy_left: 0.8997437586982626 entropy_right : 0.8112781244591328 -> 99 150 -idx: 120 entropy_left: 0.863120568566631 entropy_right : 0.8366407419411673 -> 99 150 -idx: 122 entropy_left: 0.9321115676166747 entropy_right : 0.74959525725948 -> 99 150 -idx: 127 entropy_left: 0.863120568566631 entropy_right : 0.828055725379504 -> 99 150 -idx: 130 entropy_left: 0.9383153522334069 entropy_right : 0.6098403047164004 -> 99 150 -idx: 132 entropy_left: 0.9182958340544896 entropy_right : 0.6500224216483541 -> 99 150 -idx: 133 entropy_left: 0.9366673818775626 entropy_right : 0.5225593745369408 -> 99 150 -idx: 134 entropy_left: 0.9275265884316759 entropy_right : 0.5435644431995964 -> 99 150 -idx: 135 entropy_left: 0.943601631299382 entropy_right : 0.35335933502142136 -> 99 150 -idx: 137 entropy_left: 0.9268190639645772 entropy_right : 0.39124356362925566 -> 99 150 -idx: 138 entropy_left: 0.9418285354475157 entropy_right : 0 -> 99 150 -cut: 6.3 index: 101 -start: 99 cut: 101 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8478617451660526 ent1= 0 ent2= 0.863120568566631 -ig= 0.018589042033407166 delta= 2.837872568858761 N 51 term 0.16630840703202912 -idx: 102 entropy_left: 0 entropy_right : 0.8426578772022391 -> 101 150 -idx: 104 entropy_left: 0.9182958340544896 entropy_right : 0.8589810370425963 -> 101 150 -idx: 105 entropy_left: 1.0 entropy_right : 0.8366407419411673 -> 101 150 -idx: 106 entropy_left: 0.9709505944546686 entropy_right : 0.8453509366224365 -> 101 150 -idx: 107 entropy_left: 1.0 entropy_right : 0.8203636429576732 -> 101 150 -idx: 109 entropy_left: 0.9544340029249649 entropy_right : 0.8390040613676977 -> 101 150 -idx: 110 entropy_left: 0.9910760598382222 entropy_right : 0.8112781244591328 -> 101 150 -idx: 113 entropy_left: 0.9182958340544896 entropy_right : 0.8418521897563207 -> 101 150 -idx: 114 entropy_left: 0.961236604722876 entropy_right : 0.8112781244591328 -> 101 150 -idx: 117 entropy_left: 0.8960382325345575 entropy_right : 0.8453509366224365 -> 101 150 -idx: 118 entropy_left: 0.9366673818775626 entropy_right : 0.8112781244591328 -> 101 150 -idx: 120 entropy_left: 0.8997437586982626 entropy_right : 0.8366407419411673 -> 101 150 -idx: 122 entropy_left: 0.9587118829771318 entropy_right : 0.74959525725948 -> 101 150 -idx: 127 entropy_left: 0.8904916402194913 entropy_right : 0.828055725379504 -> 101 150 -idx: 130 entropy_left: 0.9575534837147482 entropy_right : 0.6098403047164004 -> 101 150 -idx: 132 entropy_left: 0.9383153522334069 entropy_right : 0.6500224216483541 -> 101 150 -idx: 133 entropy_left: 0.9544340029249649 entropy_right : 0.5225593745369408 -> 101 150 -idx: 134 entropy_left: 0.9456603046006402 entropy_right : 0.5435644431995964 -> 101 150 -idx: 135 entropy_left: 0.9596868937742169 entropy_right : 0.35335933502142136 -> 101 150 -idx: 137 entropy_left: 0.943601631299382 entropy_right : 0.39124356362925566 -> 101 150 -idx: 138 entropy_left: 0.9568886656798212 entropy_right : 0 -> 101 150 -cut: 6.3 index: 102 -start: 101 cut: 102 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.863120568566631 ent1= 0 ent2= 0.8426578772022391 -ig= 0.03765979089913152 delta= 2.7664295393288203 N 49 term 0.17043657224591788 -idx: 104 entropy_left: 0 entropy_right : 0.8589810370425963 -> 102 150 -idx: 105 entropy_left: 0.9182958340544896 entropy_right : 0.8366407419411673 -> 102 150 -idx: 106 entropy_left: 0.8112781244591328 entropy_right : 0.8453509366224365 -> 102 150 -idx: 107 entropy_left: 0.9709505944546686 entropy_right : 0.8203636429576732 -> 102 150 -idx: 109 entropy_left: 0.863120568566631 entropy_right : 0.8390040613676977 -> 102 150 -idx: 110 entropy_left: 0.9544340029249649 entropy_right : 0.8112781244591328 -> 102 150 -idx: 113 entropy_left: 0.8453509366224365 entropy_right : 0.8418521897563207 -> 102 150 -idx: 114 entropy_left: 0.9182958340544896 entropy_right : 0.8112781244591328 -> 102 150 -idx: 117 entropy_left: 0.8366407419411673 entropy_right : 0.8453509366224365 -> 102 150 -idx: 118 entropy_left: 0.8960382325345575 entropy_right : 0.8112781244591328 -> 102 150 -idx: 120 entropy_left: 0.8524051786494786 entropy_right : 0.8366407419411673 -> 102 150 -idx: 122 entropy_left: 0.934068055375491 entropy_right : 0.74959525725948 -> 102 150 -idx: 127 entropy_left: 0.8554508105601307 entropy_right : 0.828055725379504 -> 102 150 -idx: 130 entropy_left: 0.9402859586706309 entropy_right : 0.6098403047164004 -> 102 150 -idx: 132 entropy_left: 0.9182958340544896 entropy_right : 0.6500224216483541 -> 102 150 -idx: 133 entropy_left: 0.9383153522334069 entropy_right : 0.5225593745369408 -> 102 150 -idx: 134 entropy_left: 0.9283620723948678 entropy_right : 0.5435644431995964 -> 102 150 -idx: 135 entropy_left: 0.9456603046006402 entropy_right : 0.35335933502142136 -> 102 150 -idx: 137 entropy_left: 0.9275265884316759 entropy_right : 0.39124356362925566 -> 102 150 -idx: 138 entropy_left: 0.943601631299382 entropy_right : 0 -> 102 150 -cut: 6.3 index: 104 -start: 102 cut: 104 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8426578772022391 ent1= 0 ent2= 0.8589810370425963 -ig= 0.019467716703084226 delta= 2.8400012417383187 N 48 term 0.17488729361283242 -idx: 105 entropy_left: 0 entropy_right : 0.8366407419411673 -> 104 150 -idx: 106 entropy_left: 1.0 entropy_right : 0.8453509366224365 -> 104 150 -idx: 107 entropy_left: 0.9182958340544896 entropy_right : 0.8203636429576732 -> 104 150 -idx: 109 entropy_left: 0.9709505944546686 entropy_right : 0.8390040613676977 -> 104 150 -idx: 110 entropy_left: 1.0 entropy_right : 0.8112781244591328 -> 104 150 -idx: 113 entropy_left: 0.9182958340544896 entropy_right : 0.8418521897563207 -> 104 150 -idx: 114 entropy_left: 0.9709505944546686 entropy_right : 0.8112781244591328 -> 104 150 -idx: 117 entropy_left: 0.8904916402194913 entropy_right : 0.8453509366224365 -> 104 150 -idx: 118 entropy_left: 0.9402859586706309 entropy_right : 0.8112781244591328 -> 104 150 -idx: 120 entropy_left: 0.8960382325345575 entropy_right : 0.8366407419411673 -> 104 150 -idx: 122 entropy_left: 0.9640787648082292 entropy_right : 0.74959525725948 -> 104 150 -idx: 127 entropy_left: 0.8865408928220899 entropy_right : 0.828055725379504 -> 104 150 -idx: 130 entropy_left: 0.961236604722876 entropy_right : 0.6098403047164004 -> 104 150 -idx: 132 entropy_left: 0.9402859586706309 entropy_right : 0.6500224216483541 -> 104 150 -idx: 133 entropy_left: 0.9575534837147482 entropy_right : 0.5225593745369408 -> 104 150 -idx: 134 entropy_left: 0.9480782435939054 entropy_right : 0.5435644431995964 -> 104 150 -idx: 135 entropy_left: 0.9629004147713269 entropy_right : 0.35335933502142136 -> 104 150 -idx: 137 entropy_left: 0.9456603046006402 entropy_right : 0.39124356362925566 -> 104 150 -idx: 138 entropy_left: 0.9596868937742169 entropy_right : 0 -> 104 150 -cut: 6.3 index: 105 -start: 104 cut: 105 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8589810370425963 ent1= 0 ent2= 0.8366407419411673 -ig= 0.040528137317541346 delta= 2.762674331854746 N 46 term 0.17944624843879176 -idx: 106 entropy_left: 0 entropy_right : 0.8453509366224365 -> 105 150 -idx: 107 entropy_left: 1.0 entropy_right : 0.8203636429576732 -> 105 150 -idx: 109 entropy_left: 0.8112781244591328 entropy_right : 0.8390040613676977 -> 105 150 -idx: 110 entropy_left: 0.9709505944546686 entropy_right : 0.8112781244591328 -> 105 150 -idx: 113 entropy_left: 0.8112781244591328 entropy_right : 0.8418521897563207 -> 105 150 -idx: 114 entropy_left: 0.9182958340544896 entropy_right : 0.8112781244591328 -> 105 150 -idx: 117 entropy_left: 0.8112781244591328 entropy_right : 0.8453509366224365 -> 105 150 -idx: 118 entropy_left: 0.8904916402194913 entropy_right : 0.8112781244591328 -> 105 150 -idx: 120 entropy_left: 0.8366407419411673 entropy_right : 0.8366407419411673 -> 105 150 -idx: 122 entropy_left: 0.9366673818775626 entropy_right : 0.74959525725948 -> 105 150 -idx: 127 entropy_left: 0.8453509366224365 entropy_right : 0.828055725379504 -> 105 150 -idx: 130 entropy_left: 0.9426831892554922 entropy_right : 0.6098403047164004 -> 105 150 -idx: 132 entropy_left: 0.9182958340544896 entropy_right : 0.6500224216483541 -> 105 150 -idx: 133 entropy_left: 0.9402859586706309 entropy_right : 0.5225593745369408 -> 105 150 -idx: 134 entropy_left: 0.9293636260137187 entropy_right : 0.5435644431995964 -> 105 150 -idx: 135 entropy_left: 0.9480782435939054 entropy_right : 0.35335933502142136 -> 105 150 -idx: 137 entropy_left: 0.9283620723948678 entropy_right : 0.39124356362925566 -> 105 150 -idx: 138 entropy_left: 0.9456603046006402 entropy_right : 0 -> 105 150 -cut: 6.3 index: 106 -start: 105 cut: 106 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8366407419411673 ent1= 0 ent2= 0.8453509366224365 -ig= 0.010075381688118279 delta= 2.824775311420143 N 45 term 0.18409348733460978 -idx: 107 entropy_left: 0 entropy_right : 0.8203636429576732 -> 106 150 -idx: 109 entropy_left: 0.9182958340544896 entropy_right : 0.8390040613676977 -> 106 150 -idx: 110 entropy_left: 1.0 entropy_right : 0.8112781244591328 -> 106 150 -idx: 113 entropy_left: 0.863120568566631 entropy_right : 0.8418521897563207 -> 106 150 -idx: 114 entropy_left: 0.9544340029249649 entropy_right : 0.8112781244591328 -> 106 150 -idx: 117 entropy_left: 0.8453509366224365 entropy_right : 0.8453509366224365 -> 106 150 -idx: 118 entropy_left: 0.9182958340544896 entropy_right : 0.8112781244591328 -> 106 150 -idx: 120 entropy_left: 0.863120568566631 entropy_right : 0.8366407419411673 -> 106 150 -idx: 122 entropy_left: 0.9544340029249649 entropy_right : 0.74959525725948 -> 106 150 -idx: 127 entropy_left: 0.863120568566631 entropy_right : 0.828055725379504 -> 106 150 -idx: 130 entropy_left: 0.9544340029249649 entropy_right : 0.6098403047164004 -> 106 150 -idx: 132 entropy_left: 0.930586129131993 entropy_right : 0.6500224216483541 -> 106 150 -idx: 133 entropy_left: 0.9509560484549725 entropy_right : 0.5225593745369408 -> 106 150 -idx: 134 entropy_left: 0.9402859586706309 entropy_right : 0.5435644431995964 -> 106 150 -idx: 135 entropy_left: 0.9575534837147482 entropy_right : 0.35335933502142136 -> 106 150 -idx: 137 entropy_left: 0.9383153522334069 entropy_right : 0.39124356362925566 -> 106 150 -idx: 138 entropy_left: 0.9544340029249649 entropy_right : 0 -> 106 150 -cut: 6.3 index: 107 -start: 106 cut: 107 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8453509366224365 ent1= 0 ent2= 0.8203636429576732 -ig= 0.043631921913801386 delta= 2.7573803347280776 N 44 term 0.18599193385068583 -idx: 109 entropy_left: 0 entropy_right : 0.8390040613676977 -> 107 150 -idx: 110 entropy_left: 0.9182958340544896 entropy_right : 0.8112781244591328 -> 107 150 -idx: 113 entropy_left: 0.6500224216483541 entropy_right : 0.8418521897563207 -> 107 150 -idx: 114 entropy_left: 0.863120568566631 entropy_right : 0.8112781244591328 -> 107 150 -idx: 117 entropy_left: 0.7219280948873623 entropy_right : 0.8453509366224365 -> 107 150 -idx: 118 entropy_left: 0.8453509366224365 entropy_right : 0.8112781244591328 -> 107 150 -idx: 120 entropy_left: 0.7793498372920852 entropy_right : 0.8366407419411673 -> 107 150 -idx: 122 entropy_left: 0.9182958340544896 entropy_right : 0.74959525725948 -> 107 150 -idx: 127 entropy_left: 0.8112781244591328 entropy_right : 0.828055725379504 -> 107 150 -idx: 130 entropy_left: 0.9321115676166747 entropy_right : 0.6098403047164004 -> 107 150 -idx: 132 entropy_left: 0.904381457724494 entropy_right : 0.6500224216483541 -> 107 150 -idx: 133 entropy_left: 0.930586129131993 entropy_right : 0.5225593745369408 -> 107 150 -idx: 134 entropy_left: 0.9182958340544896 entropy_right : 0.5435644431995964 -> 107 150 -idx: 135 entropy_left: 0.9402859586706309 entropy_right : 0.35335933502142136 -> 107 150 -idx: 137 entropy_left: 0.9182958340544896 entropy_right : 0.39124356362925566 -> 107 150 -idx: 138 entropy_left: 0.9383153522334069 entropy_right : 0 -> 107 150 -cut: 6.4 index: 109 -start: 107 cut: 109 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8203636429576732 ent1= 0 ent2= 0.8390040613676977 -ig= 0.020383026304752083 delta= 2.8446357588776534 N 43 term 0.19155705073619567 -idx: 110 entropy_left: 0 entropy_right : 0.8112781244591328 -> 109 150 -idx: 113 entropy_left: 0.8112781244591328 entropy_right : 0.8418521897563207 -> 109 150 -idx: 114 entropy_left: 0.9709505944546686 entropy_right : 0.8112781244591328 -> 109 150 -idx: 117 entropy_left: 0.8112781244591328 entropy_right : 0.8453509366224365 -> 109 150 -idx: 118 entropy_left: 0.9182958340544896 entropy_right : 0.8112781244591328 -> 109 150 -idx: 120 entropy_left: 0.8453509366224365 entropy_right : 0.8366407419411673 -> 109 150 -idx: 122 entropy_left: 0.961236604722876 entropy_right : 0.74959525725948 -> 109 150 -idx: 127 entropy_left: 0.8524051786494786 entropy_right : 0.828055725379504 -> 109 150 -idx: 130 entropy_left: 0.9587118829771318 entropy_right : 0.6098403047164004 -> 109 150 -idx: 132 entropy_left: 0.9321115676166747 entropy_right : 0.6500224216483541 -> 109 150 -idx: 133 entropy_left: 0.9544340029249649 entropy_right : 0.5225593745369408 -> 109 150 -idx: 134 entropy_left: 0.9426831892554922 entropy_right : 0.5435644431995964 -> 109 150 -idx: 135 entropy_left: 0.961236604722876 entropy_right : 0.35335933502142136 -> 109 150 -idx: 137 entropy_left: 0.9402859586706309 entropy_right : 0.39124356362925566 -> 109 150 -idx: 138 entropy_left: 0.9575534837147482 entropy_right : 0 -> 109 150 -cut: 6.4 index: 110 -start: 109 cut: 110 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8390040613676977 ent1= 0 ent2= 0.8112781244591328 -ig= 0.04751320823683636 delta= 2.7519030482404743 N 41 term 0.19692271080799603 -idx: 113 entropy_left: 0 entropy_right : 0.8418521897563207 -> 110 150 -idx: 114 entropy_left: 0.8112781244591328 entropy_right : 0.8112781244591328 -> 110 150 -idx: 117 entropy_left: 0.5916727785823275 entropy_right : 0.8453509366224365 -> 110 150 -idx: 118 entropy_left: 0.8112781244591328 entropy_right : 0.8112781244591328 -> 110 150 -idx: 120 entropy_left: 0.7219280948873623 entropy_right : 0.8366407419411673 -> 110 150 -idx: 122 entropy_left: 0.9182958340544896 entropy_right : 0.74959525725948 -> 110 150 -idx: 127 entropy_left: 0.7871265862012691 entropy_right : 0.828055725379504 -> 110 150 -idx: 130 entropy_left: 0.934068055375491 entropy_right : 0.6098403047164004 -> 110 150 -idx: 132 entropy_left: 0.9023932827949789 entropy_right : 0.6500224216483541 -> 110 150 -idx: 133 entropy_left: 0.9321115676166747 entropy_right : 0.5225593745369408 -> 110 150 -idx: 134 entropy_left: 0.9182958340544896 entropy_right : 0.5435644431995964 -> 110 150 -idx: 135 entropy_left: 0.9426831892554922 entropy_right : 0.35335933502142136 -> 110 150 -idx: 137 entropy_left: 0.9182958340544896 entropy_right : 0.39124356362925566 -> 110 150 -idx: 138 entropy_left: 0.9402859586706309 entropy_right : 0 -> 110 150 -cut: 6.4 index: 113 -start: 110 cut: 113 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8112781244591328 ent1= 0 ent2= 0.8418521897563207 -ig= 0.03256484893453615 delta= 2.86850305265198 N 40 term 0.20384763178785575 -idx: 114 entropy_left: 0 entropy_right : 0.8112781244591328 -> 113 150 -idx: 117 entropy_left: 0.8112781244591328 entropy_right : 0.8453509366224365 -> 113 150 -idx: 118 entropy_left: 0.9709505944546686 entropy_right : 0.8112781244591328 -> 113 150 -idx: 120 entropy_left: 0.863120568566631 entropy_right : 0.8366407419411673 -> 113 150 -idx: 122 entropy_left: 0.9910760598382222 entropy_right : 0.74959525725948 -> 113 150 -idx: 127 entropy_left: 0.863120568566631 entropy_right : 0.828055725379504 -> 113 150 -idx: 130 entropy_left: 0.9774178175281716 entropy_right : 0.6098403047164004 -> 113 150 -idx: 132 entropy_left: 0.9494520153879484 entropy_right : 0.6500224216483541 -> 113 150 -idx: 133 entropy_left: 0.9709505944546686 entropy_right : 0.5225593745369408 -> 113 150 -idx: 134 entropy_left: 0.9587118829771318 entropy_right : 0.5435644431995964 -> 113 150 -idx: 135 entropy_left: 0.976020648236615 entropy_right : 0.35335933502142136 -> 113 150 -idx: 137 entropy_left: 0.9544340029249649 entropy_right : 0.39124356362925566 -> 113 150 -idx: 138 entropy_left: 0.9709505944546686 entropy_right : 0 -> 113 150 -cut: 6.4 index: 114 -start: 113 cut: 114 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8418521897563207 ent1= 0 ent2= 0.8112781244591328 -ig= 0.05250050109338056 delta= 2.746206791463228 N 37 term 0.21394950791636597 -idx: 117 entropy_left: 0 entropy_right : 0.8453509366224365 -> 114 150 -idx: 118 entropy_left: 0.8112781244591328 entropy_right : 0.8112781244591328 -> 114 150 -idx: 120 entropy_left: 0.6500224216483541 entropy_right : 0.8366407419411673 -> 114 150 -idx: 122 entropy_left: 0.9544340029249649 entropy_right : 0.74959525725948 -> 114 150 -idx: 127 entropy_left: 0.7793498372920852 entropy_right : 0.828055725379504 -> 114 150 -idx: 130 entropy_left: 0.9544340029249649 entropy_right : 0.6098403047164004 -> 114 150 -idx: 132 entropy_left: 0.9182958340544896 entropy_right : 0.6500224216483541 -> 114 150 -idx: 133 entropy_left: 0.9494520153879484 entropy_right : 0.5225593745369408 -> 114 150 -idx: 134 entropy_left: 0.934068055375491 entropy_right : 0.5435644431995964 -> 114 150 -idx: 135 entropy_left: 0.9587118829771318 entropy_right : 0.35335933502142136 -> 114 150 -idx: 137 entropy_left: 0.9321115676166747 entropy_right : 0.39124356362925566 -> 114 150 -idx: 138 entropy_left: 0.9544340029249649 entropy_right : 0 -> 114 150 -cut: 6.5 index: 117 -start: 114 cut: 117 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8112781244591328 ent1= 0 ent2= 0.8453509366224365 -ig= 0.03637309922189935 delta= 2.8755005463842114 N 36 term 0.22235509898136602 -idx: 118 entropy_left: 0 entropy_right : 0.8112781244591328 -> 117 150 -idx: 120 entropy_left: 0.9182958340544896 entropy_right : 0.8366407419411673 -> 117 150 -idx: 122 entropy_left: 0.9709505944546686 entropy_right : 0.74959525725948 -> 117 150 -idx: 127 entropy_left: 0.8812908992306927 entropy_right : 0.828055725379504 -> 117 150 -idx: 130 entropy_left: 0.9957274520849256 entropy_right : 0.6098403047164004 -> 117 150 -idx: 132 entropy_left: 0.9709505944546686 entropy_right : 0.6500224216483541 -> 117 150 -idx: 133 entropy_left: 0.9886994082884974 entropy_right : 0.5225593745369408 -> 117 150 -idx: 134 entropy_left: 0.9774178175281716 entropy_right : 0.5435644431995964 -> 117 150 -idx: 135 entropy_left: 0.9910760598382222 entropy_right : 0.35335933502142136 -> 117 150 -idx: 137 entropy_left: 0.9709505944546686 entropy_right : 0.39124356362925566 -> 117 150 -idx: 138 entropy_left: 0.9852281360342516 entropy_right : 0 -> 117 150 -cut: 6.5 index: 118 -start: 117 cut: 118 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8453509366224365 ent1= 0 ent2= 0.8112781244591328 -ig= 0.058656997752974394 delta= 2.739209297730997 N 33 term 0.23452149387063628 -idx: 120 entropy_left: 0 entropy_right : 0.8366407419411673 -> 118 150 -idx: 122 entropy_left: 1.0 entropy_right : 0.74959525725948 -> 118 150 -idx: 127 entropy_left: 0.7642045065086203 entropy_right : 0.828055725379504 -> 118 150 -idx: 130 entropy_left: 0.9798687566511527 entropy_right : 0.6098403047164004 -> 118 150 -idx: 132 entropy_left: 0.9402859586706309 entropy_right : 0.6500224216483541 -> 118 150 -idx: 133 entropy_left: 0.9709505944546686 entropy_right : 0.5225593745369408 -> 118 150 -idx: 134 entropy_left: 0.9544340029249649 entropy_right : 0.5435644431995964 -> 118 150 -idx: 135 entropy_left: 0.9774178175281716 entropy_right : 0.35335933502142136 -> 118 150 -idx: 137 entropy_left: 0.9494520153879484 entropy_right : 0.39124356362925566 -> 118 150 -idx: 138 entropy_left: 0.9709505944546686 entropy_right : 0 -> 118 150 -cut: 6.55 index: 120 -start: 118 cut: 120 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8112781244591328 ent1= 0 ent2= 0.8366407419411673 -ig= 0.02692742888928845 delta= 2.858080157021673 N 32 term 0.24413363960651716 -idx: 122 entropy_left: 0 entropy_right : 0.74959525725948 -> 120 150 -idx: 127 entropy_left: 0.863120568566631 entropy_right : 0.828055725379504 -> 120 150 -idx: 130 entropy_left: 1.0 entropy_right : 0.6098403047164004 -> 120 150 -idx: 132 entropy_left: 0.9798687566511527 entropy_right : 0.6500224216483541 -> 120 150 -idx: 133 entropy_left: 0.9957274520849256 entropy_right : 0.5225593745369408 -> 120 150 -idx: 134 entropy_left: 0.9852281360342516 entropy_right : 0.5435644431995964 -> 120 150 -idx: 135 entropy_left: 0.9967916319816366 entropy_right : 0.35335933502142136 -> 120 150 -idx: 137 entropy_left: 0.9774178175281716 entropy_right : 0.39124356362925566 -> 120 150 -idx: 138 entropy_left: 0.9910760598382222 entropy_right : 0 -> 120 150 -cut: 6.65 index: 122 -start: 120 cut: 122 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8366407419411673 ent1= 0 ent2= 0.74959525725948 -ig= 0.13701850183231934 delta= 2.6332639526942296 N 30 term 0.24970816492739342 -idx: 127 entropy_left: 0 entropy_right : 0.828055725379504 -> 122 150 -idx: 130 entropy_left: 0.9544340029249649 entropy_right : 0.6098403047164004 -> 122 150 -idx: 132 entropy_left: 0.8812908992306927 entropy_right : 0.6500224216483541 -> 122 150 -idx: 133 entropy_left: 0.9456603046006402 entropy_right : 0.5225593745369408 -> 122 150 -idx: 134 entropy_left: 0.9182958340544896 entropy_right : 0.5435644431995964 -> 122 150 -idx: 135 entropy_left: 0.961236604722876 entropy_right : 0.35335933502142136 -> 122 150 -idx: 137 entropy_left: 0.9182958340544896 entropy_right : 0.39124356362925566 -> 122 150 -idx: 138 entropy_left: 0.9544340029249649 entropy_right : 0 -> 122 150 -cut: 6.7 index: 127 -start: 122 cut: 127 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.74959525725948 ent1= 0 ent2= 0.828055725379504 -ig= 0.06940662569774458 delta= 2.9642758582976523 N 28 term 0.2756844057307543 -idx: 130 entropy_left: 0 entropy_right : 0.6098403047164004 -> 127 150 -idx: 132 entropy_left: 0.9709505944546686 entropy_right : 0.6500224216483541 -> 127 150 -idx: 133 entropy_left: 0.9182958340544896 entropy_right : 0.5225593745369408 -> 127 150 -idx: 134 entropy_left: 0.9852281360342516 entropy_right : 0.5435644431995964 -> 127 150 -idx: 135 entropy_left: 0.9544340029249649 entropy_right : 0.35335933502142136 -> 127 150 -idx: 137 entropy_left: 1.0 entropy_right : 0.39124356362925566 -> 127 150 -idx: 138 entropy_left: 0.9940302114769565 entropy_right : 0 -> 127 150 -cut: 6.75 index: 130 -start: 127 cut: 130 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.828055725379504 ent1= 0 ent2= 0.6098403047164004 -ig= 0.2977598082348081 delta= 2.370924080731397 N 23 term 0.2969719869290737 -¡Ding! 6.75 130 -idx: 132 entropy_left: 0 entropy_right : 0.6500224216483541 -> 130 150 -idx: 133 entropy_left: 0.9182958340544896 entropy_right : 0.5225593745369408 -> 130 150 -idx: 134 entropy_left: 0.8112781244591328 entropy_right : 0.5435644431995964 -> 130 150 -idx: 135 entropy_left: 0.9709505944546686 entropy_right : 0.35335933502142136 -> 130 150 -idx: 137 entropy_left: 0.863120568566631 entropy_right : 0.39124356362925566 -> 130 150 -idx: 138 entropy_left: 0.9544340029249649 entropy_right : 0 -> 130 150 -cut: 6.8 index: 132 -start: 130 cut: 132 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.6098403047164004 ent1= 0 ent2= 0.6500224216483541 -ig= 0.024820125232881685 delta= 2.887719155921512 N 20 term 0.3567823334682549 -idx: 133 entropy_left: 0 entropy_right : 0.5225593745369408 -> 132 150 -idx: 134 entropy_left: 1.0 entropy_right : 0.5435644431995964 -> 132 150 -idx: 135 entropy_left: 0.9182958340544896 entropy_right : 0.35335933502142136 -> 132 150 -idx: 137 entropy_left: 0.9709505944546686 entropy_right : 0.39124356362925566 -> 132 150 -idx: 138 entropy_left: 1.0 entropy_right : 0 -> 132 150 -cut: 6.85 index: 133 -start: 132 cut: 133 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.6500224216483541 ent1= 0 ent2= 0.5225593745369408 -ig= 0.1564941234745767 delta= 2.5524288278347775 N 18 term 0.36888287050472873 -idx: 134 entropy_left: 0 entropy_right : 0.5435644431995964 -> 133 150 -idx: 135 entropy_left: 1.0 entropy_right : 0.35335933502142136 -> 133 150 -idx: 137 entropy_left: 0.8112781244591328 entropy_right : 0.39124356362925566 -> 133 150 -idx: 138 entropy_left: 0.9709505944546686 entropy_right : 0 -> 133 150 -cut: 6.9 index: 134 -start: 133 cut: 134 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.5225593745369408 ent1= 0 ent2= 0.5435644431995964 -ig= 0.010969310349085326 delta= 2.849365059382915 N 17 term 0.4029038270225244 -idx: 135 entropy_left: 0 entropy_right : 0.35335933502142136 -> 134 150 -idx: 137 entropy_left: 0.9182958340544896 entropy_right : 0.39124356362925566 -> 134 150 -idx: 138 entropy_left: 1.0 entropy_right : 0 -> 134 150 -cut: 6.9 index: 135 -start: 134 cut: 135 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.5435644431995964 ent1= 0 ent2= 0.35335933502142136 -ig= 0.21229006661701388 delta= 2.426944705701254 N 16 term 0.39586470633186077 -idx: 137 entropy_left: 0 entropy_right : 0.39124356362925566 -> 135 150 -idx: 138 entropy_left: 0.9182958340544896 entropy_right : 0 -> 135 150 -cut: 6.95 index: 137 -start: 135 cut: 137 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.35335933502142136 ent1= 0 ent2= 0.39124356362925566 -ig= 0.01428157987606643 delta= 2.8831233792732727 N 15 term 0.44603188675539174 -idx: 138 entropy_left: 0 entropy_right : 0 -> 137 150 -cut: 7.05 index: 138 -start: 137 cut: 138 end: 150 -k= 2 k1= 1 k2= 1 ent= 0.39124356362925566 ent1= 0 ent2= 0 -ig= 0.39124356362925566 delta= 2.0248677947990927 N 13 term 0.4315254073477115 -idx: 20 entropy_left: 0 entropy_right : 1.5485806065228545 -> 0 150 -idx: 21 entropy_left: 0.2761954276479391 entropy_right : 1.549829505666378 -> 0 150 -idx: 22 entropy_left: 0.5304060778306042 entropy_right : 1.5511852922535474 -> 0 150 -idx: 24 entropy_left: 0.4971501836369671 entropy_right : 1.5419822842863982 -> 0 150 -idx: 25 entropy_left: 0.6395563653739031 entropy_right : 1.5433449229510985 -> 0 150 -idx: 29 entropy_left: 0.574828144380386 entropy_right : 1.5202013991459298 -> 0 150 -idx: 30 entropy_left: 0.6746799231474564 entropy_right : 1.521677608876836 -> 0 150 -idx: 33 entropy_left: 0.6311718053929063 entropy_right : 1.4992098113026513 -> 0 150 -idx: 34 entropy_left: 0.7085966983474103 entropy_right : 1.5007111828980744 -> 0 150 -idx: 44 entropy_left: 0.5928251064639408 entropy_right : 1.3764263022492553 -> 0 150 -idx: 45 entropy_left: 0.6531791627726858 entropy_right : 1.3779796176519241 -> 0 150 -idx: 51 entropy_left: 0.5990326006132177 entropy_right : 1.2367928607774141 -> 0 150 -idx: 52 entropy_left: 0.6496096346956632 entropy_right : 1.2377158231343603 -> 0 150 -idx: 53 entropy_left: 0.6412482850735854 entropy_right : 1.2046986815511866 -> 0 150 -idx: 58 entropy_left: 0.8211258609270055 entropy_right : 1.2056112071736118 -> 0 150 -idx: 59 entropy_left: 0.8128223064150747 entropy_right : 1.167065448996099 -> 0 150 -idx: 61 entropy_left: 0.8623538561746379 entropy_right : 1.1653351793699953 -> 0 150 -idx: 62 entropy_left: 0.9353028851500502 entropy_right : 1.1687172769890006 -> 0 150 -idx: 68 entropy_left: 1.031929035599206 entropy_right : 1.1573913563403753 -> 0 150 -idx: 69 entropy_left: 1.0246284743137688 entropy_right : 1.109500797247481 -> 0 150 -idx: 70 entropy_left: 1.036186417911213 entropy_right : 1.105866621101474 -> 0 150 -idx: 71 entropy_left: 1.0895830429620594 entropy_right : 1.1104593064416028 -> 0 150 -idx: 72 entropy_left: 1.0822273380873693 entropy_right : 1.0511407586429597 -> 0 150 -idx: 74 entropy_left: 1.1015727511177442 entropy_right : 1.041722068095403 -> 0 150 -idx: 75 entropy_left: 1.1457749842070042 entropy_right : 1.0462881865460743 -> 0 150 -idx: 76 entropy_left: 1.1387129726704701 entropy_right : 0.9568886656798212 -> 0 150 -idx: 77 entropy_left: 1.1468549240968817 entropy_right : 0.9505668528932196 -> 0 150 -idx: 78 entropy_left: 1.1848333092150132 entropy_right : 0.9544340029249649 -> 0 150 -idx: 79 entropy_left: 1.1918623939938016 entropy_right : 0.9477073729342066 -> 0 150 -idx: 81 entropy_left: 1.2548698305334247 entropy_right : 0.9557589912150009 -> 0 150 -idx: 83 entropy_left: 1.2659342914094807 entropy_right : 0.9411864371816835 -> 0 150 -idx: 84 entropy_left: 1.2922669208691815 entropy_right : 0.9456603046006402 -> 0 150 -idx: 87 entropy_left: 1.3041589171425696 entropy_right : 0.9182958340544896 -> 0 150 -idx: 88 entropy_left: 1.327572716814381 entropy_right : 0.9235785996175947 -> 0 150 -idx: 89 entropy_left: 1.330465426809402 entropy_right : 0.9127341558073343 -> 0 150 -idx: 91 entropy_left: 1.3709454625942779 entropy_right : 0.9238422284571814 -> 0 150 -idx: 95 entropy_left: 1.378063041001916 entropy_right : 0.8698926856041563 -> 0 150 -idx: 97 entropy_left: 1.4115390027326744 entropy_right : 0.8835850861052532 -> 0 150 -idx: 99 entropy_left: 1.4130351465796736 entropy_right : 0.8478617451660526 -> 0 150 -idx: 101 entropy_left: 1.4412464483479606 entropy_right : 0.863120568566631 -> 0 150 -idx: 102 entropy_left: 1.4415827640191903 entropy_right : 0.8426578772022391 -> 0 150 -idx: 104 entropy_left: 1.4655411381577925 entropy_right : 0.8589810370425963 -> 0 150 -idx: 105 entropy_left: 1.465665295753282 entropy_right : 0.8366407419411673 -> 0 150 -idx: 106 entropy_left: 1.4762911618692924 entropy_right : 0.8453509366224365 -> 0 150 -idx: 107 entropy_left: 1.4762132849962355 entropy_right : 0.8203636429576732 -> 0 150 -idx: 109 entropy_left: 1.4951379218217782 entropy_right : 0.8390040613676977 -> 0 150 -idx: 110 entropy_left: 1.4949188482339508 entropy_right : 0.8112781244591328 -> 0 150 -idx: 113 entropy_left: 1.5183041104369397 entropy_right : 0.8418521897563207 -> 0 150 -idx: 114 entropy_left: 1.51802714866133 entropy_right : 0.8112781244591328 -> 0 150 -idx: 117 entropy_left: 1.5364854516368571 entropy_right : 0.8453509366224365 -> 0 150 -idx: 118 entropy_left: 1.5361890331151247 entropy_right : 0.8112781244591328 -> 0 150 -idx: 120 entropy_left: 1.5462566034163763 entropy_right : 0.8366407419411673 -> 0 150 -idx: 122 entropy_left: 1.545378825051491 entropy_right : 0.74959525725948 -> 0 150 -idx: 127 entropy_left: 1.5644893588382582 entropy_right : 0.828055725379504 -> 0 150 -idx: 130 entropy_left: 1.562956340286807 entropy_right : 0.6098403047164004 -> 0 150 -idx: 132 entropy_left: 1.5687623685201277 entropy_right : 0.6500224216483541 -> 0 150 -idx: 133 entropy_left: 1.5680951037987416 entropy_right : 0.5225593745369408 -> 0 150 -idx: 134 entropy_left: 1.5706540443736308 entropy_right : 0.5435644431995964 -> 0 150 -idx: 135 entropy_left: 1.5699201014782036 entropy_right : 0.35335933502142136 -> 0 150 -idx: 137 entropy_left: 1.5744201314186457 entropy_right : 0.39124356362925566 -> 0 150 -idx: 138 entropy_left: 1.5736921054134685 entropy_right : 0 -> 0 150 -cut: 4.9 index: 20 -start: 0 cut: 20 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.584962500721156 ent1= 0 ent2= 1.5485806065228545 -ig= 0.24285930840134884 delta= 4.5347105071798195 N 150 term 0.07835919351761322 -¡Ding! 4.9 20 -idx: 21 entropy_left: 0 entropy_right : 1.549829505666378 -> 20 150 -idx: 22 entropy_left: 1.0 entropy_right : 1.5511852922535474 -> 20 150 -idx: 24 entropy_left: 1.5 entropy_right : 1.5419822842863982 -> 20 150 -idx: 25 entropy_left: 1.5219280948873621 entropy_right : 1.5433449229510985 -> 20 150 -idx: 29 entropy_left: 1.224394445405986 entropy_right : 1.5202013991459298 -> 20 150 -idx: 30 entropy_left: 1.295461844238322 entropy_right : 1.521677608876836 -> 20 150 -idx: 33 entropy_left: 1.1401156785146092 entropy_right : 1.4992098113026513 -> 20 150 -idx: 34 entropy_left: 1.1981174211304033 entropy_right : 1.5007111828980744 -> 20 150 -idx: 44 entropy_left: 0.8886865525783176 entropy_right : 1.3764263022492553 -> 20 150 -idx: 45 entropy_left: 0.9510456605801272 entropy_right : 1.3779796176519241 -> 20 150 -idx: 51 entropy_left: 0.8346464646189744 entropy_right : 1.2367928607774141 -> 20 150 -idx: 52 entropy_left: 0.8873068828532795 entropy_right : 1.2377158231343603 -> 20 150 -idx: 53 entropy_left: 0.8710241897828374 entropy_right : 1.2046986815511866 -> 20 150 -idx: 58 entropy_left: 1.0304227640573047 entropy_right : 1.2056112071736118 -> 20 150 -idx: 59 entropy_left: 1.0178199018513787 entropy_right : 1.167065448996099 -> 20 150 -idx: 61 entropy_left: 1.0529744706120385 entropy_right : 1.1653351793699953 -> 20 150 -idx: 62 entropy_left: 1.142610782439526 entropy_right : 1.1687172769890006 -> 20 150 -idx: 68 entropy_left: 1.1872003066827859 entropy_right : 1.1573913563403753 -> 20 150 -idx: 69 entropy_left: 1.1796779956857995 entropy_right : 1.109500797247481 -> 20 150 -idx: 70 entropy_left: 1.1829661954675215 entropy_right : 1.105866621101474 -> 20 150 -idx: 71 entropy_left: 1.2449863769220126 entropy_right : 1.1104593064416028 -> 20 150 -idx: 72 entropy_left: 1.2374609054755092 entropy_right : 1.0511407586429597 -> 20 150 -idx: 74 entropy_left: 1.2411128360359944 entropy_right : 1.041722068095403 -> 20 150 -idx: 75 entropy_left: 1.2906516322752026 entropy_right : 1.0462881865460743 -> 20 150 -idx: 76 entropy_left: 1.2838868242312453 entropy_right : 0.9568886656798212 -> 20 150 -idx: 77 entropy_left: 1.2846682096460251 entropy_right : 0.9505668528932196 -> 20 150 -idx: 78 entropy_left: 1.3259416273344056 entropy_right : 0.9544340029249649 -> 20 150 -idx: 79 entropy_left: 1.325770873768619 entropy_right : 0.9477073729342066 -> 20 150 -idx: 81 entropy_left: 1.3914372992027793 entropy_right : 0.9557589912150009 -> 20 150 -idx: 83 entropy_left: 1.3888730188280565 entropy_right : 0.9411864371816835 -> 20 150 -idx: 84 entropy_left: 1.4153413978136884 entropy_right : 0.9456603046006402 -> 20 150 -idx: 87 entropy_left: 1.4080568512494867 entropy_right : 0.9182958340544896 -> 20 150 -idx: 88 entropy_left: 1.4313232568395167 entropy_right : 0.9235785996175947 -> 20 150 -idx: 89 entropy_left: 1.4281945908435036 entropy_right : 0.9127341558073343 -> 20 150 -idx: 91 entropy_left: 1.4671107315959304 entropy_right : 0.9238422284571814 -> 20 150 -idx: 95 entropy_left: 1.4523626601521826 entropy_right : 0.8698926856041563 -> 20 150 -idx: 97 entropy_left: 1.483849257492287 entropy_right : 0.8835850861052532 -> 20 150 -idx: 99 entropy_left: 1.475556263923774 entropy_right : 0.8478617451660526 -> 20 150 -idx: 101 entropy_left: 1.5012404120907166 entropy_right : 0.863120568566631 -> 20 150 -idx: 102 entropy_left: 1.497066012780834 entropy_right : 0.8426578772022391 -> 20 150 -idx: 104 entropy_left: 1.5179917001861118 entropy_right : 0.8589810370425963 -> 20 150 -idx: 105 entropy_left: 1.5139223281333773 entropy_right : 0.8366407419411673 -> 20 150 -idx: 106 entropy_left: 1.5229320406896163 entropy_right : 0.8453509366224365 -> 20 150 -idx: 107 entropy_left: 1.518850916195339 entropy_right : 0.8203636429576732 -> 20 150 -idx: 109 entropy_left: 1.5344304388132461 entropy_right : 0.8390040613676977 -> 20 150 -idx: 110 entropy_left: 1.5304930567574824 entropy_right : 0.8112781244591328 -> 20 150 -idx: 113 entropy_left: 1.5485591696772643 entropy_right : 0.8418521897563207 -> 20 150 -idx: 114 entropy_left: 1.5449263511786133 entropy_right : 0.8112781244591328 -> 20 150 -idx: 117 entropy_left: 1.5578738449782061 entropy_right : 0.8453509366224365 -> 20 150 -idx: 118 entropy_left: 1.554551861496516 entropy_right : 0.8112781244591328 -> 20 150 -idx: 120 entropy_left: 1.5609563153489605 entropy_right : 0.8366407419411673 -> 20 150 -idx: 122 entropy_left: 1.554507235050814 entropy_right : 0.74959525725948 -> 20 150 -idx: 127 entropy_left: 1.5649556310074497 entropy_right : 0.828055725379504 -> 20 150 -idx: 130 entropy_left: 1.556474260470719 entropy_right : 0.6098403047164004 -> 20 150 -idx: 132 entropy_left: 1.559164748038155 entropy_right : 0.6500224216483541 -> 20 150 -idx: 133 entropy_left: 1.556375214663463 entropy_right : 0.5225593745369408 -> 20 150 -idx: 134 entropy_left: 1.5574319619297041 entropy_right : 0.5435644431995964 -> 20 150 -idx: 135 entropy_left: 1.554665700667645 entropy_right : 0.35335933502142136 -> 20 150 -idx: 137 entropy_left: 1.5562728756453106 entropy_right : 0.39124356362925566 -> 20 150 -idx: 138 entropy_left: 1.553653448786858 entropy_right : 0 -> 20 150 -cut: 4.9 index: 21 -start: 20 cut: 21 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.5485806065228545 ent1= 0 ent2= 1.549829505666378 -ig= 0.010672866284679339 delta= 4.647602887205295 N 130 term 0.08968330878945038 -idx: 22 entropy_left: 0 entropy_right : 1.5511852922535474 -> 21 150 -idx: 24 entropy_left: 0.9182958340544896 entropy_right : 1.5419822842863982 -> 21 150 -idx: 25 entropy_left: 1.5 entropy_right : 1.5433449229510985 -> 21 150 -idx: 29 entropy_left: 1.061278124459133 entropy_right : 1.5202013991459298 -> 21 150 -idx: 30 entropy_left: 1.224394445405986 entropy_right : 1.521677608876836 -> 21 150 -idx: 33 entropy_left: 1.0408520829727552 entropy_right : 1.4992098113026513 -> 21 150 -idx: 34 entropy_left: 1.1401156785146092 entropy_right : 1.5007111828980744 -> 21 150 -idx: 44 entropy_left: 0.8076702057269436 entropy_right : 1.3764263022492553 -> 21 150 -idx: 45 entropy_left: 0.8886865525783176 entropy_right : 1.3779796176519241 -> 21 150 -idx: 51 entropy_left: 0.7703437707962479 entropy_right : 1.2367928607774141 -> 21 150 -idx: 52 entropy_left: 0.8346464646189744 entropy_right : 1.2377158231343603 -> 21 150 -idx: 53 entropy_left: 0.8180914641842123 entropy_right : 1.2046986815511866 -> 21 150 -idx: 58 entropy_left: 1.0086232677764626 entropy_right : 1.2056112071736118 -> 21 150 -idx: 59 entropy_left: 0.9952632106202363 entropy_right : 1.167065448996099 -> 21 150 -idx: 61 entropy_left: 1.0368902807106744 entropy_right : 1.1653351793699953 -> 21 150 -idx: 62 entropy_left: 1.1282468200554612 entropy_right : 1.1687172769890006 -> 21 150 -idx: 68 entropy_left: 1.1835119881802911 entropy_right : 1.1573913563403753 -> 21 150 -idx: 69 entropy_left: 1.1752835873133531 entropy_right : 1.109500797247481 -> 21 150 -idx: 70 entropy_left: 1.1796779956857995 entropy_right : 1.105866621101474 -> 21 150 -idx: 71 entropy_left: 1.2424272282706346 entropy_right : 1.1104593064416028 -> 21 150 -idx: 72 entropy_left: 1.2342496730246098 entropy_right : 1.0511407586429597 -> 21 150 -idx: 74 entropy_left: 1.23971286514401 entropy_right : 1.041722068095403 -> 21 150 -idx: 75 entropy_left: 1.2897001922180324 entropy_right : 1.0462881865460743 -> 21 150 -idx: 76 entropy_left: 1.2823527363135774 entropy_right : 0.9568886656798212 -> 21 150 -idx: 77 entropy_left: 1.2838868242312453 entropy_right : 0.9505668528932196 -> 21 150 -idx: 78 entropy_left: 1.3254539799066205 entropy_right : 0.9544340029249649 -> 21 150 -idx: 79 entropy_left: 1.3259416273344056 entropy_right : 0.9477073729342066 -> 21 150 -idx: 81 entropy_left: 1.3918884737423507 entropy_right : 0.9557589912150009 -> 21 150 -idx: 83 entropy_left: 1.3904123254348284 entropy_right : 0.9411864371816835 -> 21 150 -idx: 84 entropy_left: 1.4169128979027155 entropy_right : 0.9456603046006402 -> 21 150 -idx: 87 entropy_left: 1.410869033208931 entropy_right : 0.9182958340544896 -> 21 150 -idx: 88 entropy_left: 1.4341193292809176 entropy_right : 0.9235785996175947 -> 21 150 -idx: 89 entropy_left: 1.4313232568395167 entropy_right : 0.9127341558073343 -> 21 150 -idx: 91 entropy_left: 1.4701128093454605 entropy_right : 0.9238422284571814 -> 21 150 -idx: 95 entropy_left: 1.4564064519519933 entropy_right : 0.8698926856041563 -> 21 150 -idx: 97 entropy_left: 1.4876980378788656 entropy_right : 0.8835850861052532 -> 21 150 -idx: 99 entropy_left: 1.479795298385792 entropy_right : 0.8478617451660526 -> 21 150 -idx: 101 entropy_left: 1.5052408149441479 entropy_right : 0.863120568566631 -> 21 150 -idx: 102 entropy_left: 1.5012404120907166 entropy_right : 0.8426578772022391 -> 21 150 -idx: 104 entropy_left: 1.5218962238597613 entropy_right : 0.8589810370425963 -> 21 150 -idx: 105 entropy_left: 1.5179917001861118 entropy_right : 0.8366407419411673 -> 21 150 -idx: 106 entropy_left: 1.5268598488143097 entropy_right : 0.8453509366224365 -> 21 150 -idx: 107 entropy_left: 1.5229320406896163 entropy_right : 0.8203636429576732 -> 21 150 -idx: 109 entropy_left: 1.538221104127535 entropy_right : 0.8390040613676977 -> 21 150 -idx: 110 entropy_left: 1.5344304388132461 entropy_right : 0.8112781244591328 -> 21 150 -idx: 113 entropy_left: 1.5520475061309855 entropy_right : 0.8418521897563207 -> 21 150 -idx: 114 entropy_left: 1.5485591696772643 entropy_right : 0.8112781244591328 -> 21 150 -idx: 117 entropy_left: 1.5610533930605475 entropy_right : 0.8453509366224365 -> 21 150 -idx: 118 entropy_left: 1.5578738449782061 entropy_right : 0.8112781244591328 -> 21 150 -idx: 120 entropy_left: 1.5639799748754695 entropy_right : 0.8366407419411673 -> 21 150 -idx: 122 entropy_left: 1.5577952437611147 entropy_right : 0.74959525725948 -> 21 150 -idx: 127 entropy_left: 1.5675326407964567 entropy_right : 0.828055725379504 -> 21 150 -idx: 130 entropy_left: 1.559417592797962 entropy_right : 0.6098403047164004 -> 21 150 -idx: 132 entropy_left: 1.5618440335577457 entropy_right : 0.6500224216483541 -> 21 150 -idx: 133 entropy_left: 1.559164748038155 entropy_right : 0.5225593745369408 -> 21 150 -idx: 134 entropy_left: 1.5600931752556502 entropy_right : 0.5435644431995964 -> 21 150 -idx: 135 entropy_left: 1.5574319619297041 entropy_right : 0.35335933502142136 -> 21 150 -idx: 137 entropy_left: 1.55878993121613 entropy_right : 0.39124356362925566 -> 21 150 -idx: 138 entropy_left: 1.5562728756453106 entropy_right : 0 -> 21 150 -cut: 4.95 index: 22 -start: 21 cut: 22 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.549829505666378 ent1= 0 ent2= 1.5511852922535474 -ig= 0.01066890560084266 delta= 4.647923549536232 N 129 term 0.09029398100415684 -idx: 24 entropy_left: 0 entropy_right : 1.5419822842863982 -> 22 150 -idx: 25 entropy_left: 0.9182958340544896 entropy_right : 1.5433449229510985 -> 22 150 -idx: 29 entropy_left: 0.5916727785823275 entropy_right : 1.5202013991459298 -> 22 150 -idx: 30 entropy_left: 0.8112781244591328 entropy_right : 1.521677608876836 -> 22 150 -idx: 33 entropy_left: 0.6840384356390417 entropy_right : 1.4992098113026513 -> 22 150 -idx: 34 entropy_left: 0.8112781244591328 entropy_right : 1.5007111828980744 -> 22 150 -idx: 44 entropy_left: 0.5746356978376794 entropy_right : 1.3764263022492553 -> 22 150 -idx: 45 entropy_left: 0.6665783579949205 entropy_right : 1.3779796176519241 -> 22 150 -idx: 51 entropy_left: 0.5787946246321198 entropy_right : 1.2367928607774141 -> 22 150 -idx: 52 entropy_left: 0.6500224216483541 entropy_right : 1.2377158231343603 -> 22 150 -idx: 53 entropy_left: 0.6373874992221911 entropy_right : 1.2046986815511866 -> 22 150 -idx: 58 entropy_left: 0.8524051786494786 entropy_right : 1.2056112071736118 -> 22 150 -idx: 59 entropy_left: 0.8418521897563207 entropy_right : 1.167065448996099 -> 22 150 -idx: 61 entropy_left: 0.8904916402194913 entropy_right : 1.1653351793699953 -> 22 150 -idx: 62 entropy_left: 1.0368902807106744 entropy_right : 1.1687172769890006 -> 22 150 -idx: 68 entropy_left: 1.1009399433532026 entropy_right : 1.1573913563403753 -> 22 150 -idx: 69 entropy_left: 1.093640174154775 entropy_right : 1.109500797247481 -> 22 150 -idx: 70 entropy_left: 1.0992008221161345 entropy_right : 1.105866621101474 -> 22 150 -idx: 71 entropy_left: 1.1796779956857995 entropy_right : 1.1104593064416028 -> 22 150 -idx: 72 entropy_left: 1.1720147574921704 entropy_right : 1.0511407586429597 -> 22 150 -idx: 74 entropy_left: 1.1788990501208314 entropy_right : 1.041722068095403 -> 22 150 -idx: 75 entropy_left: 1.23971286514401 entropy_right : 1.0462881865460743 -> 22 150 -idx: 76 entropy_left: 1.2326602568158207 entropy_right : 0.9568886656798212 -> 22 150 -idx: 77 entropy_left: 1.2346487866075768 entropy_right : 0.9505668528932196 -> 22 150 -idx: 78 entropy_left: 1.2838868242312453 entropy_right : 0.9544340029249649 -> 22 150 -idx: 79 entropy_left: 1.2846682096460251 entropy_right : 0.9477073729342066 -> 22 150 -idx: 81 entropy_left: 1.3613139330585569 entropy_right : 0.9557589912150009 -> 22 150 -idx: 83 entropy_left: 1.3600340979407453 entropy_right : 0.9411864371816835 -> 22 150 -idx: 84 entropy_left: 1.3904123254348284 entropy_right : 0.9456603046006402 -> 22 150 -idx: 87 entropy_left: 1.3844579647165822 entropy_right : 0.9182958340544896 -> 22 150 -idx: 88 entropy_left: 1.410869033208931 entropy_right : 0.9235785996175947 -> 22 150 -idx: 89 entropy_left: 1.4080568512494867 entropy_right : 0.9127341558073343 -> 22 150 -idx: 91 entropy_left: 1.4518947803168825 entropy_right : 0.9238422284571814 -> 22 150 -idx: 95 entropy_left: 1.4378929868805908 entropy_right : 0.8698926856041563 -> 22 150 -idx: 97 entropy_left: 1.472935039619369 entropy_right : 0.8835850861052532 -> 22 150 -idx: 99 entropy_left: 1.4648232488769368 entropy_right : 0.8478617451660526 -> 22 150 -idx: 101 entropy_left: 1.4932162877956365 entropy_right : 0.863120568566631 -> 22 150 -idx: 102 entropy_left: 1.4890907595250464 entropy_right : 0.8426578772022391 -> 22 150 -idx: 104 entropy_left: 1.5121371519329765 entropy_right : 0.8589810370425963 -> 22 150 -idx: 105 entropy_left: 1.508093739822507 entropy_right : 0.8366407419411673 -> 22 150 -idx: 106 entropy_left: 1.5179917001861118 entropy_right : 0.8453509366224365 -> 22 150 -idx: 107 entropy_left: 1.5139223281333773 entropy_right : 0.8203636429576732 -> 22 150 -idx: 109 entropy_left: 1.5310057241873496 entropy_right : 0.8390040613676977 -> 22 150 -idx: 110 entropy_left: 1.5270676736451225 entropy_right : 0.8112781244591328 -> 22 150 -idx: 113 entropy_left: 1.5468616730129405 entropy_right : 0.8418521897563207 -> 22 150 -idx: 114 entropy_left: 1.5432213335160283 entropy_right : 0.8112781244591328 -> 22 150 -idx: 117 entropy_left: 1.5574319619297041 entropy_right : 0.8453509366224365 -> 22 150 -idx: 118 entropy_left: 1.5541004715340199 entropy_right : 0.8112781244591328 -> 22 150 -idx: 120 entropy_left: 1.5611556337477528 entropy_right : 0.8366407419411673 -> 22 150 -idx: 122 entropy_left: 1.5546755409861306 entropy_right : 0.74959525725948 -> 22 150 -idx: 127 entropy_left: 1.566282638423782 entropy_right : 0.828055725379504 -> 22 150 -idx: 130 entropy_left: 1.5577526146923748 entropy_right : 0.6098403047164004 -> 22 150 -idx: 132 entropy_left: 1.5607751276211168 entropy_right : 0.6500224216483541 -> 22 150 -idx: 133 entropy_left: 1.5579642402274387 entropy_right : 0.5225593745369408 -> 22 150 -idx: 134 entropy_left: 1.559164748038155 entropy_right : 0.5435644431995964 -> 22 150 -idx: 135 entropy_left: 1.556375214663463 entropy_right : 0.35335933502142136 -> 22 150 -idx: 137 entropy_left: 1.558231855890965 entropy_right : 0.39124356362925566 -> 22 150 -idx: 138 entropy_left: 1.5555906954881595 entropy_right : 0 -> 22 150 -cut: 5.0 index: 24 -start: 22 cut: 24 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.5511852922535474 ent1= 0 ent2= 1.5419822842863982 -ig= 0.033296481159124314 delta= 4.616247165873277 N 128 term 0.09066353009879252 -idx: 25 entropy_left: 0 entropy_right : 1.5433449229510985 -> 24 150 -idx: 29 entropy_left: 0.7219280948873623 entropy_right : 1.5202013991459298 -> 24 150 -idx: 30 entropy_left: 0.9182958340544896 entropy_right : 1.521677608876836 -> 24 150 -idx: 33 entropy_left: 0.7642045065086203 entropy_right : 1.4992098113026513 -> 24 150 -idx: 34 entropy_left: 0.8812908992306927 entropy_right : 1.5007111828980744 -> 24 150 -idx: 44 entropy_left: 0.6098403047164004 entropy_right : 1.3764263022492553 -> 24 150 -idx: 45 entropy_left: 0.7024665512903903 entropy_right : 1.3779796176519241 -> 24 150 -idx: 51 entropy_left: 0.6051865766334206 entropy_right : 1.2367928607774141 -> 24 150 -idx: 52 entropy_left: 0.676941869780886 entropy_right : 1.2377158231343603 -> 24 150 -idx: 53 entropy_left: 0.6631968402398287 entropy_right : 1.2046986815511866 -> 24 150 -idx: 58 entropy_left: 0.8739810481273578 entropy_right : 1.2056112071736118 -> 24 150 -idx: 59 entropy_left: 0.863120568566631 entropy_right : 1.167065448996099 -> 24 150 -idx: 61 entropy_left: 0.9090221560878149 entropy_right : 1.1653351793699953 -> 24 150 -idx: 62 entropy_left: 1.0606655462587962 entropy_right : 1.1687172769890006 -> 24 150 -idx: 68 entropy_left: 1.1149985556752577 entropy_right : 1.1573913563403753 -> 24 150 -idx: 69 entropy_left: 1.1080734808267854 entropy_right : 1.109500797247481 -> 24 150 -idx: 70 entropy_left: 1.1122129250331756 entropy_right : 1.105866621101474 -> 24 150 -idx: 71 entropy_left: 1.194545119186222 entropy_right : 1.1104593064416028 -> 24 150 -idx: 72 entropy_left: 1.1872003066827859 entropy_right : 1.0511407586429597 -> 24 150 -idx: 74 entropy_left: 1.1914436210393724 entropy_right : 1.041722068095403 -> 24 150 -idx: 75 entropy_left: 1.2532975784630431 entropy_right : 1.0462881865460743 -> 24 150 -idx: 76 entropy_left: 1.2466033489462778 entropy_right : 0.9568886656798212 -> 24 150 -idx: 77 entropy_left: 1.2473860973972195 entropy_right : 0.9505668528932196 -> 24 150 -idx: 78 entropy_left: 1.297231327577664 entropy_right : 0.9544340029249649 -> 24 150 -idx: 79 entropy_left: 1.2968531170351285 entropy_right : 0.9477073729342066 -> 24 150 -idx: 81 entropy_left: 1.3739840876515639 entropy_right : 0.9557589912150009 -> 24 150 -idx: 83 entropy_left: 1.3705732601023841 entropy_right : 0.9411864371816835 -> 24 150 -idx: 84 entropy_left: 1.4009934786687808 entropy_right : 0.9456603046006402 -> 24 150 -idx: 87 entropy_left: 1.3921472236645345 entropy_right : 0.9182958340544896 -> 24 150 -idx: 88 entropy_left: 1.4185644431995963 entropy_right : 0.9235785996175947 -> 24 150 -idx: 89 entropy_left: 1.4148695564698006 entropy_right : 0.9127341558073343 -> 24 150 -idx: 91 entropy_left: 1.4585269870967856 entropy_right : 0.9238422284571814 -> 24 150 -idx: 95 entropy_left: 1.4414340954861538 entropy_right : 0.8698926856041563 -> 24 150 -idx: 97 entropy_left: 1.4762561511389796 entropy_right : 0.8835850861052532 -> 24 150 -idx: 99 entropy_left: 1.4668134449046726 entropy_right : 0.8478617451660526 -> 24 150 -idx: 101 entropy_left: 1.4949188482339508 entropy_right : 0.863120568566631 -> 24 150 -idx: 102 entropy_left: 1.4901944396527276 entropy_right : 0.8426578772022391 -> 24 150 -idx: 104 entropy_left: 1.5128876215181606 entropy_right : 0.8589810370425963 -> 24 150 -idx: 105 entropy_left: 1.5082979986144511 entropy_right : 0.8366407419411673 -> 24 150 -idx: 106 entropy_left: 1.5180083381895495 entropy_right : 0.8453509366224365 -> 24 150 -idx: 107 entropy_left: 1.5134243514707206 entropy_right : 0.8203636429576732 -> 24 150 -idx: 109 entropy_left: 1.530122629268322 entropy_right : 0.8390040613676977 -> 24 150 -idx: 110 entropy_left: 1.5257153697175778 entropy_right : 0.8112781244591328 -> 24 150 -idx: 113 entropy_left: 1.54490062239043 entropy_right : 0.8418521897563207 -> 24 150 -idx: 114 entropy_left: 1.5408469049615863 entropy_right : 0.8112781244591328 -> 24 150 -idx: 117 entropy_left: 1.5544333664039933 entropy_right : 0.8453509366224365 -> 24 150 -idx: 118 entropy_left: 1.5507380564508026 entropy_right : 0.8112781244591328 -> 24 150 -idx: 120 entropy_left: 1.557384036498573 entropy_right : 0.8366407419411673 -> 24 150 -idx: 122 entropy_left: 1.5502477540313635 entropy_right : 0.74959525725948 -> 24 150 -idx: 127 entropy_left: 1.5609148740783336 entropy_right : 0.828055725379504 -> 24 150 -idx: 130 entropy_left: 1.5516017017685246 entropy_right : 0.6098403047164004 -> 24 150 -idx: 132 entropy_left: 1.5542993132861813 entropy_right : 0.6500224216483541 -> 24 150 -idx: 133 entropy_left: 1.551254504144143 entropy_right : 0.5225593745369408 -> 24 150 -idx: 134 entropy_left: 1.552300445892517 entropy_right : 0.5435644431995964 -> 24 150 -idx: 135 entropy_left: 1.5492893488248605 entropy_right : 0.35335933502142136 -> 24 150 -idx: 137 entropy_left: 1.5508523041806783 entropy_right : 0.39124356362925566 -> 24 150 -idx: 138 entropy_left: 1.5480084816425554 entropy_right : 0 -> 24 150 -cut: 5.0 index: 25 -start: 24 cut: 25 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.5419822842863982 ent1= 0 ent2= 1.5433449229510985 -ig= 0.010886130565070262 delta= 4.6479441057688256 N 126 term 0.09217244754310248 -idx: 29 entropy_left: 0 entropy_right : 1.5202013991459298 -> 25 150 -idx: 30 entropy_left: 0.7219280948873623 entropy_right : 1.521677608876836 -> 25 150 -idx: 33 entropy_left: 0.5435644431995964 entropy_right : 1.4992098113026513 -> 25 150 -idx: 34 entropy_left: 0.7642045065086203 entropy_right : 1.5007111828980744 -> 25 150 -idx: 44 entropy_left: 0.4854607607459134 entropy_right : 1.3764263022492553 -> 25 150 -idx: 45 entropy_left: 0.6098403047164004 entropy_right : 1.3779796176519241 -> 25 150 -idx: 51 entropy_left: 0.5159469300074474 entropy_right : 1.2367928607774141 -> 25 150 -idx: 52 entropy_left: 0.6051865766334206 entropy_right : 1.2377158231343603 -> 25 150 -idx: 53 entropy_left: 0.5916727785823275 entropy_right : 1.2046986815511866 -> 25 150 -idx: 58 entropy_left: 0.8453509366224365 entropy_right : 1.2056112071736118 -> 25 150 -idx: 59 entropy_left: 0.833764907210665 entropy_right : 1.167065448996099 -> 25 150 -idx: 61 entropy_left: 0.8879763195151351 entropy_right : 1.1653351793699953 -> 25 150 -idx: 62 entropy_left: 1.043233026456561 entropy_right : 1.1687172769890006 -> 25 150 -idx: 68 entropy_left: 1.1103746838736357 entropy_right : 1.1573913563403753 -> 25 150 -idx: 69 entropy_left: 1.102652051070839 entropy_right : 1.109500797247481 -> 25 150 -idx: 70 entropy_left: 1.1080734808267854 entropy_right : 1.105866621101474 -> 25 150 -idx: 71 entropy_left: 1.191603636543317 entropy_right : 1.1104593064416028 -> 25 150 -idx: 72 entropy_left: 1.1835119881802911 entropy_right : 1.0511407586429597 -> 25 150 -idx: 74 entropy_left: 1.1898011817445777 entropy_right : 1.041722068095403 -> 25 150 -idx: 75 entropy_left: 1.2523479506082373 entropy_right : 1.0462881865460743 -> 25 150 -idx: 76 entropy_left: 1.2449863769220126 entropy_right : 0.9568886656798212 -> 25 150 -idx: 77 entropy_left: 1.2466033489462778 entropy_right : 0.9505668528932196 -> 25 150 -idx: 78 entropy_left: 1.2968901961487296 entropy_right : 0.9544340029249649 -> 25 150 -idx: 79 entropy_left: 1.297231327577664 entropy_right : 0.9477073729342066 -> 25 150 -idx: 81 entropy_left: 1.3747976286297399 entropy_right : 0.9557589912150009 -> 25 150 -idx: 83 entropy_left: 1.3725531875543378 entropy_right : 0.9411864371816835 -> 25 150 -idx: 84 entropy_left: 1.4030409766614365 entropy_right : 0.9456603046006402 -> 25 150 -idx: 87 entropy_left: 1.3954965550573624 entropy_right : 0.9182958340544896 -> 25 150 -idx: 88 entropy_left: 1.4219164254677488 entropy_right : 0.9235785996175947 -> 25 150 -idx: 89 entropy_left: 1.4185644431995963 entropy_right : 0.9127341558073343 -> 25 150 -idx: 91 entropy_left: 1.4621038680842193 entropy_right : 0.9238422284571814 -> 25 150 -idx: 95 entropy_left: 1.4460656059951589 entropy_right : 0.8698926856041563 -> 25 150 -idx: 97 entropy_left: 1.4806821149663847 entropy_right : 0.8835850861052532 -> 25 150 -idx: 99 entropy_left: 1.4716260084832968 entropy_right : 0.8478617451660526 -> 25 150 -idx: 101 entropy_left: 1.4994716801681787 entropy_right : 0.863120568566631 -> 25 150 -idx: 102 entropy_left: 1.4949188482339508 entropy_right : 0.8426578772022391 -> 25 150 -idx: 104 entropy_left: 1.5173143758899288 entropy_right : 0.8589810370425963 -> 25 150 -idx: 105 entropy_left: 1.5128876215181606 entropy_right : 0.8366407419411673 -> 25 150 -idx: 106 entropy_left: 1.5224412847266997 entropy_right : 0.8453509366224365 -> 25 150 -idx: 107 entropy_left: 1.5180083381895495 entropy_right : 0.8203636429576732 -> 25 150 -idx: 109 entropy_left: 1.5343848620488534 entropy_right : 0.8390040613676977 -> 25 150 -idx: 110 entropy_left: 1.530122629268322 entropy_right : 0.8112781244591328 -> 25 150 -idx: 113 entropy_left: 1.5488102670635506 entropy_right : 0.8418521897563207 -> 25 150 -idx: 114 entropy_left: 1.54490062239043 entropy_right : 0.8112781244591328 -> 25 150 -idx: 117 entropy_left: 1.5579855528221356 entropy_right : 0.8453509366224365 -> 25 150 -idx: 118 entropy_left: 1.5544333664039933 entropy_right : 0.8112781244591328 -> 25 150 -idx: 120 entropy_left: 1.5607500907359895 entropy_right : 0.8366407419411673 -> 25 150 -idx: 122 entropy_left: 1.553879521231102 entropy_right : 0.74959525725948 -> 25 150 -idx: 127 entropy_left: 1.563765836340899 entropy_right : 0.828055725379504 -> 25 150 -idx: 130 entropy_left: 1.5548233543094725 entropy_right : 0.6098403047164004 -> 25 150 -idx: 132 entropy_left: 1.557232745700588 entropy_right : 0.6500224216483541 -> 25 150 -idx: 133 entropy_left: 1.5542993132861813 entropy_right : 0.5225593745369408 -> 25 150 -idx: 134 entropy_left: 1.5552054863428957 entropy_right : 0.5435644431995964 -> 25 150 -idx: 135 entropy_left: 1.552300445892517 entropy_right : 0.35335933502142136 -> 25 150 -idx: 137 entropy_left: 1.5535925258546306 entropy_right : 0.39124356362925566 -> 25 150 -idx: 138 entropy_left: 1.5508523041806783 entropy_right : 0 -> 25 150 -cut: 5.0 index: 29 -start: 25 cut: 29 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.5433449229510985 ent1= 0 ent2= 1.5202013991459298 -ig= 0.07178996857783848 delta= 4.574425618359218 N 125 term 0.09222897542996876 -idx: 30 entropy_left: 0 entropy_right : 1.521677608876836 -> 29 150 -idx: 33 entropy_left: 0.8112781244591328 entropy_right : 1.4992098113026513 -> 29 150 -idx: 34 entropy_left: 0.9709505944546686 entropy_right : 1.5007111828980744 -> 29 150 -idx: 44 entropy_left: 0.5665095065529053 entropy_right : 1.3764263022492553 -> 29 150 -idx: 45 entropy_left: 0.6962122601251458 entropy_right : 1.3779796176519241 -> 29 150 -idx: 51 entropy_left: 0.5746356978376794 entropy_right : 1.2367928607774141 -> 29 150 -idx: 52 entropy_left: 0.6665783579949205 entropy_right : 1.2377158231343603 -> 29 150 -idx: 53 entropy_left: 0.6500224216483541 entropy_right : 1.2046986815511866 -> 29 150 -idx: 58 entropy_left: 0.8935711016541907 entropy_right : 1.2056112071736118 -> 29 150 -idx: 59 entropy_left: 0.8812908992306927 entropy_right : 1.167065448996099 -> 29 150 -idx: 61 entropy_left: 0.9283620723948678 entropy_right : 1.1653351793699953 -> 29 150 -idx: 62 entropy_left: 1.096139159256507 entropy_right : 1.1687172769890006 -> 29 150 -idx: 68 entropy_left: 1.1385936501543064 entropy_right : 1.1573913563403753 -> 29 150 -idx: 69 entropy_left: 1.1320689971054545 entropy_right : 1.109500797247481 -> 29 150 -idx: 70 entropy_left: 1.1339874769112017 entropy_right : 1.105866621101474 -> 29 150 -idx: 71 entropy_left: 1.221694907636328 entropy_right : 1.1104593064416028 -> 29 150 -idx: 72 entropy_left: 1.2146234752771463 entropy_right : 1.0511407586429597 -> 29 150 -idx: 74 entropy_left: 1.2145089432839293 entropy_right : 1.041722068095403 -> 29 150 -idx: 75 entropy_left: 1.2793146867260998 entropy_right : 1.0462881865460743 -> 29 150 -idx: 76 entropy_left: 1.2730452470559679 entropy_right : 0.9568886656798212 -> 29 150 -idx: 77 entropy_left: 1.271782221599798 entropy_right : 0.9505668528932196 -> 29 150 -idx: 78 entropy_left: 1.323326866652724 entropy_right : 0.9544340029249649 -> 29 150 -idx: 79 entropy_left: 1.3209242772281589 entropy_right : 0.9477073729342066 -> 29 150 -idx: 81 entropy_left: 1.3993556675323378 entropy_right : 0.9557589912150009 -> 29 150 -idx: 83 entropy_left: 1.3921472236645345 entropy_right : 0.9411864371816835 -> 29 150 -idx: 84 entropy_left: 1.4226381773606827 entropy_right : 0.9456603046006402 -> 29 150 -idx: 87 entropy_left: 1.408454322194389 entropy_right : 0.9182958340544896 -> 29 150 -idx: 88 entropy_left: 1.4348284294343598 entropy_right : 0.9235785996175947 -> 29 150 -idx: 89 entropy_left: 1.4294732983598406 entropy_right : 0.9127341558073343 -> 29 150 -idx: 91 entropy_left: 1.4725137493579352 entropy_right : 0.9238422284571814 -> 29 150 -idx: 95 entropy_left: 1.4495701653254023 entropy_right : 0.8698926856041563 -> 29 150 -idx: 97 entropy_left: 1.4836591643979629 entropy_right : 0.8835850861052532 -> 29 150 -idx: 99 entropy_left: 1.4716774936810642 entropy_right : 0.8478617451660526 -> 29 150 -idx: 101 entropy_left: 1.498872146878066 entropy_right : 0.863120568566631 -> 29 150 -idx: 102 entropy_left: 1.4930166887541538 entropy_right : 0.8426578772022391 -> 29 150 -idx: 104 entropy_left: 1.5146319490241265 entropy_right : 0.8589810370425963 -> 29 150 -idx: 105 entropy_left: 1.5090275125326515 entropy_right : 0.8366407419411673 -> 29 150 -idx: 106 entropy_left: 1.518172665753515 entropy_right : 0.8453509366224365 -> 29 150 -idx: 107 entropy_left: 1.5126362849284707 entropy_right : 0.8203636429576732 -> 29 150 -idx: 109 entropy_left: 1.5281843786247746 entropy_right : 0.8390040613676977 -> 29 150 -idx: 110 entropy_left: 1.52292446851929 entropy_right : 0.8112781244591328 -> 29 150 -idx: 113 entropy_left: 1.540319313990849 entropy_right : 0.8418521897563207 -> 29 150 -idx: 114 entropy_left: 1.5355405577499845 entropy_right : 0.8112781244591328 -> 29 150 -idx: 117 entropy_left: 1.5473158084406657 entropy_right : 0.8453509366224365 -> 29 150 -idx: 118 entropy_left: 1.543007267402686 entropy_right : 0.8112781244591328 -> 29 150 -idx: 120 entropy_left: 1.5484739108446754 entropy_right : 0.8366407419411673 -> 29 150 -idx: 122 entropy_left: 1.5402513451679312 entropy_right : 0.74959525725948 -> 29 150 -idx: 127 entropy_left: 1.5482156423395383 entropy_right : 0.828055725379504 -> 29 150 -idx: 130 entropy_left: 1.5376917861959223 entropy_right : 0.6098403047164004 -> 29 150 -idx: 132 entropy_left: 1.539449789759387 entropy_right : 0.6500224216483541 -> 29 150 -idx: 133 entropy_left: 1.5360485008483817 entropy_right : 0.5225593745369408 -> 29 150 -idx: 134 entropy_left: 1.5366468930089403 entropy_right : 0.5435644431995964 -> 29 150 -idx: 135 entropy_left: 1.5333008164572508 entropy_right : 0.35335933502142136 -> 29 150 -idx: 137 entropy_left: 1.5340120338817291 entropy_right : 0.39124356362925566 -> 29 150 -idx: 138 entropy_left: 1.530871713949455 entropy_right : 0 -> 29 150 -cut: 5.0 index: 30 -start: 29 cut: 30 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.5202013991459298 ent1= 0 ent2= 1.521677608876836 -ig= 0.011099638276340196 delta= 4.6482848189674435 N 121 term 0.09549731747583441 -idx: 33 entropy_left: 0 entropy_right : 1.4992098113026513 -> 30 150 -idx: 34 entropy_left: 0.8112781244591328 entropy_right : 1.5007111828980744 -> 30 150 -idx: 44 entropy_left: 0.37123232664087563 entropy_right : 1.3764263022492553 -> 30 150 -idx: 45 entropy_left: 0.5665095065529053 entropy_right : 1.3779796176519241 -> 30 150 -idx: 51 entropy_left: 0.4537163391869448 entropy_right : 1.2367928607774141 -> 30 150 -idx: 52 entropy_left: 0.5746356978376794 entropy_right : 1.2377158231343603 -> 30 150 -idx: 53 entropy_left: 0.5586293734521992 entropy_right : 1.2046986815511866 -> 30 150 -idx: 58 entropy_left: 0.863120568566631 entropy_right : 1.2056112071736118 -> 30 150 -idx: 59 entropy_left: 0.8497511372532974 entropy_right : 1.167065448996099 -> 30 150 -idx: 61 entropy_left: 0.907165767573082 entropy_right : 1.1653351793699953 -> 30 150 -idx: 62 entropy_left: 1.079439161649138 entropy_right : 1.1687172769890006 -> 30 150 -idx: 68 entropy_left: 1.1363836745395337 entropy_right : 1.1573913563403753 -> 30 150 -idx: 69 entropy_left: 1.1287997673232602 entropy_right : 1.109500797247481 -> 30 150 -idx: 70 entropy_left: 1.1320689971054545 entropy_right : 1.105866621101474 -> 30 150 -idx: 71 entropy_left: 1.221104104343052 entropy_right : 1.1104593064416028 -> 30 150 -idx: 72 entropy_left: 1.2130604396700206 entropy_right : 1.0511407586429597 -> 30 150 -idx: 74 entropy_left: 1.215055533529583 entropy_right : 1.041722068095403 -> 30 150 -idx: 75 entropy_left: 1.2805767575096105 entropy_right : 1.0462881865460743 -> 30 150 -idx: 76 entropy_left: 1.273461732689636 entropy_right : 0.9568886656798212 -> 30 150 -idx: 77 entropy_left: 1.2730452470559679 entropy_right : 0.9505668528932196 -> 30 150 -idx: 78 entropy_left: 1.3250112108241772 entropy_right : 0.9544340029249649 -> 30 150 -idx: 79 entropy_left: 1.323326866652724 entropy_right : 0.9477073729342066 -> 30 150 -idx: 81 entropy_left: 1.402081402756032 entropy_right : 0.9557589912150009 -> 30 150 -idx: 83 entropy_left: 1.3960185675642185 entropy_right : 0.9411864371816835 -> 30 150 -idx: 84 entropy_left: 1.4265076973297228 entropy_right : 0.9456603046006402 -> 30 150 -idx: 87 entropy_left: 1.4135563800703668 entropy_right : 0.9182958340544896 -> 30 150 -idx: 88 entropy_left: 1.4398683625590178 entropy_right : 0.9235785996175947 -> 30 150 -idx: 89 entropy_left: 1.4348284294343598 entropy_right : 0.9127341558073343 -> 30 150 -idx: 91 entropy_left: 1.4776169519137876 entropy_right : 0.9238422284571814 -> 30 150 -idx: 95 entropy_left: 1.4556221732103853 entropy_right : 0.8698926856041563 -> 30 150 -idx: 97 entropy_left: 1.489391643473373 entropy_right : 0.8835850861052532 -> 30 150 -idx: 99 entropy_left: 1.4777468341000446 entropy_right : 0.8478617451660526 -> 30 150 -idx: 101 entropy_left: 1.504577050984356 entropy_right : 0.863120568566631 -> 30 150 -idx: 102 entropy_left: 1.498872146878066 entropy_right : 0.8426578772022391 -> 30 150 -idx: 104 entropy_left: 1.5200907086043647 entropy_right : 0.8589810370425963 -> 30 150 -idx: 105 entropy_left: 1.5146319490241265 entropy_right : 0.8366407419411673 -> 30 150 -idx: 106 entropy_left: 1.5235739093430942 entropy_right : 0.8453509366224365 -> 30 150 -idx: 107 entropy_left: 1.518172665753515 entropy_right : 0.8203636429576732 -> 30 150 -idx: 109 entropy_left: 1.5333121048269875 entropy_right : 0.8390040613676977 -> 30 150 -idx: 110 entropy_left: 1.5281843786247746 entropy_right : 0.8112781244591328 -> 30 150 -idx: 113 entropy_left: 1.544962682484281 entropy_right : 0.8418521897563207 -> 30 150 -idx: 114 entropy_left: 1.540319313990849 entropy_right : 0.8112781244591328 -> 30 150 -idx: 117 entropy_left: 1.551486596164451 entropy_right : 0.8453509366224365 -> 30 150 -idx: 118 entropy_left: 1.5473158084406657 entropy_right : 0.8112781244591328 -> 30 150 -idx: 120 entropy_left: 1.5523892173146852 entropy_right : 0.8366407419411673 -> 30 150 -idx: 122 entropy_left: 1.5444239694802433 entropy_right : 0.74959525725948 -> 30 150 -idx: 127 entropy_left: 1.5514723039742495 entropy_right : 0.828055725379504 -> 30 150 -idx: 130 entropy_left: 1.5413152774012366 entropy_right : 0.6098403047164004 -> 30 150 -idx: 132 entropy_left: 1.5427407553061978 entropy_right : 0.6500224216483541 -> 30 150 -idx: 133 entropy_left: 1.539449789759387 entropy_right : 0.5225593745369408 -> 30 150 -idx: 134 entropy_left: 1.5398878436678525 entropy_right : 0.5435644431995964 -> 30 150 -idx: 135 entropy_left: 1.5366468930089403 entropy_right : 0.35335933502142136 -> 30 150 -idx: 137 entropy_left: 1.5370490001936568 entropy_right : 0.39124356362925566 -> 30 150 -idx: 138 entropy_left: 1.5340120338817291 entropy_right : 0 -> 30 150 -cut: 5.1 index: 33 -start: 30 cut: 33 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.521677608876836 ent1= 0 ent2= 1.4992098113026513 -ig= 0.05994804285675093 delta= 4.57645279705217 N 120 term 0.09559392133633429 -idx: 34 entropy_left: 0 entropy_right : 1.5007111828980744 -> 33 150 -idx: 44 entropy_left: 0.4394969869215134 entropy_right : 1.3764263022492553 -> 33 150 -idx: 45 entropy_left: 0.6500224216483541 entropy_right : 1.3779796176519241 -> 33 150 -idx: 51 entropy_left: 0.5032583347756457 entropy_right : 1.2367928607774141 -> 33 150 -idx: 52 entropy_left: 0.6292492238560345 entropy_right : 1.2377158231343603 -> 33 150 -idx: 53 entropy_left: 0.6098403047164004 entropy_right : 1.2046986815511866 -> 33 150 -idx: 58 entropy_left: 0.904381457724494 entropy_right : 1.2056112071736118 -> 33 150 -idx: 59 entropy_left: 0.8904916402194913 entropy_right : 1.167065448996099 -> 33 150 -idx: 61 entropy_left: 0.9402859586706309 entropy_right : 1.1653351793699953 -> 33 150 -idx: 62 entropy_left: 1.1242592373746325 entropy_right : 1.1687172769890006 -> 33 150 -idx: 68 entropy_left: 1.1561787304889202 entropy_right : 1.1573913563403753 -> 33 150 -idx: 69 entropy_left: 1.1501854804581977 entropy_right : 1.109500797247481 -> 33 150 -idx: 70 entropy_left: 1.1500617154483042 entropy_right : 1.105866621101474 -> 33 150 -idx: 71 entropy_left: 1.2427303803729568 entropy_right : 1.1104593064416028 -> 33 150 -idx: 72 entropy_left: 1.236032213759607 entropy_right : 1.0511407586429597 -> 33 150 -idx: 74 entropy_left: 1.2319621350284407 entropy_right : 1.041722068095403 -> 33 150 -idx: 75 entropy_left: 1.2993633238421214 entropy_right : 1.0462881865460743 -> 33 150 -idx: 76 entropy_left: 1.2936094957266198 entropy_right : 0.9568886656798212 -> 33 150 -idx: 77 entropy_left: 1.2905199077676452 entropy_right : 0.9505668528932196 -> 33 150 -idx: 78 entropy_left: 1.3434702568607588 entropy_right : 0.9544340029249649 -> 33 150 -idx: 79 entropy_left: 1.3392721352590145 entropy_right : 0.9477073729342066 -> 33 150 -idx: 81 entropy_left: 1.4185644431995963 entropy_right : 0.9557589912150009 -> 33 150 -idx: 83 entropy_left: 1.4080488723348807 entropy_right : 0.9411864371816835 -> 33 150 -idx: 84 entropy_left: 1.4384630807544665 entropy_right : 0.9456603046006402 -> 33 150 -idx: 87 entropy_left: 1.4196730020815134 entropy_right : 0.9182958340544896 -> 33 150 -idx: 88 entropy_left: 1.4459033762515259 entropy_right : 0.9235785996175947 -> 33 150 -idx: 89 entropy_left: 1.4391294142581823 entropy_right : 0.9127341558073343 -> 33 150 -idx: 91 entropy_left: 1.4814308333061716 entropy_right : 0.9238422284571814 -> 33 150 -idx: 95 entropy_left: 1.4535828837865412 entropy_right : 0.8698926856041563 -> 33 150 -idx: 97 entropy_left: 1.4869015389218596 entropy_right : 0.8835850861052532 -> 33 150 -idx: 99 entropy_left: 1.47283015230032 entropy_right : 0.8478617451660526 -> 33 150 -idx: 101 entropy_left: 1.4991298893975544 entropy_right : 0.863120568566631 -> 33 150 -idx: 102 entropy_left: 1.4923596540293003 entropy_right : 0.8426578772022391 -> 33 150 -idx: 104 entropy_left: 1.5129527183657314 entropy_right : 0.8589810370425963 -> 33 150 -idx: 105 entropy_left: 1.5065420643391485 entropy_right : 0.8366407419411673 -> 33 150 -idx: 106 entropy_left: 1.5151610003501055 entropy_right : 0.8453509366224365 -> 33 150 -idx: 107 entropy_left: 1.5088745246622877 entropy_right : 0.8203636429576732 -> 33 150 -idx: 109 entropy_left: 1.5233671360000942 entropy_right : 0.8390040613676977 -> 33 150 -idx: 110 entropy_left: 1.5174480580708334 entropy_right : 0.8112781244591328 -> 33 150 -idx: 113 entropy_left: 1.5332288946792918 entropy_right : 0.8418521897563207 -> 33 150 -idx: 114 entropy_left: 1.5279067065978253 entropy_right : 0.8112781244591328 -> 33 150 -idx: 117 entropy_left: 1.538075564045685 entropy_right : 0.8453509366224365 -> 33 150 -idx: 118 entropy_left: 1.5333232048629988 entropy_right : 0.8112781244591328 -> 33 150 -idx: 120 entropy_left: 1.5377559674303916 entropy_right : 0.8366407419411673 -> 33 150 -idx: 122 entropy_left: 1.5287642104483186 entropy_right : 0.74959525725948 -> 33 150 -idx: 127 entropy_left: 1.5343941913830057 entropy_right : 0.828055725379504 -> 33 150 -idx: 130 entropy_left: 1.523071016430478 entropy_right : 0.6098403047164004 -> 33 150 -idx: 132 entropy_left: 1.5240294109795434 entropy_right : 0.6500224216483541 -> 33 150 -idx: 133 entropy_left: 1.520398271617716 entropy_right : 0.5225593745369408 -> 33 150 -idx: 134 entropy_left: 1.5206178114026545 entropy_right : 0.5435644431995964 -> 33 150 -idx: 135 entropy_left: 1.5170584650102175 entropy_right : 0.35335933502142136 -> 33 150 -idx: 137 entropy_left: 1.5170523105906335 entropy_right : 0.39124356362925566 -> 33 150 -idx: 138 entropy_left: 1.5137301230425602 entropy_right : 0 -> 33 150 -cut: 5.1 index: 34 -start: 33 cut: 34 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.4992098113026513 ent1= 0 ent2= 1.5007111828980744 -ig= 0.011325219711397994 delta= 4.648360304560994 N 117 term 0.0983447974332356 -idx: 44 entropy_left: 0 entropy_right : 1.3764263022492553 -> 34 150 -idx: 45 entropy_left: 0.4394969869215134 entropy_right : 1.3779796176519241 -> 34 150 -idx: 51 entropy_left: 0.3227569588973983 entropy_right : 1.2367928607774141 -> 34 150 -idx: 52 entropy_left: 0.5032583347756457 entropy_right : 1.2377158231343603 -> 34 150 -idx: 53 entropy_left: 0.4854607607459134 entropy_right : 1.2046986815511866 -> 34 150 -idx: 58 entropy_left: 0.8708644692353646 entropy_right : 1.2056112071736118 -> 34 150 -idx: 59 entropy_left: 0.8554508105601307 entropy_right : 1.167065448996099 -> 34 150 -idx: 61 entropy_left: 0.9182958340544896 entropy_right : 1.1653351793699953 -> 34 150 -idx: 62 entropy_left: 1.107784384952517 entropy_right : 1.1687172769890006 -> 34 150 -idx: 68 entropy_left: 1.1562272836006513 entropy_right : 1.1573913563403753 -> 34 150 -idx: 69 entropy_left: 1.1488835401005122 entropy_right : 1.109500797247481 -> 34 150 -idx: 70 entropy_left: 1.1501854804581977 entropy_right : 1.105866621101474 -> 34 150 -idx: 71 entropy_left: 1.2443013992660275 entropy_right : 1.1104593064416028 -> 34 150 -idx: 72 entropy_left: 1.2363864108712896 entropy_right : 1.0511407586429597 -> 34 150 -idx: 74 entropy_left: 1.2344977967946407 entropy_right : 1.041722068095403 -> 34 150 -idx: 75 entropy_left: 1.3026227503285144 entropy_right : 1.0462881865460743 -> 34 150 -idx: 76 entropy_left: 1.2958363892911637 entropy_right : 0.9568886656798212 -> 34 150 -idx: 77 entropy_left: 1.2936094957266198 entropy_right : 0.9505668528932196 -> 34 150 -idx: 78 entropy_left: 1.3469477860513406 entropy_right : 0.9544340029249649 -> 34 150 -idx: 79 entropy_left: 1.3434702568607588 entropy_right : 0.9477073729342066 -> 34 150 -idx: 81 entropy_left: 1.422950494647251 entropy_right : 0.9557589912150009 -> 34 150 -idx: 83 entropy_left: 1.4135682830396687 entropy_right : 0.9411864371816835 -> 34 150 -idx: 84 entropy_left: 1.4439032709191701 entropy_right : 0.9456603046006402 -> 34 150 -idx: 87 entropy_left: 1.4262873399004574 entropy_right : 0.9182958340544896 -> 34 150 -idx: 88 entropy_left: 1.4523861943352818 entropy_right : 0.9235785996175947 -> 34 150 -idx: 89 entropy_left: 1.4459033762515259 entropy_right : 0.9127341558073343 -> 34 150 -idx: 91 entropy_left: 1.4878131808507769 entropy_right : 0.9238422284571814 -> 34 150 -idx: 95 entropy_left: 1.4608248015713592 entropy_right : 0.8698926856041563 -> 34 150 -idx: 97 entropy_left: 1.4937095464322434 entropy_right : 0.8835850861052532 -> 34 150 -idx: 99 entropy_left: 1.4799337224591032 entropy_right : 0.8478617451660526 -> 34 150 -idx: 101 entropy_left: 1.5057662831867211 entropy_right : 0.863120568566631 -> 34 150 -idx: 102 entropy_left: 1.4991298893975544 entropy_right : 0.8426578772022391 -> 34 150 -idx: 104 entropy_left: 1.5192305624137816 entropy_right : 0.8589810370425963 -> 34 150 -idx: 105 entropy_left: 1.5129527183657314 entropy_right : 0.8366407419411673 -> 34 150 -idx: 106 entropy_left: 1.5213240183572947 entropy_right : 0.8453509366224365 -> 34 150 -idx: 107 entropy_left: 1.5151610003501055 entropy_right : 0.8203636429576732 -> 34 150 -idx: 109 entropy_left: 1.529162767471135 entropy_right : 0.8390040613676977 -> 34 150 -idx: 110 entropy_left: 1.5233671360000942 entropy_right : 0.8112781244591328 -> 34 150 -idx: 113 entropy_left: 1.5384204755151063 entropy_right : 0.8418521897563207 -> 34 150 -idx: 114 entropy_left: 1.5332288946792918 entropy_right : 0.8112781244591328 -> 34 150 -idx: 117 entropy_left: 1.5426918994072474 entropy_right : 0.8453509366224365 -> 34 150 -idx: 118 entropy_left: 1.538075564045685 entropy_right : 0.8112781244591328 -> 34 150 -idx: 120 entropy_left: 1.5420569181018204 entropy_right : 0.8366407419411673 -> 34 150 -idx: 122 entropy_left: 1.533320797816137 entropy_right : 0.74959525725948 -> 34 150 -idx: 127 entropy_left: 1.5379137608515965 entropy_right : 0.828055725379504 -> 34 150 -idx: 130 entropy_left: 1.5269619764446545 entropy_right : 0.6098403047164004 -> 34 150 -idx: 132 entropy_left: 1.5275487529615783 entropy_right : 0.6500224216483541 -> 34 150 -idx: 133 entropy_left: 1.5240294109795434 entropy_right : 0.5225593745369408 -> 34 150 -idx: 134 entropy_left: 1.524070562860036 entropy_right : 0.5435644431995964 -> 34 150 -idx: 135 entropy_left: 1.5206178114026545 entropy_right : 0.35335933502142136 -> 34 150 -idx: 137 entropy_left: 1.52026917047001 entropy_right : 0.39124356362925566 -> 34 150 -idx: 138 entropy_left: 1.5170523105906335 entropy_right : 0 -> 34 150 -cut: 5.2 index: 44 -start: 34 cut: 44 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.5007111828980744 ent1= 0 ent2= 1.3764263022492553 -ig= 0.24294232049789266 delta= 4.271001547828267 N 116 term 0.09583182412735038 -¡Ding! 5.2 44 -idx: 45 entropy_left: 0 entropy_right : 1.3779796176519241 -> 44 150 -idx: 51 entropy_left: 0.5916727785823275 entropy_right : 1.2367928607774141 -> 44 150 -idx: 52 entropy_left: 0.8112781244591328 entropy_right : 1.2377158231343603 -> 44 150 -idx: 53 entropy_left: 0.7642045065086203 entropy_right : 1.2046986815511866 -> 44 150 -idx: 58 entropy_left: 1.0 entropy_right : 1.2056112071736118 -> 44 150 -idx: 59 entropy_left: 0.9967916319816366 entropy_right : 1.167065448996099 -> 44 150 -idx: 61 entropy_left: 0.9975025463691153 entropy_right : 1.1653351793699953 -> 44 150 -idx: 62 entropy_left: 1.2516291673878228 entropy_right : 1.1687172769890006 -> 44 150 -idx: 68 entropy_left: 1.1431558784658322 entropy_right : 1.1573913563403753 -> 44 150 -idx: 69 entropy_left: 1.1585488318903812 entropy_right : 1.109500797247481 -> 44 150 -idx: 70 entropy_left: 1.1416195253341381 entropy_right : 1.105866621101474 -> 44 150 -idx: 71 entropy_left: 1.2538013905715866 entropy_right : 1.1104593064416028 -> 44 150 -idx: 72 entropy_left: 1.2638091738835462 entropy_right : 1.0511407586429597 -> 44 150 -idx: 74 entropy_left: 1.2309595631140104 entropy_right : 1.041722068095403 -> 44 150 -idx: 75 entropy_left: 1.307976359515949 entropy_right : 1.0462881865460743 -> 44 150 -idx: 76 entropy_left: 1.31664733333952 entropy_right : 0.9568886656798212 -> 44 150 -idx: 77 entropy_left: 1.3013862992796092 entropy_right : 0.9505668528932196 -> 44 150 -idx: 78 entropy_left: 1.3590990012374453 entropy_right : 0.9544340029249649 -> 44 150 -idx: 79 entropy_left: 1.3437884540090375 entropy_right : 0.9477073729342066 -> 44 150 -idx: 81 entropy_left: 1.4256132384104512 entropy_right : 0.9557589912150009 -> 44 150 -idx: 83 entropy_left: 1.3964017465710241 entropy_right : 0.9411864371816835 -> 44 150 -idx: 84 entropy_left: 1.4266098981515114 entropy_right : 0.9456603046006402 -> 44 150 -idx: 87 entropy_left: 1.3843662197304327 entropy_right : 0.9182958340544896 -> 44 150 -idx: 88 entropy_left: 1.4105645152423338 entropy_right : 0.9235785996175947 -> 44 150 -idx: 89 entropy_left: 1.3970713079590378 entropy_right : 0.9127341558073343 -> 44 150 -idx: 91 entropy_left: 1.4378981830488653 entropy_right : 0.9238422284571814 -> 44 150 -idx: 95 entropy_left: 1.3885087415373887 entropy_right : 0.8698926856041563 -> 44 150 -idx: 97 entropy_left: 1.4207503473571672 entropy_right : 0.8835850861052532 -> 44 150 -idx: 99 entropy_left: 1.3982088441853116 entropy_right : 0.8478617451660526 -> 44 150 -idx: 101 entropy_left: 1.4231230542732203 entropy_right : 0.863120568566631 -> 44 150 -idx: 102 entropy_left: 1.4127788804267845 entropy_right : 0.8426578772022391 -> 44 150 -idx: 104 entropy_left: 1.431578033211198 entropy_right : 0.8589810370425963 -> 44 150 -idx: 105 entropy_left: 1.4220900521936763 entropy_right : 0.8366407419411673 -> 44 150 -idx: 106 entropy_left: 1.4297712666969145 entropy_right : 0.8453509366224365 -> 44 150 -idx: 107 entropy_left: 1.4206843409707122 entropy_right : 0.8203636429576732 -> 44 150 -idx: 109 entropy_left: 1.4333020260513436 entropy_right : 0.8390040613676977 -> 44 150 -idx: 110 entropy_left: 1.4249748676560043 entropy_right : 0.8112781244591328 -> 44 150 -idx: 113 entropy_left: 1.4378209282715886 entropy_right : 0.8418521897563207 -> 44 150 -idx: 114 entropy_left: 1.43055418918351 entropy_right : 0.8112781244591328 -> 44 150 -idx: 117 entropy_left: 1.4377707632957772 entropy_right : 0.8453509366224365 -> 44 150 -idx: 118 entropy_left: 1.4314614999501034 entropy_right : 0.8112781244591328 -> 44 150 -idx: 120 entropy_left: 1.4340201993083201 entropy_right : 0.8366407419411673 -> 44 150 -idx: 122 entropy_left: 1.4224171655427815 entropy_right : 0.74959525725948 -> 44 150 -idx: 127 entropy_left: 1.4240650747143373 entropy_right : 0.828055725379504 -> 44 150 -idx: 130 entropy_left: 1.4101818214788366 entropy_right : 0.6098403047164004 -> 44 150 -idx: 132 entropy_left: 1.409921745231479 entropy_right : 0.6500224216483541 -> 44 150 -idx: 133 entropy_left: 1.4055932553758037 entropy_right : 0.5225593745369408 -> 44 150 -idx: 134 entropy_left: 1.4052570450171729 entropy_right : 0.5435644431995964 -> 44 150 -idx: 135 entropy_left: 1.4010688958809001 entropy_right : 0.35335933502142136 -> 44 150 -idx: 137 entropy_left: 1.400052234031507 entropy_right : 0.39124356362925566 -> 44 150 -idx: 138 entropy_left: 1.3962125504871692 entropy_right : 0 -> 44 150 -cut: 5.25 index: 45 -start: 44 cut: 45 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.3764263022492553 ent1= 0 ent2= 1.3779796176519241 -ig= 0.011446492311028678 delta= 4.648516135982731 N 106 term 0.10719586465706465 -idx: 51 entropy_left: 0 entropy_right : 1.2367928607774141 -> 45 150 -idx: 52 entropy_left: 0.5916727785823275 entropy_right : 1.2377158231343603 -> 45 150 -idx: 53 entropy_left: 0.5435644431995964 entropy_right : 1.2046986815511866 -> 45 150 -idx: 58 entropy_left: 0.9957274520849256 entropy_right : 1.2056112071736118 -> 45 150 -idx: 59 entropy_left: 0.9852281360342516 entropy_right : 1.167065448996099 -> 45 150 -idx: 61 entropy_left: 1.0 entropy_right : 1.1653351793699953 -> 45 150 -idx: 62 entropy_left: 1.2639334294856337 entropy_right : 1.1687172769890006 -> 45 150 -idx: 68 entropy_left: 1.1625633078480364 entropy_right : 1.1573913563403753 -> 45 150 -idx: 69 entropy_left: 1.1752835873133531 entropy_right : 1.109500797247481 -> 45 150 -idx: 70 entropy_left: 1.1585488318903812 entropy_right : 1.105866621101474 -> 45 150 -idx: 71 entropy_left: 1.2722595663292235 entropy_right : 1.1104593064416028 -> 45 150 -idx: 72 entropy_left: 1.2799749139041574 entropy_right : 1.0511407586429597 -> 45 150 -idx: 74 entropy_left: 1.2474241244334552 entropy_right : 1.041722068095403 -> 45 150 -idx: 75 entropy_left: 1.3248560371987566 entropy_right : 1.0462881865460743 -> 45 150 -idx: 76 entropy_left: 1.3317607101149553 entropy_right : 0.9568886656798212 -> 45 150 -idx: 77 entropy_left: 1.31664733333952 entropy_right : 0.9505668528932196 -> 45 150 -idx: 78 entropy_left: 1.3743214578138507 entropy_right : 0.9544340029249649 -> 45 150 -idx: 79 entropy_left: 1.3590990012374453 entropy_right : 0.9477073729342066 -> 45 150 -idx: 81 entropy_left: 1.4400876246432754 entropy_right : 0.9557589912150009 -> 45 150 -idx: 83 entropy_left: 1.4110278111359231 entropy_right : 0.9411864371816835 -> 45 150 -idx: 84 entropy_left: 1.440686881996416 entropy_right : 0.9456603046006402 -> 45 150 -idx: 87 entropy_left: 1.3984047495234926 entropy_right : 0.9182958340544896 -> 45 150 -idx: 88 entropy_left: 1.4241055030202836 entropy_right : 0.9235785996175947 -> 45 150 -idx: 89 entropy_left: 1.4105645152423338 entropy_right : 0.9127341558073343 -> 45 150 -idx: 91 entropy_left: 1.4503134017471866 entropy_right : 0.9238422284571814 -> 45 150 -idx: 95 entropy_left: 1.400766637523055 entropy_right : 0.8698926856041563 -> 45 150 -idx: 97 entropy_left: 1.4320792052110205 entropy_right : 0.8835850861052532 -> 45 150 -idx: 99 entropy_left: 1.4094544755772227 entropy_right : 0.8478617451660526 -> 45 150 -idx: 101 entropy_left: 1.4334834517752852 entropy_right : 0.863120568566631 -> 45 150 -idx: 102 entropy_left: 1.4231230542732203 entropy_right : 0.8426578772022391 -> 45 150 -idx: 104 entropy_left: 1.4410541035142095 entropy_right : 0.8589810370425963 -> 45 150 -idx: 105 entropy_left: 1.431578033211198 entropy_right : 0.8366407419411673 -> 45 150 -idx: 106 entropy_left: 1.438841894200673 entropy_right : 0.8453509366224365 -> 45 150 -idx: 107 entropy_left: 1.4297712666969145 entropy_right : 0.8203636429576732 -> 45 150 -idx: 109 entropy_left: 1.4415920755789071 entropy_right : 0.8390040613676977 -> 45 150 -idx: 110 entropy_left: 1.4333020260513436 entropy_right : 0.8112781244591328 -> 45 150 -idx: 113 entropy_left: 1.4450194734840949 entropy_right : 0.8418521897563207 -> 45 150 -idx: 114 entropy_left: 1.4378209282715886 entropy_right : 0.8112781244591328 -> 45 150 -idx: 117 entropy_left: 1.4439881597575672 entropy_right : 0.8453509366224365 -> 45 150 -idx: 118 entropy_left: 1.4377707632957772 entropy_right : 0.8112781244591328 -> 45 150 -idx: 120 entropy_left: 1.4396788919399468 entropy_right : 0.8366407419411673 -> 45 150 -idx: 122 entropy_left: 1.4282619056422832 entropy_right : 0.74959525725948 -> 45 150 -idx: 127 entropy_left: 1.4284735370493284 entropy_right : 0.828055725379504 -> 45 150 -idx: 130 entropy_left: 1.4149076471763113 entropy_right : 0.6098403047164004 -> 45 150 -idx: 132 entropy_left: 1.414152505455283 entropy_right : 0.6500224216483541 -> 45 150 -idx: 133 entropy_left: 1.409921745231479 entropy_right : 0.5225593745369408 -> 45 150 -idx: 134 entropy_left: 1.4093509832105067 entropy_right : 0.5435644431995964 -> 45 150 -idx: 135 entropy_left: 1.4052570450171729 entropy_right : 0.35335933502142136 -> 45 150 -idx: 137 entropy_left: 1.403795504390464 entropy_right : 0.39124356362925566 -> 45 150 -idx: 138 entropy_left: 1.400052234031507 entropy_right : 0 -> 45 150 -cut: 5.4 index: 51 -start: 45 cut: 51 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.3779796176519241 ent1= 0 ent2= 1.2367928607774141 -ig= 0.21186063463321947 delta= 4.220295919151194 N 105 term 0.10400700606945035 -¡Ding! 5.4 51 -idx: 52 entropy_left: 0 entropy_right : 1.2377158231343603 -> 51 150 -idx: 53 entropy_left: 1.0 entropy_right : 1.2046986815511866 -> 51 150 -idx: 58 entropy_left: 0.5916727785823275 entropy_right : 1.2056112071736118 -> 51 150 -idx: 59 entropy_left: 0.8112781244591328 entropy_right : 1.167065448996099 -> 51 150 -idx: 61 entropy_left: 0.7219280948873623 entropy_right : 1.1653351793699953 -> 51 150 -idx: 62 entropy_left: 1.0957952550009338 entropy_right : 1.1687172769890006 -> 51 150 -idx: 68 entropy_left: 0.8343470230852539 entropy_right : 1.1573913563403753 -> 51 150 -idx: 69 entropy_left: 0.9444885341662053 entropy_right : 1.109500797247481 -> 51 150 -idx: 70 entropy_left: 0.9132829641650988 entropy_right : 1.105866621101474 -> 51 150 -idx: 71 entropy_left: 1.0540157730728 entropy_right : 1.1104593064416028 -> 51 150 -idx: 72 entropy_left: 1.1254908068679135 entropy_right : 1.0511407586429597 -> 51 150 -idx: 74 entropy_left: 1.0676111603502403 entropy_right : 1.041722068095403 -> 51 150 -idx: 75 entropy_left: 1.158222675578688 entropy_right : 1.0462881865460743 -> 51 150 -idx: 76 entropy_left: 1.2098003386604828 entropy_right : 0.9568886656798212 -> 51 150 -idx: 77 entropy_left: 1.1841636411194805 entropy_right : 0.9505668528932196 -> 51 150 -idx: 78 entropy_left: 1.2486545206672304 entropy_right : 0.9544340029249649 -> 51 150 -idx: 79 entropy_left: 1.2244883781338565 entropy_right : 0.9477073729342066 -> 51 150 -idx: 81 entropy_left: 1.3125559878021227 entropy_right : 0.9557589912150009 -> 51 150 -idx: 83 entropy_left: 1.2700599575900715 entropy_right : 0.9411864371816835 -> 51 150 -idx: 84 entropy_left: 1.3019762161101505 entropy_right : 0.9456603046006402 -> 51 150 -idx: 87 entropy_left: 1.2449187529382073 entropy_right : 0.9182958340544896 -> 51 150 -idx: 88 entropy_left: 1.2730009199061236 entropy_right : 0.9235785996175947 -> 51 150 -idx: 89 entropy_left: 1.255663165580298 entropy_right : 0.9127341558073343 -> 51 150 -idx: 91 entropy_left: 1.2987949406953985 entropy_right : 0.9238422284571814 -> 51 150 -idx: 95 entropy_left: 1.2387413849552513 entropy_right : 0.8698926856041563 -> 51 150 -idx: 97 entropy_left: 1.2733306660180936 entropy_right : 0.8835850861052532 -> 51 150 -idx: 99 entropy_left: 1.24726924853191 entropy_right : 0.8478617451660526 -> 51 150 -idx: 101 entropy_left: 1.2740022896699967 entropy_right : 0.863120568566631 -> 51 150 -idx: 102 entropy_left: 1.2623741775941766 entropy_right : 0.8426578772022391 -> 51 150 -idx: 104 entropy_left: 1.2824555399511839 entropy_right : 0.8589810370425963 -> 51 150 -idx: 105 entropy_left: 1.2720236796955837 entropy_right : 0.8366407419411673 -> 51 150 -idx: 106 entropy_left: 1.2802412641697223 entropy_right : 0.8453509366224365 -> 51 150 -idx: 107 entropy_left: 1.2703862545896736 entropy_right : 0.8203636429576732 -> 51 150 -idx: 109 entropy_left: 1.2839465152590122 entropy_right : 0.8390040613676977 -> 51 150 -idx: 110 entropy_left: 1.2750978150747438 entropy_right : 0.8112781244591328 -> 51 150 -idx: 113 entropy_left: 1.2890020897815337 entropy_right : 0.8418521897563207 -> 51 150 -idx: 114 entropy_left: 1.2814952229224468 entropy_right : 0.8112781244591328 -> 51 150 -idx: 117 entropy_left: 1.2894949485898448 entropy_right : 0.8453509366224365 -> 51 150 -idx: 118 entropy_left: 1.2831665076655923 entropy_right : 0.8112781244591328 -> 51 150 -idx: 120 entropy_left: 1.2861856515445227 entropy_right : 0.8366407419411673 -> 51 150 -idx: 122 entropy_left: 1.274785294596539 entropy_right : 0.74959525725948 -> 51 150 -idx: 127 entropy_left: 1.277660052784842 entropy_right : 0.828055725379504 -> 51 150 -idx: 130 entropy_left: 1.2647051503145113 entropy_right : 0.6098403047164004 -> 51 150 -idx: 132 entropy_left: 1.2650264370370163 entropy_right : 0.6500224216483541 -> 51 150 -idx: 133 entropy_left: 1.2610549127993207 entropy_right : 0.5225593745369408 -> 51 150 -idx: 134 entropy_left: 1.2610161720734205 entropy_right : 0.5435644431995964 -> 51 150 -idx: 135 entropy_left: 1.2572038836412398 entropy_right : 0.35335933502142136 -> 51 150 -idx: 137 entropy_left: 1.2567949149026907 entropy_right : 0.39124356362925566 -> 51 150 -idx: 138 entropy_left: 1.2533710321988052 entropy_right : 0 -> 51 150 -cut: 5.45 index: 52 -start: 51 cut: 52 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.2367928607774141 ent1= 0 ent2= 1.2377158231343603 -ig= 0.011579217674714037 delta= 4.646625076845563 N 99 term 0.11375085778748256 -idx: 53 entropy_left: 0 entropy_right : 1.2046986815511866 -> 52 150 -idx: 58 entropy_left: 0.6500224216483541 entropy_right : 1.2056112071736118 -> 52 150 -idx: 59 entropy_left: 0.863120568566631 entropy_right : 1.167065448996099 -> 52 150 -idx: 61 entropy_left: 0.7642045065086203 entropy_right : 1.1653351793699953 -> 52 150 -idx: 62 entropy_left: 1.1567796494470395 entropy_right : 1.1687172769890006 -> 52 150 -idx: 68 entropy_left: 0.8683927290103626 entropy_right : 1.1573913563403753 -> 52 150 -idx: 69 entropy_left: 0.9780155566622415 entropy_right : 1.109500797247481 -> 52 150 -idx: 70 entropy_left: 0.9444885341662053 entropy_right : 1.105866621101474 -> 52 150 -idx: 71 entropy_left: 1.086987702339905 entropy_right : 1.1104593064416028 -> 52 150 -idx: 72 entropy_left: 1.1567796494470395 entropy_right : 1.0511407586429597 -> 52 150 -idx: 74 entropy_left: 1.0957952550009338 entropy_right : 1.041722068095403 -> 52 150 -idx: 75 entropy_left: 1.1863929342238186 entropy_right : 1.0462881865460743 -> 52 150 -idx: 76 entropy_left: 1.2364405016961446 entropy_right : 0.9568886656798212 -> 52 150 -idx: 77 entropy_left: 1.2098003386604828 entropy_right : 0.9505668528932196 -> 52 150 -idx: 78 entropy_left: 1.2736509190759928 entropy_right : 0.9544340029249649 -> 52 150 -idx: 79 entropy_left: 1.2486545206672304 entropy_right : 0.9477073729342066 -> 52 150 -idx: 81 entropy_left: 1.334599425999111 entropy_right : 0.9557589912150009 -> 52 150 -idx: 83 entropy_left: 1.2910357498542626 entropy_right : 0.9411864371816835 -> 52 150 -idx: 84 entropy_left: 1.3218847866691474 entropy_right : 0.9456603046006402 -> 52 150 -idx: 87 entropy_left: 1.2634815907120713 entropy_right : 0.9182958340544896 -> 52 150 -idx: 88 entropy_left: 1.2907148496715317 entropy_right : 0.9235785996175947 -> 52 150 -idx: 89 entropy_left: 1.2730009199061236 entropy_right : 0.9127341558073343 -> 52 150 -idx: 91 entropy_left: 1.314427310128449 entropy_right : 0.9238422284571814 -> 52 150 -idx: 95 entropy_left: 1.2533610514248106 entropy_right : 0.8698926856041563 -> 52 150 -idx: 97 entropy_left: 1.2866280229807059 entropy_right : 0.8835850861052532 -> 52 150 -idx: 99 entropy_left: 1.2602078229255897 entropy_right : 0.8478617451660526 -> 52 150 -idx: 101 entropy_left: 1.285743981839722 entropy_right : 0.863120568566631 -> 52 150 -idx: 102 entropy_left: 1.2740022896699967 entropy_right : 0.8426578772022391 -> 52 150 -idx: 104 entropy_left: 1.2929449855174395 entropy_right : 0.8589810370425963 -> 52 150 -idx: 105 entropy_left: 1.2824555399511839 entropy_right : 0.8366407419411673 -> 52 150 -idx: 106 entropy_left: 1.290137339650643 entropy_right : 0.8453509366224365 -> 52 150 -idx: 107 entropy_left: 1.2802412641697223 entropy_right : 0.8203636429576732 -> 52 150 -idx: 109 entropy_left: 1.2927975726087082 entropy_right : 0.8390040613676977 -> 52 150 -idx: 110 entropy_left: 1.2839465152590122 entropy_right : 0.8112781244591328 -> 52 150 -idx: 113 entropy_left: 1.2964607361371667 entropy_right : 0.8418521897563207 -> 52 150 -idx: 114 entropy_left: 1.2890020897815337 entropy_right : 0.8112781244591328 -> 52 150 -idx: 117 entropy_left: 1.2957378005380122 entropy_right : 0.8453509366224365 -> 52 150 -idx: 118 entropy_left: 1.2894949485898448 entropy_right : 0.8112781244591328 -> 52 150 -idx: 120 entropy_left: 1.2917436782389615 entropy_right : 0.8366407419411673 -> 52 150 -idx: 122 entropy_left: 1.2805280377491564 entropy_right : 0.74959525725948 -> 52 150 -idx: 127 entropy_left: 1.2817402106919733 entropy_right : 0.828055725379504 -> 52 150 -idx: 130 entropy_left: 1.269129492403553 entropy_right : 0.6098403047164004 -> 52 150 -idx: 132 entropy_left: 1.26889047905874 entropy_right : 0.6500224216483541 -> 52 150 -idx: 133 entropy_left: 1.2650264370370163 entropy_right : 0.5225593745369408 -> 52 150 -idx: 134 entropy_left: 1.2647242262739549 entropy_right : 0.5435644431995964 -> 52 150 -idx: 135 entropy_left: 1.2610161720734205 entropy_right : 0.35335933502142136 -> 52 150 -idx: 137 entropy_left: 1.2601109425506647 entropy_right : 0.39124356362925566 -> 52 150 -idx: 138 entropy_left: 1.2567949149026907 entropy_right : 0 -> 52 150 -cut: 5.5 index: 53 -start: 52 cut: 53 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.2377158231343603 ent1= 0 ent2= 1.2046986815511866 -ig= 0.04530998527247143 delta= 4.544804765025203 N 98 term 0.11372160823686052 -idx: 58 entropy_left: 0 entropy_right : 1.2056112071736118 -> 53 150 -idx: 59 entropy_left: 0.6500224216483541 entropy_right : 1.167065448996099 -> 53 150 -idx: 61 entropy_left: 0.5435644431995964 entropy_right : 1.1653351793699953 -> 53 150 -idx: 62 entropy_left: 0.9864267287308424 entropy_right : 1.1687172769890006 -> 53 150 -idx: 68 entropy_left: 0.6998428398862386 entropy_right : 1.1573913563403753 -> 53 150 -idx: 69 entropy_left: 0.8683927290103626 entropy_right : 1.109500797247481 -> 53 150 -idx: 70 entropy_left: 0.8343470230852539 entropy_right : 1.105866621101474 -> 53 150 -idx: 71 entropy_left: 0.9864267287308424 entropy_right : 1.1104593064416028 -> 53 150 -idx: 72 entropy_left: 1.086987702339905 entropy_right : 1.0511407586429597 -> 53 150 -idx: 74 entropy_left: 1.0230370655328809 entropy_right : 1.041722068095403 -> 53 150 -idx: 75 entropy_left: 1.1180782093497093 entropy_right : 1.0462881865460743 -> 53 150 -idx: 76 entropy_left: 1.1863929342238186 entropy_right : 0.9568886656798212 -> 53 150 -idx: 77 entropy_left: 1.158222675578688 entropy_right : 0.9505668528932196 -> 53 150 -idx: 78 entropy_left: 1.224381457724494 entropy_right : 0.9544340029249649 -> 53 150 -idx: 79 entropy_left: 1.198183947911799 entropy_right : 0.9477073729342066 -> 53 150 -idx: 81 entropy_left: 1.287054028118727 entropy_right : 0.9557589912150009 -> 53 150 -idx: 83 entropy_left: 1.2419460322060458 entropy_right : 0.9411864371816835 -> 53 150 -idx: 84 entropy_left: 1.2738722345110536 entropy_right : 0.9456603046006402 -> 53 150 -idx: 87 entropy_left: 1.2141272693763827 entropy_right : 0.9182958340544896 -> 53 150 -idx: 88 entropy_left: 1.2423708743932154 entropy_right : 0.9235785996175947 -> 53 150 -idx: 89 entropy_left: 1.224394445405986 entropy_right : 0.9127341558073343 -> 53 150 -idx: 91 entropy_left: 1.2674438038072338 entropy_right : 0.9238422284571814 -> 53 150 -idx: 95 entropy_left: 1.2060026902433665 entropy_right : 0.8698926856041563 -> 53 150 -idx: 97 entropy_left: 1.2406705316766886 entropy_right : 0.8835850861052532 -> 53 150 -idx: 99 entropy_left: 1.214295263080721 entropy_right : 0.8478617451660526 -> 53 150 -idx: 101 entropy_left: 1.2410106928656977 entropy_right : 0.863120568566631 -> 53 150 -idx: 102 entropy_left: 1.2293413843029717 entropy_right : 0.8426578772022391 -> 53 150 -idx: 104 entropy_left: 1.2492864082069246 entropy_right : 0.8589810370425963 -> 53 150 -idx: 105 entropy_left: 1.2389012566026305 entropy_right : 0.8366407419411673 -> 53 150 -idx: 106 entropy_left: 1.2470361469923357 entropy_right : 0.8453509366224365 -> 53 150 -idx: 107 entropy_left: 1.237260201421159 entropy_right : 0.8203636429576732 -> 53 150 -idx: 109 entropy_left: 1.2506472668030133 entropy_right : 0.8390040613676977 -> 53 150 -idx: 110 entropy_left: 1.2419363412184317 entropy_right : 0.8112781244591328 -> 53 150 -idx: 113 entropy_left: 1.2555367253996503 entropy_right : 0.8418521897563207 -> 53 150 -idx: 114 entropy_left: 1.2482389571842902 entropy_right : 0.8112781244591328 -> 53 150 -idx: 117 entropy_left: 1.2559170259774697 entropy_right : 0.8453509366224365 -> 53 150 -idx: 118 entropy_left: 1.2498492777008952 entropy_right : 0.8112781244591328 -> 53 150 -idx: 120 entropy_left: 1.2526673604527443 entropy_right : 0.8366407419411673 -> 53 150 -idx: 122 entropy_left: 1.2418112963539676 entropy_right : 0.74959525725948 -> 53 150 -idx: 127 entropy_left: 1.2443013992660277 entropy_right : 0.828055725379504 -> 53 150 -idx: 130 entropy_left: 1.2322458629112465 entropy_right : 0.6098403047164004 -> 53 150 -idx: 132 entropy_left: 1.232472282457445 entropy_right : 0.6500224216483541 -> 53 150 -idx: 133 entropy_left: 1.228789740397119 entropy_right : 0.5225593745369408 -> 53 150 -idx: 134 entropy_left: 1.22871127017127 entropy_right : 0.5435644431995964 -> 53 150 -idx: 135 entropy_left: 1.2251826138221809 entropy_right : 0.35335933502142136 -> 53 150 -idx: 137 entropy_left: 1.2247083872970776 entropy_right : 0.39124356362925566 -> 53 150 -idx: 138 entropy_left: 1.2215701626281463 entropy_right : 0 -> 53 150 -cut: 5.5 index: 58 -start: 53 cut: 58 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.2046986815511866 ent1= 0 ent2= 1.2056112071736118 -ig= 0.06123238196384362 delta= 4.646593766642 N 97 term 0.11578923986972327 -idx: 59 entropy_left: 0 entropy_right : 1.167065448996099 -> 58 150 -idx: 61 entropy_left: 0.9182958340544896 entropy_right : 1.1653351793699953 -> 58 150 -idx: 62 entropy_left: 1.5 entropy_right : 1.1687172769890006 -> 58 150 -idx: 68 entropy_left: 0.9219280948873623 entropy_right : 1.1573913563403753 -> 58 150 -idx: 69 entropy_left: 1.0957952550009338 entropy_right : 1.109500797247481 -> 58 150 -idx: 70 entropy_left: 1.0408520829727552 entropy_right : 1.105866621101474 -> 58 150 -idx: 71 entropy_left: 1.198183947911799 entropy_right : 1.1104593064416028 -> 58 150 -idx: 72 entropy_left: 1.287054028118727 entropy_right : 1.0511407586429597 -> 58 150 -idx: 74 entropy_left: 1.1994602933016414 entropy_right : 1.041722068095403 -> 58 150 -idx: 75 entropy_left: 1.289608558348151 entropy_right : 1.0462881865460743 -> 58 150 -idx: 76 entropy_left: 1.3472230399326601 entropy_right : 0.9568886656798212 -> 58 150 -idx: 77 entropy_left: 1.312430802347936 entropy_right : 0.9505668528932196 -> 58 150 -idx: 78 entropy_left: 1.3709505944546687 entropy_right : 0.9544340029249649 -> 58 150 -idx: 79 entropy_left: 1.3396642639295127 entropy_right : 0.9477073729342066 -> 58 150 -idx: 81 entropy_left: 1.4098449412673983 entropy_right : 0.9557589912150009 -> 58 150 -idx: 83 entropy_left: 1.359330832236536 entropy_right : 0.9411864371816835 -> 58 150 -idx: 84 entropy_left: 1.3829457416591304 entropy_right : 0.9456603046006402 -> 58 150 -idx: 87 entropy_left: 1.3162522199425772 entropy_right : 0.9182958340544896 -> 58 150 -idx: 88 entropy_left: 1.3382689280764646 entropy_right : 0.9235785996175947 -> 58 150 -idx: 89 entropy_left: 1.3183697698891939 entropy_right : 0.9127341558073343 -> 58 150 -idx: 91 entropy_left: 1.3495485525614308 entropy_right : 0.9238422284571814 -> 58 150 -idx: 95 entropy_left: 1.283474826759087 entropy_right : 0.8698926856041563 -> 58 150 -idx: 97 entropy_left: 1.309466962504167 entropy_right : 0.8835850861052532 -> 58 150 -idx: 99 entropy_left: 1.2815531082029132 entropy_right : 0.8478617451660526 -> 58 150 -idx: 101 entropy_left: 1.3006979255585032 entropy_right : 0.863120568566631 -> 58 150 -idx: 102 entropy_left: 1.288649764535596 entropy_right : 0.8426578772022391 -> 58 150 -idx: 104 entropy_left: 1.301574289281613 entropy_right : 0.8589810370425963 -> 58 150 -idx: 105 entropy_left: 1.2911428397964957 entropy_right : 0.8366407419411673 -> 58 150 -idx: 106 entropy_left: 1.2960285244780434 entropy_right : 0.8453509366224365 -> 58 150 -idx: 107 entropy_left: 1.286285229444419 entropy_right : 0.8203636429576732 -> 58 150 -idx: 109 entropy_left: 1.2936692523040243 entropy_right : 0.8390040613676977 -> 58 150 -idx: 110 entropy_left: 1.285207571715559 entropy_right : 0.8112781244591328 -> 58 150 -idx: 113 entropy_left: 1.2906516322752029 entropy_right : 0.8418521897563207 -> 58 150 -idx: 114 entropy_left: 1.2838868242312453 entropy_right : 0.8112781244591328 -> 58 150 -idx: 117 entropy_left: 1.284285038978389 entropy_right : 0.8453509366224365 -> 58 150 -idx: 118 entropy_left: 1.2789490895024977 entropy_right : 0.8112781244591328 -> 58 150 -idx: 120 entropy_left: 1.2773890816706368 entropy_right : 0.8366407419411673 -> 58 150 -idx: 122 entropy_left: 1.2680161172305842 entropy_right : 0.74959525725948 -> 58 150 -idx: 127 entropy_left: 1.261205530128474 entropy_right : 0.828055725379504 -> 58 150 -idx: 130 entropy_left: 1.2516291673878228 entropy_right : 0.6098403047164004 -> 58 150 -idx: 132 entropy_left: 1.2487636811095608 entropy_right : 0.6500224216483541 -> 58 150 -idx: 133 entropy_left: 1.2458385420854454 entropy_right : 0.5225593745369408 -> 58 150 -idx: 134 entropy_left: 1.2443133013206253 entropy_right : 0.5435644431995964 -> 58 150 -idx: 135 entropy_left: 1.2415118510334717 entropy_right : 0.35335933502142136 -> 58 150 -idx: 137 entropy_left: 1.238324798314731 entropy_right : 0.39124356362925566 -> 58 150 -idx: 138 entropy_left: 1.235922331588627 entropy_right : 0 -> 58 150 -cut: 5.55 index: 59 -start: 58 cut: 59 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.2056112071736118 ent1= 0 ent2= 1.167065448996099 -ig= 0.051231252188340015 delta= 4.528218915242186 N 92 term 0.11995666908087914 -idx: 61 entropy_left: 0 entropy_right : 1.1653351793699953 -> 59 150 -idx: 62 entropy_left: 0.9182958340544896 entropy_right : 1.1687172769890006 -> 59 150 -idx: 68 entropy_left: 0.5032583347756457 entropy_right : 1.1573913563403753 -> 59 150 -idx: 69 entropy_left: 0.9219280948873623 entropy_right : 1.109500797247481 -> 59 150 -idx: 70 entropy_left: 0.8658566174572235 entropy_right : 1.105866621101474 -> 59 150 -idx: 71 entropy_left: 1.0408520829727552 entropy_right : 1.1104593064416028 -> 59 150 -idx: 72 entropy_left: 1.198183947911799 entropy_right : 1.0511407586429597 -> 59 150 -idx: 74 entropy_left: 1.103307408607834 entropy_right : 1.041722068095403 -> 59 150 -idx: 75 entropy_left: 1.1994602933016414 entropy_right : 1.0462881865460743 -> 59 150 -idx: 76 entropy_left: 1.289608558348151 entropy_right : 0.9568886656798212 -> 59 150 -idx: 77 entropy_left: 1.2516291673878228 entropy_right : 0.9505668528932196 -> 59 150 -idx: 78 entropy_left: 1.3124308023479359 entropy_right : 0.9544340029249649 -> 59 150 -idx: 79 entropy_left: 1.278897902987479 entropy_right : 0.9477073729342066 -> 59 150 -idx: 81 entropy_left: 1.3516871258043608 entropy_right : 0.9557589912150009 -> 59 150 -idx: 83 entropy_left: 1.2987949406953985 entropy_right : 0.9411864371816835 -> 59 150 -idx: 84 entropy_left: 1.3234669541469457 entropy_right : 0.9456603046006402 -> 59 150 -idx: 87 entropy_left: 1.2550327083958783 entropy_right : 0.9182958340544896 -> 59 150 -idx: 88 entropy_left: 1.2782038389853276 entropy_right : 0.9235785996175947 -> 59 150 -idx: 89 entropy_left: 1.258040253688799 entropy_right : 0.9127341558073343 -> 59 150 -idx: 91 entropy_left: 1.2911002747979619 entropy_right : 0.9238422284571814 -> 59 150 -idx: 95 entropy_left: 1.2250335169881907 entropy_right : 0.8698926856041563 -> 59 150 -idx: 97 entropy_left: 1.252760079229674 entropy_right : 0.8835850861052532 -> 59 150 -idx: 99 entropy_left: 1.2251570385077257 entropy_right : 0.8478617451660526 -> 59 150 -idx: 101 entropy_left: 1.2457873952707117 entropy_right : 0.863120568566631 -> 59 150 -idx: 102 entropy_left: 1.2339557062686486 entropy_right : 0.8426578772022391 -> 59 150 -idx: 104 entropy_left: 1.2481570924667444 entropy_right : 0.8589810370425963 -> 59 150 -idx: 105 entropy_left: 1.237978259087945 entropy_right : 0.8366407419411673 -> 59 150 -idx: 106 entropy_left: 1.2434459078088524 entropy_right : 0.8453509366224365 -> 59 150 -idx: 107 entropy_left: 1.2339688836163196 entropy_right : 0.8203636429576732 -> 59 150 -idx: 109 entropy_left: 1.2424272282706346 entropy_right : 0.8390040613676977 -> 59 150 -idx: 110 entropy_left: 1.2342496730246095 entropy_right : 0.8112781244591328 -> 59 150 -idx: 113 entropy_left: 1.2411128360359944 entropy_right : 0.8418521897563207 -> 59 150 -idx: 114 entropy_left: 1.2346487866075766 entropy_right : 0.8112781244591328 -> 59 150 -idx: 117 entropy_left: 1.2362911655622766 entropy_right : 0.8453509366224365 -> 59 150 -idx: 118 entropy_left: 1.2312637634546426 entropy_right : 0.8112781244591328 -> 59 150 -idx: 120 entropy_left: 1.2304597034223903 entropy_right : 0.8366407419411673 -> 59 150 -idx: 122 entropy_left: 1.221694907636328 entropy_right : 0.74959525725948 -> 59 150 -idx: 127 entropy_left: 1.216582055353392 entropy_right : 0.828055725379504 -> 59 150 -idx: 130 entropy_left: 1.2078853229682496 entropy_right : 0.6098403047164004 -> 59 150 -idx: 132 entropy_left: 1.2056338170088083 entropy_right : 0.6500224216483541 -> 59 150 -idx: 133 entropy_left: 1.2029885192377856 entropy_right : 0.5225593745369408 -> 59 150 -idx: 134 entropy_left: 1.2017577888491018 entropy_right : 0.5435644431995964 -> 59 150 -idx: 135 entropy_left: 1.1992296370476179 entropy_right : 0.35335933502142136 -> 59 150 -idx: 137 entropy_left: 1.1966085324354425 entropy_right : 0.39124356362925566 -> 59 150 -idx: 138 entropy_left: 1.1944725384801118 entropy_right : 0 -> 59 150 -cut: 5.6 index: 61 -start: 59 cut: 61 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.167065448996099 ent1= 0 ent2= 1.1653351793699953 -ig= 0.027342031810059675 delta= 4.638665380896414 N 91 term 0.12231338985962735 -idx: 62 entropy_left: 0 entropy_right : 1.1687172769890006 -> 61 150 -idx: 68 entropy_left: 0.5916727785823275 entropy_right : 1.1573913563403753 -> 61 150 -idx: 69 entropy_left: 1.061278124459133 entropy_right : 1.109500797247481 -> 61 150 -idx: 70 entropy_left: 0.9864267287308424 entropy_right : 1.105866621101474 -> 61 150 -idx: 71 entropy_left: 1.1567796494470395 entropy_right : 1.1104593064416028 -> 61 150 -idx: 72 entropy_left: 1.3092966682370037 entropy_right : 1.0511407586429597 -> 61 150 -idx: 74 entropy_left: 1.198183947911799 entropy_right : 1.041722068095403 -> 61 150 -idx: 75 entropy_left: 1.287054028118727 entropy_right : 1.0462881865460743 -> 61 150 -idx: 76 entropy_left: 1.3709505944546687 entropy_right : 0.9568886656798212 -> 61 150 -idx: 77 entropy_left: 1.3294340029249652 entropy_right : 0.9505668528932196 -> 61 150 -idx: 78 entropy_left: 1.383099991189334 entropy_right : 0.9544340029249649 -> 61 150 -idx: 79 entropy_left: 1.3472230399326601 entropy_right : 0.9477073729342066 -> 61 150 -idx: 81 entropy_left: 1.4060075793123286 entropy_right : 0.9557589912150009 -> 61 150 -idx: 83 entropy_left: 1.3516871258043608 entropy_right : 0.9411864371816835 -> 61 150 -idx: 84 entropy_left: 1.370862465083061 entropy_right : 0.9456603046006402 -> 61 150 -idx: 87 entropy_left: 1.3001946428885267 entropy_right : 0.9182958340544896 -> 61 150 -idx: 88 entropy_left: 1.3195212983796363 entropy_right : 0.9235785996175947 -> 61 150 -idx: 89 entropy_left: 1.2987207862212027 entropy_right : 0.9127341558073343 -> 61 150 -idx: 91 entropy_left: 1.3248560371987566 entropy_right : 0.9238422284571814 -> 61 150 -idx: 95 entropy_left: 1.2576735962682495 entropy_right : 0.8698926856041563 -> 61 150 -idx: 97 entropy_left: 1.280672129520887 entropy_right : 0.8835850861052532 -> 61 150 -idx: 99 entropy_left: 1.252760079229674 entropy_right : 0.8478617451660526 -> 61 150 -idx: 101 entropy_left: 1.269433559880332 entropy_right : 0.863120568566631 -> 61 150 -idx: 102 entropy_left: 1.2576262380747258 entropy_right : 0.8426578772022391 -> 61 150 -idx: 104 entropy_left: 1.2682650449469532 entropy_right : 0.8589810370425963 -> 61 150 -idx: 105 entropy_left: 1.2582658857615794 entropy_right : 0.8366407419411673 -> 61 150 -idx: 106 entropy_left: 1.2621161952677336 entropy_right : 0.8453509366224365 -> 61 150 -idx: 107 entropy_left: 1.2528404674681515 entropy_right : 0.8203636429576732 -> 61 150 -idx: 109 entropy_left: 1.2583595230282398 entropy_right : 0.8390040613676977 -> 61 150 -idx: 110 entropy_left: 1.2504757050130606 entropy_right : 0.8112781244591328 -> 61 150 -idx: 113 entropy_left: 1.2534330706295986 entropy_right : 0.8418521897563207 -> 61 150 -idx: 114 entropy_left: 1.2473860973972197 entropy_right : 0.8112781244591328 -> 61 150 -idx: 117 entropy_left: 1.2456186709121666 entropy_right : 0.8453509366224365 -> 61 150 -idx: 118 entropy_left: 1.2410875386343703 entropy_right : 0.8112781244591328 -> 61 150 -idx: 120 entropy_left: 1.2382651015774901 entropy_right : 0.8366407419411673 -> 61 150 -idx: 122 entropy_left: 1.2304597034223903 entropy_right : 0.74959525725948 -> 61 150 -idx: 127 entropy_left: 1.2211369508106262 entropy_right : 0.828055725379504 -> 61 150 -idx: 130 entropy_left: 1.213906716130705 entropy_right : 0.6098403047164004 -> 61 150 -idx: 132 entropy_left: 1.2102772503893786 entropy_right : 0.6500224216483541 -> 61 150 -idx: 133 entropy_left: 1.2080704223069119 entropy_right : 0.5225593745369408 -> 61 150 -idx: 134 entropy_left: 1.206198549451098 entropy_right : 0.5435644431995964 -> 61 150 -idx: 135 entropy_left: 1.2040872420186723 entropy_right : 0.35335933502142136 -> 61 150 -idx: 137 entropy_left: 1.2002701176230874 entropy_right : 0.39124356362925566 -> 61 150 -idx: 138 entropy_left: 1.198547104867554 entropy_right : 0 -> 61 150 -cut: 5.6 index: 62 -start: 61 cut: 62 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.1653351793699953 ent1= 0 ent2= 1.1687172769890006 -ig= 0.009749557178623913 delta= 4.65400248263174 N 89 term 0.1248700460816746 -idx: 68 entropy_left: 0 entropy_right : 1.1573913563403753 -> 62 150 -idx: 69 entropy_left: 0.5916727785823275 entropy_right : 1.109500797247481 -> 62 150 -idx: 70 entropy_left: 0.5435644431995964 entropy_right : 1.105866621101474 -> 62 150 -idx: 71 entropy_left: 0.9864267287308424 entropy_right : 1.1104593064416028 -> 62 150 -idx: 72 entropy_left: 1.1567796494470395 entropy_right : 1.0511407586429597 -> 62 150 -idx: 74 entropy_left: 1.0408520829727552 entropy_right : 1.041722068095403 -> 62 150 -idx: 75 entropy_left: 1.198183947911799 entropy_right : 1.0462881865460743 -> 62 150 -idx: 76 entropy_left: 1.287054028118727 entropy_right : 0.9568886656798212 -> 62 150 -idx: 77 entropy_left: 1.2419460322060458 entropy_right : 0.9505668528932196 -> 62 150 -idx: 78 entropy_left: 1.3294340029249652 entropy_right : 0.9544340029249649 -> 62 150 -idx: 79 entropy_left: 1.289608558348151 entropy_right : 0.9477073729342066 -> 62 150 -idx: 81 entropy_left: 1.383807735464083 entropy_right : 0.9557589912150009 -> 62 150 -idx: 83 entropy_left: 1.322305788853309 entropy_right : 0.9411864371816835 -> 62 150 -idx: 84 entropy_left: 1.3516871258043608 entropy_right : 0.9456603046006402 -> 62 150 -idx: 87 entropy_left: 1.2732696895151085 entropy_right : 0.9182958340544896 -> 62 150 -idx: 88 entropy_left: 1.3001946428885267 entropy_right : 0.9235785996175947 -> 62 150 -idx: 89 entropy_left: 1.2773600852070808 entropy_right : 0.9127341558073343 -> 62 150 -idx: 91 entropy_left: 1.3141506221482602 entropy_right : 0.9238422284571814 -> 62 150 -idx: 95 entropy_left: 1.2406705316766886 entropy_right : 0.8698926856041563 -> 62 150 -idx: 97 entropy_left: 1.2707886973584608 entropy_right : 0.8835850861052532 -> 62 150 -idx: 99 entropy_left: 1.2405193035617867 entropy_right : 0.8478617451660526 -> 62 150 -idx: 101 entropy_left: 1.2622604540594544 entropy_right : 0.863120568566631 -> 62 150 -idx: 102 entropy_left: 1.249435498504727 entropy_right : 0.8426578772022391 -> 62 150 -idx: 104 entropy_left: 1.2638091738835462 entropy_right : 0.8589810370425963 -> 62 150 -idx: 105 entropy_left: 1.2529007737565314 entropy_right : 0.8366407419411673 -> 62 150 -idx: 106 entropy_left: 1.2582658857615794 entropy_right : 0.8453509366224365 -> 62 150 -idx: 107 entropy_left: 1.2481570924667444 entropy_right : 0.8203636429576732 -> 62 150 -idx: 109 entropy_left: 1.2561852304054355 entropy_right : 0.8390040613676977 -> 62 150 -idx: 110 entropy_left: 1.2475562489182657 entropy_right : 0.8112781244591328 -> 62 150 -idx: 113 entropy_left: 1.2532975784630431 entropy_right : 0.8418521897563207 -> 62 150 -idx: 114 entropy_left: 1.2466033489462778 entropy_right : 0.8112781244591328 -> 62 150 -idx: 117 entropy_left: 1.2468156164867663 entropy_right : 0.8453509366224365 -> 62 150 -idx: 118 entropy_left: 1.2417221295902683 entropy_right : 0.8112781244591328 -> 62 150 -idx: 120 entropy_left: 1.2399160118080643 entropy_right : 0.8366407419411673 -> 62 150 -idx: 122 entropy_left: 1.2311171656781021 entropy_right : 0.74959525725948 -> 62 150 -idx: 127 entropy_left: 1.223674601549228 entropy_right : 0.828055725379504 -> 62 150 -idx: 130 entropy_left: 1.2152759335052197 entropy_right : 0.6098403047164004 -> 62 150 -idx: 132 entropy_left: 1.212231159180624 entropy_right : 0.6500224216483541 -> 62 150 -idx: 133 entropy_left: 1.2096795274755798 entropy_right : 0.5225593745369408 -> 62 150 -idx: 134 entropy_left: 1.2080704223069119 entropy_right : 0.5435644431995964 -> 62 150 -idx: 135 entropy_left: 1.2056338170088083 entropy_right : 0.35335933502142136 -> 62 150 -idx: 137 entropy_left: 1.2022921890824148 entropy_right : 0.39124356362925566 -> 62 150 -idx: 138 entropy_left: 1.2002701176230874 entropy_right : 0 -> 62 150 -cut: 5.7 index: 68 -start: 62 cut: 68 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.1687172769890006 ent1= 0 ent2= 1.1573913563403753 -ig= 0.09023896767183293 delta= 4.609878427828848 N 88 term 0.12560024913269974 -idx: 69 entropy_left: 0 entropy_right : 1.109500797247481 -> 68 150 -idx: 70 entropy_left: 1.0 entropy_right : 1.105866621101474 -> 68 150 -idx: 71 entropy_left: 1.584962500721156 entropy_right : 1.1104593064416028 -> 68 150 -idx: 72 entropy_left: 1.5 entropy_right : 1.0511407586429597 -> 68 150 -idx: 74 entropy_left: 1.4591479170272448 entropy_right : 1.041722068095403 -> 68 150 -idx: 75 entropy_left: 1.5566567074628228 entropy_right : 1.0462881865460743 -> 68 150 -idx: 76 entropy_left: 1.5612781244591327 entropy_right : 0.9568886656798212 -> 68 150 -idx: 77 entropy_left: 1.5304930567574824 entropy_right : 0.9505668528932196 -> 68 150 -idx: 78 entropy_left: 1.5709505944546684 entropy_right : 0.9544340029249649 -> 68 150 -idx: 79 entropy_left: 1.5394847569315018 entropy_right : 0.9477073729342066 -> 68 150 -idx: 81 entropy_left: 1.5485806065228545 entropy_right : 0.9557589912150009 -> 68 150 -idx: 83 entropy_left: 1.5058231002082845 entropy_right : 0.9411864371816835 -> 68 150 -idx: 84 entropy_left: 1.5052408149441479 entropy_right : 0.9456603046006402 -> 68 150 -idx: 87 entropy_left: 1.432983121056005 entropy_right : 0.9182958340544896 -> 68 150 -idx: 88 entropy_left: 1.4406454496153462 entropy_right : 0.9235785996175947 -> 68 150 -idx: 89 entropy_left: 1.4180260055608096 entropy_right : 0.9127341558073343 -> 68 150 -idx: 91 entropy_left: 1.4219115073546411 entropy_right : 0.9238422284571814 -> 68 150 -idx: 95 entropy_left: 1.3516441151533924 entropy_right : 0.8698926856041563 -> 68 150 -idx: 97 entropy_left: 1.3610156764620025 entropy_right : 0.8835850861052532 -> 68 150 -idx: 99 entropy_left: 1.3317607101149556 entropy_right : 0.8478617451660526 -> 68 150 -idx: 101 entropy_left: 1.336894963623501 entropy_right : 0.863120568566631 -> 68 150 -idx: 102 entropy_left: 1.3251318452515368 entropy_right : 0.8426578772022391 -> 68 150 -idx: 104 entropy_left: 1.3250112108241772 entropy_right : 0.8589810370425963 -> 68 150 -idx: 105 entropy_left: 1.315700144231129 entropy_right : 0.8366407419411673 -> 68 150 -idx: 106 entropy_left: 1.3146246119280174 entropy_right : 0.8453509366224365 -> 68 150 -idx: 107 entropy_left: 1.3060830034799225 entropy_right : 0.8203636429576732 -> 68 150 -idx: 109 entropy_left: 1.3026227503285146 entropy_right : 0.8390040613676977 -> 68 150 -idx: 110 entropy_left: 1.2958363892911637 entropy_right : 0.8112781244591328 -> 68 150 -idx: 113 entropy_left: 1.2866926683547546 entropy_right : 0.8418521897563207 -> 68 150 -idx: 114 entropy_left: 1.2822348040887959 entropy_right : 0.8112781244591328 -> 68 150 -idx: 117 entropy_left: 1.2697816169827234 entropy_right : 0.8453509366224365 -> 68 150 -idx: 118 entropy_left: 1.2671379395990745 entropy_right : 0.8112781244591328 -> 68 150 -idx: 120 entropy_left: 1.2579734650037238 entropy_right : 0.8366407419411673 -> 68 150 -idx: 122 entropy_left: 1.2537259296042096 entropy_right : 0.74959525725948 -> 68 150 -idx: 127 entropy_left: 1.2312637634546426 entropy_right : 0.828055725379504 -> 68 150 -idx: 130 entropy_left: 1.22934290810027 entropy_right : 0.6098403047164004 -> 68 150 -idx: 132 entropy_left: 1.2214713865842914 entropy_right : 0.6500224216483541 -> 68 150 -idx: 133 entropy_left: 1.2208087007255004 entropy_right : 0.5225593745369408 -> 68 150 -idx: 134 entropy_left: 1.2169687714285353 entropy_right : 0.5435644431995964 -> 68 150 -idx: 135 entropy_left: 1.216307966981197 entropy_right : 0.35335933502142136 -> 68 150 -idx: 137 entropy_left: 1.2088301752949477 entropy_right : 0.39124356362925566 -> 68 150 -idx: 138 entropy_left: 1.208536257286683 entropy_right : 0 -> 68 150 -cut: 5.7 index: 69 -start: 68 cut: 69 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.1573913563403753 ent1= 0 ent2= 1.109500797247481 -ig= 0.061421056620302616 delta= 4.500184512496042 N 82 term 0.13219554287049595 -idx: 70 entropy_left: 0 entropy_right : 1.105866621101474 -> 69 150 -idx: 71 entropy_left: 1.0 entropy_right : 1.1104593064416028 -> 69 150 -idx: 72 entropy_left: 1.584962500721156 entropy_right : 1.0511407586429597 -> 69 150 -idx: 74 entropy_left: 1.3709505944546687 entropy_right : 1.041722068095403 -> 69 150 -idx: 75 entropy_left: 1.4591479170272446 entropy_right : 1.0462881865460743 -> 69 150 -idx: 76 entropy_left: 1.5566567074628228 entropy_right : 0.9568886656798212 -> 69 150 -idx: 77 entropy_left: 1.5 entropy_right : 0.9505668528932196 -> 69 150 -idx: 78 entropy_left: 1.5304930567574826 entropy_right : 0.9544340029249649 -> 69 150 -idx: 79 entropy_left: 1.4854752972273344 entropy_right : 0.9477073729342066 -> 69 150 -idx: 81 entropy_left: 1.4833557549816874 entropy_right : 0.9557589912150009 -> 69 150 -idx: 83 entropy_left: 1.4315602842833155 entropy_right : 0.9411864371816835 -> 69 150 -idx: 84 entropy_left: 1.4294732983598406 entropy_right : 0.9456603046006402 -> 69 150 -idx: 87 entropy_left: 1.3516441151533924 entropy_right : 0.9182958340544896 -> 69 150 -idx: 88 entropy_left: 1.3599924922184878 entropy_right : 0.9235785996175947 -> 69 150 -idx: 89 entropy_left: 1.3366664819166876 entropy_right : 0.9127341558073343 -> 69 150 -idx: 91 entropy_left: 1.342019217819521 entropy_right : 0.9238422284571814 -> 69 150 -idx: 95 entropy_left: 1.2722595663292235 entropy_right : 0.8698926856041563 -> 69 150 -idx: 97 entropy_left: 1.2838868242312453 entropy_right : 0.8835850861052532 -> 69 150 -idx: 99 entropy_left: 1.2555367253996503 entropy_right : 0.8478617451660526 -> 69 150 -idx: 101 entropy_left: 1.2627317300909384 entropy_right : 0.863120568566631 -> 69 150 -idx: 102 entropy_left: 1.251534532637368 entropy_right : 0.8426578772022391 -> 69 150 -idx: 104 entropy_left: 1.2532256180852694 entropy_right : 0.8589810370425963 -> 69 150 -idx: 105 entropy_left: 1.2445366211768707 entropy_right : 0.8366407419411673 -> 69 150 -idx: 106 entropy_left: 1.2443013992660277 entropy_right : 0.8453509366224365 -> 69 150 -idx: 107 entropy_left: 1.2363864108712896 entropy_right : 0.8203636429576732 -> 69 150 -idx: 109 entropy_left: 1.2344977967946407 entropy_right : 0.8390040613676977 -> 69 150 -idx: 110 entropy_left: 1.2283491776835573 entropy_right : 0.8112781244591328 -> 69 150 -idx: 113 entropy_left: 1.2213104423484806 entropy_right : 0.8418521897563207 -> 69 150 -idx: 114 entropy_left: 1.2174939521435744 entropy_right : 0.8112781244591328 -> 69 150 -idx: 117 entropy_left: 1.206908425151817 entropy_right : 0.8453509366224365 -> 69 150 -idx: 118 entropy_left: 1.2048930072454316 entropy_right : 0.8112781244591328 -> 69 150 -idx: 120 entropy_left: 1.1968693094032665 entropy_right : 0.8366407419411673 -> 69 150 -idx: 122 entropy_left: 1.193810314637982 entropy_right : 0.74959525725948 -> 69 150 -idx: 127 entropy_left: 1.1739035750178954 entropy_right : 0.828055725379504 -> 69 150 -idx: 130 entropy_left: 1.1735894123234432 entropy_right : 0.6098403047164004 -> 69 150 -idx: 132 entropy_left: 1.1666300226040138 entropy_right : 0.6500224216483541 -> 69 150 -idx: 133 entropy_left: 1.1664616437886164 entropy_right : 0.5225593745369408 -> 69 150 -idx: 134 entropy_left: 1.16305726747136 entropy_right : 0.5435644431995964 -> 69 150 -idx: 135 entropy_left: 1.1628720819225884 entropy_right : 0.35335933502142136 -> 69 150 -idx: 137 entropy_left: 1.1562272836006513 entropy_right : 0.39124356362925566 -> 69 150 -idx: 138 entropy_left: 1.1563884325185114 entropy_right : 0 -> 69 150 -cut: 5.7 index: 70 -start: 69 cut: 70 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.109500797247481 ent1= 0 ent2= 1.105866621101474 -ig= 0.017286850480593197 delta= 4.632953661336703 N 81 term 0.135245453780544 -idx: 71 entropy_left: 0 entropy_right : 1.1104593064416028 -> 70 150 -idx: 72 entropy_left: 1.0 entropy_right : 1.0511407586429597 -> 70 150 -idx: 74 entropy_left: 1.5 entropy_right : 1.041722068095403 -> 70 150 -idx: 75 entropy_left: 1.5219280948873621 entropy_right : 1.0462881865460743 -> 70 150 -idx: 76 entropy_left: 1.584962500721156 entropy_right : 0.9568886656798212 -> 70 150 -idx: 77 entropy_left: 1.5566567074628228 entropy_right : 0.9505668528932196 -> 70 150 -idx: 78 entropy_left: 1.5612781244591325 entropy_right : 0.9544340029249649 -> 70 150 -idx: 79 entropy_left: 1.5304930567574826 entropy_right : 0.9477073729342066 -> 70 150 -idx: 81 entropy_left: 1.4949188482339508 entropy_right : 0.9557589912150009 -> 70 150 -idx: 83 entropy_left: 1.4604846813131114 entropy_right : 0.9411864371816835 -> 70 150 -idx: 84 entropy_left: 1.4488156357251847 entropy_right : 0.9456603046006402 -> 70 150 -idx: 87 entropy_left: 1.3792804872910602 entropy_right : 0.9182958340544896 -> 70 150 -idx: 88 entropy_left: 1.3821022532543101 entropy_right : 0.9235785996175947 -> 70 150 -idx: 89 entropy_left: 1.3599924922184878 entropy_right : 0.9127341558073343 -> 70 150 -idx: 91 entropy_left: 1.3566695198333112 entropy_right : 0.9238422284571814 -> 70 150 -idx: 95 entropy_left: 1.290564432903234 entropy_right : 0.8698926856041563 -> 70 150 -idx: 97 entropy_left: 1.2972313275776637 entropy_right : 0.8835850861052532 -> 70 150 -idx: 99 entropy_left: 1.2699207259892868 entropy_right : 0.8478617451660526 -> 70 150 -idx: 101 entropy_left: 1.2733667511664173 entropy_right : 0.863120568566631 -> 70 150 -idx: 102 entropy_left: 1.2627317300909384 entropy_right : 0.8426578772022391 -> 70 150 -idx: 104 entropy_left: 1.2612796872684706 entropy_right : 0.8589810370425963 -> 70 150 -idx: 105 entropy_left: 1.2532256180852694 entropy_right : 0.8366407419411673 -> 70 150 -idx: 106 entropy_left: 1.2516291673878228 entropy_right : 0.8453509366224365 -> 70 150 -idx: 107 entropy_left: 1.2443013992660277 entropy_right : 0.8203636429576732 -> 70 150 -idx: 109 entropy_left: 1.2400362501086653 entropy_right : 0.8390040613676977 -> 70 150 -idx: 110 entropy_left: 1.2344977967946407 entropy_right : 0.8112781244591328 -> 70 150 -idx: 113 entropy_left: 1.2244687599090465 entropy_right : 0.8418521897563207 -> 70 150 -idx: 114 entropy_left: 1.2213104423484806 entropy_right : 0.8112781244591328 -> 70 150 -idx: 117 entropy_left: 1.2082534070890902 entropy_right : 0.8453509366224365 -> 70 150 -idx: 118 entropy_left: 1.206908425151817 entropy_right : 0.8112781244591328 -> 70 150 -idx: 120 entropy_left: 1.1974776241409462 entropy_right : 0.8366407419411673 -> 70 150 -idx: 122 entropy_left: 1.1956217818146277 entropy_right : 0.74959525725948 -> 70 150 -idx: 127 entropy_left: 1.172904301194551 entropy_right : 0.828055725379504 -> 70 150 -idx: 130 entropy_left: 1.174189792601739 entropy_right : 0.6098403047164004 -> 70 150 -idx: 132 entropy_left: 1.1663419797861878 entropy_right : 0.6500224216483541 -> 70 150 -idx: 133 entropy_left: 1.1666300226040138 entropy_right : 0.5225593745369408 -> 70 150 -idx: 134 entropy_left: 1.1628175871855553 entropy_right : 0.5435644431995964 -> 70 150 -idx: 135 entropy_left: 1.16305726747136 entropy_right : 0.35335933502142136 -> 70 150 -idx: 137 entropy_left: 1.1556601022395212 entropy_right : 0.39124356362925566 -> 70 150 -idx: 138 entropy_left: 1.1562272836006513 entropy_right : 0 -> 70 150 -cut: 5.7 index: 71 -start: 70 cut: 71 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.105866621101474 ent1= 0 ent2= 1.1104593064416028 -ig= 0.009288055990391175 delta= 4.65763424579511 N 80 term 0.13701768742465267 -idx: 72 entropy_left: 0 entropy_right : 1.0511407586429597 -> 71 150 -idx: 74 entropy_left: 0.9182958340544896 entropy_right : 1.041722068095403 -> 71 150 -idx: 75 entropy_left: 1.5 entropy_right : 1.0462881865460743 -> 71 150 -idx: 76 entropy_left: 1.5219280948873621 entropy_right : 0.9568886656798212 -> 71 150 -idx: 77 entropy_left: 1.4591479170272448 entropy_right : 0.9505668528932196 -> 71 150 -idx: 78 entropy_left: 1.5566567074628228 entropy_right : 0.9544340029249649 -> 71 150 -idx: 79 entropy_left: 1.5 entropy_right : 0.9477073729342066 -> 71 150 -idx: 81 entropy_left: 1.5219280948873621 entropy_right : 0.9557589912150009 -> 71 150 -idx: 83 entropy_left: 1.4591479170272446 entropy_right : 0.9411864371816835 -> 71 150 -idx: 84 entropy_left: 1.4604846813131114 entropy_right : 0.9456603046006402 -> 71 150 -idx: 87 entropy_left: 1.3663146570363986 entropy_right : 0.9182958340544896 -> 71 150 -idx: 88 entropy_left: 1.3792804872910602 entropy_right : 0.9235785996175947 -> 71 150 -idx: 89 entropy_left: 1.3516441151533924 entropy_right : 0.9127341558073343 -> 71 150 -idx: 91 entropy_left: 1.360964047443681 entropy_right : 0.9238422284571814 -> 71 150 -idx: 95 entropy_left: 1.280672129520887 entropy_right : 0.8698926856041563 -> 71 150 -idx: 97 entropy_left: 1.2957378005380122 entropy_right : 0.8835850861052532 -> 71 150 -idx: 99 entropy_left: 1.2638091738835462 entropy_right : 0.8478617451660526 -> 71 150 -idx: 101 entropy_left: 1.272905595320056 entropy_right : 0.863120568566631 -> 71 150 -idx: 102 entropy_left: 1.2604408810349512 entropy_right : 0.8426578772022391 -> 71 150 -idx: 104 entropy_left: 1.2628839008717194 entropy_right : 0.8589810370425963 -> 71 150 -idx: 105 entropy_left: 1.2532975784630431 entropy_right : 0.8366407419411673 -> 71 150 -idx: 106 entropy_left: 1.2532256180852694 entropy_right : 0.8453509366224365 -> 71 150 -idx: 107 entropy_left: 1.2445366211768707 entropy_right : 0.8203636429576732 -> 71 150 -idx: 109 entropy_left: 1.2427303803729566 entropy_right : 0.8390040613676977 -> 71 150 -idx: 110 entropy_left: 1.236032213759607 entropy_right : 0.8112781244591328 -> 71 150 -idx: 113 entropy_left: 1.2285763800288914 entropy_right : 0.8418521897563207 -> 71 150 -idx: 114 entropy_left: 1.2244687599090465 entropy_right : 0.8112781244591328 -> 71 150 -idx: 117 entropy_left: 1.2131143284990724 entropy_right : 0.8453509366224365 -> 71 150 -idx: 118 entropy_left: 1.2109841580748322 entropy_right : 0.8112781244591328 -> 71 150 -idx: 120 entropy_left: 1.2023853470868684 entropy_right : 0.8366407419411673 -> 71 150 -idx: 122 entropy_left: 1.1991801505660864 entropy_right : 0.74959525725948 -> 71 150 -idx: 127 entropy_left: 1.1779653169582593 entropy_right : 0.828055725379504 -> 71 150 -idx: 130 entropy_left: 1.1777501607742278 entropy_right : 0.6098403047164004 -> 71 150 -idx: 132 entropy_left: 1.170377295621679 entropy_right : 0.6500224216483541 -> 71 150 -idx: 133 entropy_left: 1.1702295713931186 entropy_right : 0.5225593745369408 -> 71 150 -idx: 134 entropy_left: 1.1666300226040138 entropy_right : 0.5435644431995964 -> 71 150 -idx: 135 entropy_left: 1.1664616437886164 entropy_right : 0.35335933502142136 -> 71 150 -idx: 137 entropy_left: 1.1594493549376441 entropy_right : 0.39124356362925566 -> 71 150 -idx: 138 entropy_left: 1.159647049243901 entropy_right : 0 -> 71 150 -cut: 5.7 index: 72 -start: 71 cut: 72 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.1104593064416028 ent1= 0 ent2= 1.0511407586429597 -ig= 0.07262412702197163 delta= 4.465900546378795 N 79 term 0.1360924400663423 -idx: 74 entropy_left: 0 entropy_right : 1.041722068095403 -> 72 150 -idx: 75 entropy_left: 0.9182958340544896 entropy_right : 1.0462881865460743 -> 72 150 -idx: 76 entropy_left: 1.5 entropy_right : 0.9568886656798212 -> 72 150 -idx: 77 entropy_left: 1.3709505944546687 entropy_right : 0.9505668528932196 -> 72 150 -idx: 78 entropy_left: 1.4591479170272446 entropy_right : 0.9544340029249649 -> 72 150 -idx: 79 entropy_left: 1.3787834934861758 entropy_right : 0.9477073729342066 -> 72 150 -idx: 81 entropy_left: 1.3921472236645345 entropy_right : 0.9557589912150009 -> 72 150 -idx: 83 entropy_left: 1.3221793455166668 entropy_right : 0.9411864371816835 -> 72 150 -idx: 84 entropy_left: 1.3250112108241772 entropy_right : 0.9456603046006402 -> 72 150 -idx: 87 entropy_left: 1.2309595631140104 entropy_right : 0.9182958340544896 -> 72 150 -idx: 88 entropy_left: 1.2475562489182657 entropy_right : 0.9235785996175947 -> 72 150 -idx: 89 entropy_left: 1.2210477851797181 entropy_right : 0.9127341558073343 -> 72 150 -idx: 91 entropy_left: 1.2363864108712896 entropy_right : 0.9238422284571814 -> 72 150 -idx: 95 entropy_left: 1.1625633078480364 entropy_right : 0.8698926856041563 -> 72 150 -idx: 97 entropy_left: 1.1829661954675212 entropy_right : 0.8835850861052532 -> 72 150 -idx: 99 entropy_left: 1.154173392945927 entropy_right : 0.8478617451660526 -> 72 150 -idx: 101 entropy_left: 1.1676516844843352 entropy_right : 0.863120568566631 -> 72 150 -idx: 102 entropy_left: 1.1566766519448637 entropy_right : 0.8426578772022391 -> 72 150 -idx: 104 entropy_left: 1.1628175871855553 entropy_right : 0.8589810370425963 -> 72 150 -idx: 105 entropy_left: 1.154648091032148 entropy_right : 0.8366407419411673 -> 72 150 -idx: 106 entropy_left: 1.1562272836006513 entropy_right : 0.8453509366224365 -> 72 150 -idx: 107 entropy_left: 1.148883540100512 entropy_right : 0.8203636429576732 -> 72 150 -idx: 109 entropy_left: 1.1500617154483042 entropy_right : 0.8390040613676977 -> 72 150 -idx: 110 entropy_left: 1.14462671873298 entropy_right : 0.8112781244591328 -> 72 150 -idx: 113 entropy_left: 1.1410367900938279 entropy_right : 0.8418521897563207 -> 72 150 -idx: 114 entropy_left: 1.1380977138239694 entropy_right : 0.8112781244591328 -> 72 150 -idx: 117 entropy_left: 1.1300621881593356 entropy_right : 0.8453509366224365 -> 72 150 -idx: 118 entropy_left: 1.1290093343324077 entropy_right : 0.8112781244591328 -> 72 150 -idx: 120 entropy_left: 1.1223812433380593 entropy_right : 0.8366407419411673 -> 72 150 -idx: 122 entropy_left: 1.1211460945412073 entropy_right : 0.74959525725948 -> 72 150 -idx: 127 entropy_left: 1.104163024696236 entropy_right : 0.828055725379504 -> 72 150 -idx: 130 entropy_left: 1.106452022253965 entropy_right : 0.6098403047164004 -> 72 150 -idx: 132 entropy_left: 1.1005245529682912 entropy_right : 0.6500224216483541 -> 72 150 -idx: 133 entropy_left: 1.1011317995692322 entropy_right : 0.5225593745369408 -> 72 150 -idx: 134 entropy_left: 1.0982133465732966 entropy_right : 0.5435644431995964 -> 72 150 -idx: 135 entropy_left: 1.0987647679835901 entropy_right : 0.35335933502142136 -> 72 150 -idx: 137 entropy_left: 1.093039283001171 entropy_right : 0.39124356362925566 -> 72 150 -idx: 138 entropy_left: 1.093914976004978 entropy_right : 0 -> 72 150 -cut: 5.8 index: 74 -start: 72 cut: 74 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.0511407586429597 ent1= 0 ent2= 1.041722068095403 -ig= 0.03612951280641341 delta= 4.615600118132054 N 78 term 0.13951777767726867 -idx: 75 entropy_left: 0 entropy_right : 1.0462881865460743 -> 74 150 -idx: 76 entropy_left: 1.0 entropy_right : 0.9568886656798212 -> 74 150 -idx: 77 entropy_left: 1.584962500721156 entropy_right : 0.9505668528932196 -> 74 150 -idx: 78 entropy_left: 1.5 entropy_right : 0.9544340029249649 -> 74 150 -idx: 79 entropy_left: 1.5219280948873621 entropy_right : 0.9477073729342066 -> 74 150 -idx: 81 entropy_left: 1.3787834934861756 entropy_right : 0.9557589912150009 -> 74 150 -idx: 83 entropy_left: 1.3921472236645345 entropy_right : 0.9411864371816835 -> 74 150 -idx: 84 entropy_left: 1.360964047443681 entropy_right : 0.9456603046006402 -> 74 150 -idx: 87 entropy_left: 1.2957378005380122 entropy_right : 0.9182958340544896 -> 74 150 -idx: 88 entropy_left: 1.2958363892911637 entropy_right : 0.9235785996175947 -> 74 150 -idx: 89 entropy_left: 1.272905595320056 entropy_right : 0.9127341558073343 -> 74 150 -idx: 91 entropy_left: 1.2639334294856335 entropy_right : 0.9238422284571814 -> 74 150 -idx: 95 entropy_left: 1.2009102795095283 entropy_right : 0.8698926856041563 -> 74 150 -idx: 97 entropy_left: 1.2088301752949477 entropy_right : 0.8835850861052532 -> 74 150 -idx: 99 entropy_left: 1.1829661954675212 entropy_right : 0.8478617451660526 -> 74 150 -idx: 101 entropy_left: 1.1873868015167897 entropy_right : 0.863120568566631 -> 74 150 -idx: 102 entropy_left: 1.1779653169582593 entropy_right : 0.8426578772022391 -> 74 150 -idx: 104 entropy_left: 1.1766796675107107 entropy_right : 0.8589810370425963 -> 74 150 -idx: 105 entropy_left: 1.1702295713931186 entropy_right : 0.8366407419411673 -> 74 150 -idx: 106 entropy_left: 1.168645033308507 entropy_right : 0.8453509366224365 -> 74 150 -idx: 107 entropy_left: 1.1628720819225884 entropy_right : 0.8203636429576732 -> 74 150 -idx: 109 entropy_left: 1.1586048283017796 entropy_right : 0.8390040613676977 -> 74 150 -idx: 110 entropy_left: 1.1547717145751626 entropy_right : 0.8112781244591328 -> 74 150 -idx: 113 entropy_left: 1.1444480669722774 entropy_right : 0.8418521897563207 -> 74 150 -idx: 114 entropy_left: 1.143198478557978 entropy_right : 0.8112781244591328 -> 74 150 -idx: 117 entropy_left: 1.1296938769174603 entropy_right : 0.8453509366224365 -> 74 150 -idx: 118 entropy_left: 1.1303296439314212 entropy_right : 0.8112781244591328 -> 74 150 -idx: 120 entropy_left: 1.1206278986197225 entropy_right : 0.8366407419411673 -> 74 150 -idx: 122 entropy_left: 1.1223812433380593 entropy_right : 0.74959525725948 -> 74 150 -idx: 127 entropy_left: 1.0993503889353484 entropy_right : 0.828055725379504 -> 74 150 -idx: 130 entropy_left: 1.1055134468321814 entropy_right : 0.6098403047164004 -> 74 150 -idx: 132 entropy_left: 1.097698154707432 entropy_right : 0.6500224216483541 -> 74 150 -idx: 133 entropy_left: 1.0993984278081397 entropy_right : 0.5225593745369408 -> 74 150 -idx: 134 entropy_left: 1.0956166187668959 entropy_right : 0.5435644431995964 -> 74 150 -idx: 135 entropy_left: 1.0971804769523517 entropy_right : 0.35335933502142136 -> 74 150 -idx: 137 entropy_left: 1.0898693179207501 entropy_right : 0.39124356362925566 -> 74 150 -idx: 138 entropy_left: 1.0917055717080197 entropy_right : 0 -> 74 150 -cut: 5.8 index: 75 -start: 74 cut: 75 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.041722068095403 ent1= 0 ent2= 1.0462881865460743 -ig= 0.00920083137230332 delta= 4.657554545126739 N 76 term 0.1432417531002976 -idx: 76 entropy_left: 0 entropy_right : 0.9568886656798212 -> 75 150 -idx: 77 entropy_left: 1.0 entropy_right : 0.9505668528932196 -> 75 150 -idx: 78 entropy_left: 1.584962500721156 entropy_right : 0.9544340029249649 -> 75 150 -idx: 79 entropy_left: 1.5 entropy_right : 0.9477073729342066 -> 75 150 -idx: 81 entropy_left: 1.4591479170272448 entropy_right : 0.9557589912150009 -> 75 150 -idx: 83 entropy_left: 1.4056390622295662 entropy_right : 0.9411864371816835 -> 75 150 -idx: 84 entropy_left: 1.3921472236645345 entropy_right : 0.9456603046006402 -> 75 150 -idx: 87 entropy_left: 1.280672129520887 entropy_right : 0.9182958340544896 -> 75 150 -idx: 88 entropy_left: 1.2957378005380122 entropy_right : 0.9235785996175947 -> 75 150 -idx: 89 entropy_left: 1.2638091738835462 entropy_right : 0.9127341558073343 -> 75 150 -idx: 91 entropy_left: 1.271782221599798 entropy_right : 0.9238422284571814 -> 75 150 -idx: 95 entropy_left: 1.1883763717345075 entropy_right : 0.8698926856041563 -> 75 150 -idx: 97 entropy_left: 1.2072100267448116 entropy_right : 0.8835850861052532 -> 75 150 -idx: 99 entropy_left: 1.1752835873133534 entropy_right : 0.8478617451660526 -> 75 150 -idx: 101 entropy_left: 1.1867198445327565 entropy_right : 0.863120568566631 -> 75 150 -idx: 102 entropy_left: 1.1749946599731707 entropy_right : 0.8426578772022391 -> 75 150 -idx: 104 entropy_left: 1.1783577099564695 entropy_right : 0.8589810370425963 -> 75 150 -idx: 105 entropy_left: 1.1700333844140454 entropy_right : 0.8366407419411673 -> 75 150 -idx: 106 entropy_left: 1.1702295713931186 entropy_right : 0.8453509366224365 -> 75 150 -idx: 107 entropy_left: 1.1628175871855553 entropy_right : 0.8203636429576732 -> 75 150 -idx: 109 entropy_left: 1.1613784794486992 entropy_right : 0.8390040613676977 -> 75 150 -idx: 110 entropy_left: 1.1561787304889202 entropy_right : 0.8112781244591328 -> 75 150 -idx: 113 entropy_left: 1.1487361244596448 entropy_right : 0.8418521897563207 -> 75 150 -idx: 114 entropy_left: 1.1463959237120882 entropy_right : 0.8112781244591328 -> 75 150 -idx: 117 entropy_left: 1.1347431759823636 entropy_right : 0.8453509366224365 -> 75 150 -idx: 118 entropy_left: 1.1344959754516843 entropy_right : 0.8112781244591328 -> 75 150 -idx: 120 entropy_left: 1.1256828315506748 entropy_right : 0.8366407419411673 -> 75 150 -idx: 122 entropy_left: 1.1259378808834186 entropy_right : 0.74959525725948 -> 75 150 -idx: 127 entropy_left: 1.1044984783580127 entropy_right : 0.828055725379504 -> 75 150 -idx: 130 entropy_left: 1.1090351025597922 entropy_right : 0.6098403047164004 -> 75 150 -idx: 132 entropy_left: 1.1017235165092814 entropy_right : 0.6500224216483541 -> 75 150 -idx: 133 entropy_left: 1.1029548176506492 entropy_right : 0.5225593745369408 -> 75 150 -idx: 134 entropy_left: 1.0993984278081397 entropy_right : 0.5435644431995964 -> 75 150 -idx: 135 entropy_left: 1.1005245529682912 entropy_right : 0.35335933502142136 -> 75 150 -idx: 137 entropy_left: 1.093620517468727 entropy_right : 0.39124356362925566 -> 75 150 -idx: 138 entropy_left: 1.0950628692122266 entropy_right : 0 -> 75 150 -cut: 5.8 index: 76 -start: 75 cut: 76 end: 150 -k= 3 k1= 1 k2= 2 ent= 1.0462881865460743 ent1= 0 ent2= 0.9568886656798212 -ig= 0.10215803640865062 delta= 3.418768961496144 N 75 term 0.12837629769500125 -idx: 77 entropy_left: 0 entropy_right : 0.9505668528932196 -> 76 150 -idx: 78 entropy_left: 1.0 entropy_right : 0.9544340029249649 -> 76 150 -idx: 79 entropy_left: 0.9182958340544896 entropy_right : 0.9477073729342066 -> 76 150 -idx: 81 entropy_left: 0.9709505944546686 entropy_right : 0.9557589912150009 -> 76 150 -idx: 83 entropy_left: 0.9852281360342516 entropy_right : 0.9411864371816835 -> 76 150 -idx: 84 entropy_left: 1.0 entropy_right : 0.9456603046006402 -> 76 150 -idx: 87 entropy_left: 0.9456603046006402 entropy_right : 0.9182958340544896 -> 76 150 -idx: 88 entropy_left: 0.9798687566511527 entropy_right : 0.9235785996175947 -> 76 150 -idx: 89 entropy_left: 0.961236604722876 entropy_right : 0.9127341558073343 -> 76 150 -idx: 91 entropy_left: 0.9967916319816366 entropy_right : 0.9238422284571814 -> 76 150 -idx: 95 entropy_left: 0.9494520153879484 entropy_right : 0.8698926856041563 -> 76 150 -idx: 97 entropy_left: 0.9852281360342516 entropy_right : 0.8835850861052532 -> 76 150 -idx: 99 entropy_left: 0.9656361333706098 entropy_right : 0.8478617451660526 -> 76 150 -idx: 101 entropy_left: 0.9895875212220557 entropy_right : 0.863120568566631 -> 76 150 -idx: 102 entropy_left: 0.9828586897127056 entropy_right : 0.8426578772022391 -> 76 150 -idx: 104 entropy_left: 0.996316519558962 entropy_right : 0.8589810370425963 -> 76 150 -idx: 105 entropy_left: 0.9922666387194963 entropy_right : 0.8366407419411673 -> 76 150 -idx: 106 entropy_left: 0.9967916319816366 entropy_right : 0.8453509366224365 -> 76 150 -idx: 107 entropy_left: 0.9932338197397066 entropy_right : 0.8203636429576732 -> 76 150 -idx: 109 entropy_left: 0.9993375041688847 entropy_right : 0.8390040613676977 -> 76 150 -idx: 110 entropy_left: 0.9975025463691153 entropy_right : 0.8112781244591328 -> 76 150 -idx: 113 entropy_left: 0.9994730201859836 entropy_right : 0.8418521897563207 -> 76 150 -idx: 114 entropy_left: 1.0 entropy_right : 0.8112781244591328 -> 76 150 -idx: 117 entropy_left: 0.9961344835095796 entropy_right : 0.8453509366224365 -> 76 150 -idx: 118 entropy_left: 0.9983636725938131 entropy_right : 0.8112781244591328 -> 76 150 -idx: 120 entropy_left: 0.9940302114769565 entropy_right : 0.8366407419411673 -> 76 150 -idx: 122 entropy_left: 0.9986359641585718 entropy_right : 0.74959525725948 -> 76 150 -idx: 127 entropy_left: 0.9863676072907088 entropy_right : 0.828055725379504 -> 76 150 -idx: 130 entropy_left: 0.9960383613659183 entropy_right : 0.6098403047164004 -> 76 150 -idx: 132 entropy_left: 0.9917033083725818 entropy_right : 0.6500224216483541 -> 76 150 -idx: 133 entropy_left: 0.9944423248022588 entropy_right : 0.5225593745369408 -> 76 150 -idx: 134 entropy_left: 0.9922666387194963 entropy_right : 0.5435644431995964 -> 76 150 -idx: 135 entropy_left: 0.9948131754904235 entropy_right : 0.35335933502142136 -> 76 150 -idx: 137 entropy_left: 0.9904799742690307 entropy_right : 0.39124356362925566 -> 76 150 -idx: 138 entropy_left: 0.9932338197397066 entropy_right : 0 -> 76 150 -cut: 5.8 index: 77 -start: 76 cut: 77 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9568886656798212 ent1= 0 ent2= 0.9505668528932196 -ig= 0.019167310798672066 delta= 2.794711296484401 N 74 term 0.12141264669411377 -idx: 78 entropy_left: 0 entropy_right : 0.9544340029249649 -> 77 150 -idx: 79 entropy_left: 1.0 entropy_right : 0.9477073729342066 -> 77 150 -idx: 81 entropy_left: 0.8112781244591328 entropy_right : 0.9557589912150009 -> 77 150 -idx: 83 entropy_left: 1.0 entropy_right : 0.9411864371816835 -> 77 150 -idx: 84 entropy_left: 0.9852281360342516 entropy_right : 0.9456603046006402 -> 77 150 -idx: 87 entropy_left: 0.9709505944546686 entropy_right : 0.9182958340544896 -> 77 150 -idx: 88 entropy_left: 0.9940302114769565 entropy_right : 0.9235785996175947 -> 77 150 -idx: 89 entropy_left: 0.9798687566511527 entropy_right : 0.9127341558073343 -> 77 150 -idx: 91 entropy_left: 1.0 entropy_right : 0.9238422284571814 -> 77 150 -idx: 95 entropy_left: 0.9640787648082292 entropy_right : 0.8698926856041563 -> 77 150 -idx: 97 entropy_left: 0.9927744539878084 entropy_right : 0.8835850861052532 -> 77 150 -idx: 99 entropy_left: 0.976020648236615 entropy_right : 0.8478617451660526 -> 77 150 -idx: 101 entropy_left: 0.9949848281859701 entropy_right : 0.863120568566631 -> 77 150 -idx: 102 entropy_left: 0.9895875212220557 entropy_right : 0.8426578772022391 -> 77 150 -idx: 104 entropy_left: 0.9990102708804813 entropy_right : 0.8589810370425963 -> 77 150 -idx: 105 entropy_left: 0.996316519558962 entropy_right : 0.8366407419411673 -> 77 150 -idx: 106 entropy_left: 0.9991421039919088 entropy_right : 0.8453509366224365 -> 77 150 -idx: 107 entropy_left: 0.9967916319816366 entropy_right : 0.8203636429576732 -> 77 150 -idx: 109 entropy_left: 1.0 entropy_right : 0.8390040613676977 -> 77 150 -idx: 110 entropy_left: 0.9993375041688847 entropy_right : 0.8112781244591328 -> 77 150 -idx: 113 entropy_left: 0.9977724720899821 entropy_right : 0.8418521897563207 -> 77 150 -idx: 114 entropy_left: 0.9994730201859836 entropy_right : 0.8112781244591328 -> 77 150 -idx: 117 entropy_left: 0.9927744539878084 entropy_right : 0.8453509366224365 -> 77 150 -idx: 118 entropy_left: 0.9961344835095796 entropy_right : 0.8112781244591328 -> 77 150 -idx: 120 entropy_left: 0.9902246902198684 entropy_right : 0.8366407419411673 -> 77 150 -idx: 122 entropy_left: 0.9967916319816366 entropy_right : 0.74959525725948 -> 77 150 -idx: 127 entropy_left: 0.9814538950336535 entropy_right : 0.828055725379504 -> 77 150 -idx: 130 entropy_left: 0.9935704757706079 entropy_right : 0.6098403047164004 -> 77 150 -idx: 132 entropy_left: 0.9882836109919162 entropy_right : 0.6500224216483541 -> 77 150 -idx: 133 entropy_left: 0.9917033083725818 entropy_right : 0.5225593745369408 -> 77 150 -idx: 134 entropy_left: 0.9890934397021431 entropy_right : 0.5435644431995964 -> 77 150 -idx: 135 entropy_left: 0.9922666387194963 entropy_right : 0.35335933502142136 -> 77 150 -idx: 137 entropy_left: 0.9871377743721863 entropy_right : 0.39124356362925566 -> 77 150 -idx: 138 entropy_left: 0.9904799742690307 entropy_right : 0 -> 77 150 -cut: 5.8 index: 78 -start: 77 cut: 78 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9505668528932196 ent1= 0 ent2= 0.9544340029249649 -ig= 0.009207288364487143 delta= 2.815089222121095 N 73 term 0.12308238662415626 -idx: 79 entropy_left: 0 entropy_right : 0.9477073729342066 -> 78 150 -idx: 81 entropy_left: 0.9182958340544896 entropy_right : 0.9557589912150009 -> 78 150 -idx: 83 entropy_left: 0.9709505944546686 entropy_right : 0.9411864371816835 -> 78 150 -idx: 84 entropy_left: 1.0 entropy_right : 0.9456603046006402 -> 78 150 -idx: 87 entropy_left: 0.9182958340544896 entropy_right : 0.9182958340544896 -> 78 150 -idx: 88 entropy_left: 0.9709505944546686 entropy_right : 0.9235785996175947 -> 78 150 -idx: 89 entropy_left: 0.9456603046006402 entropy_right : 0.9127341558073343 -> 78 150 -idx: 91 entropy_left: 0.9957274520849256 entropy_right : 0.9238422284571814 -> 78 150 -idx: 95 entropy_left: 0.9366673818775626 entropy_right : 0.8698926856041563 -> 78 150 -idx: 97 entropy_left: 0.9819407868640977 entropy_right : 0.8835850861052532 -> 78 150 -idx: 99 entropy_left: 0.9587118829771318 entropy_right : 0.8478617451660526 -> 78 150 -idx: 101 entropy_left: 0.9876925088958034 entropy_right : 0.863120568566631 -> 78 150 -idx: 102 entropy_left: 0.9798687566511527 entropy_right : 0.8426578772022391 -> 78 150 -idx: 104 entropy_left: 0.9957274520849256 entropy_right : 0.8589810370425963 -> 78 150 -idx: 105 entropy_left: 0.9910760598382222 entropy_right : 0.8366407419411673 -> 78 150 -idx: 106 entropy_left: 0.996316519558962 entropy_right : 0.8453509366224365 -> 78 150 -idx: 107 entropy_left: 0.9922666387194963 entropy_right : 0.8203636429576732 -> 78 150 -idx: 109 entropy_left: 0.9992492479956565 entropy_right : 0.8390040613676977 -> 78 150 -idx: 110 entropy_left: 0.9971803988942642 entropy_right : 0.8112781244591328 -> 78 150 -idx: 113 entropy_left: 0.9994110647387553 entropy_right : 0.8418521897563207 -> 78 150 -idx: 114 entropy_left: 1.0 entropy_right : 0.8112781244591328 -> 78 150 -idx: 117 entropy_left: 0.9957274520849256 entropy_right : 0.8453509366224365 -> 78 150 -idx: 118 entropy_left: 0.99819587904281 entropy_right : 0.8112781244591328 -> 78 150 -idx: 120 entropy_left: 0.9934472383802027 entropy_right : 0.8366407419411673 -> 78 150 -idx: 122 entropy_left: 0.9985090989176322 entropy_right : 0.74959525725948 -> 78 150 -idx: 127 entropy_left: 0.9852281360342516 entropy_right : 0.828055725379504 -> 78 150 -idx: 130 entropy_left: 0.9957274520849256 entropy_right : 0.6098403047164004 -> 78 150 -idx: 132 entropy_left: 0.9910760598382222 entropy_right : 0.6500224216483541 -> 78 150 -idx: 133 entropy_left: 0.9940302114769565 entropy_right : 0.5225593745369408 -> 78 150 -idx: 134 entropy_left: 0.9917033083725818 entropy_right : 0.5435644431995964 -> 78 150 -idx: 135 entropy_left: 0.9944423248022588 entropy_right : 0.35335933502142136 -> 78 150 -idx: 137 entropy_left: 0.9898220559635811 entropy_right : 0.39124356362925566 -> 78 150 -idx: 138 entropy_left: 0.9927744539878084 entropy_right : 0 -> 78 150 -cut: 5.8 index: 79 -start: 78 cut: 79 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9544340029249649 ent1= 0 ent2= 0.9477073729342066 -ig= 0.019889232392622302 delta= 2.7939016620760873 N 72 term 0.12421734418862179 -idx: 81 entropy_left: 0 entropy_right : 0.9557589912150009 -> 79 150 -idx: 83 entropy_left: 1.0 entropy_right : 0.9411864371816835 -> 79 150 -idx: 84 entropy_left: 0.9709505944546686 entropy_right : 0.9456603046006402 -> 79 150 -idx: 87 entropy_left: 0.9544340029249649 entropy_right : 0.9182958340544896 -> 79 150 -idx: 88 entropy_left: 0.9910760598382222 entropy_right : 0.9235785996175947 -> 79 150 -idx: 89 entropy_left: 0.9709505944546686 entropy_right : 0.9127341558073343 -> 79 150 -idx: 91 entropy_left: 1.0 entropy_right : 0.9238422284571814 -> 79 150 -idx: 95 entropy_left: 0.9544340029249649 entropy_right : 0.8698926856041563 -> 79 150 -idx: 97 entropy_left: 0.9910760598382222 entropy_right : 0.8835850861052532 -> 79 150 -idx: 99 entropy_left: 0.9709505944546686 entropy_right : 0.8478617451660526 -> 79 150 -idx: 101 entropy_left: 0.9940302114769565 entropy_right : 0.863120568566631 -> 79 150 -idx: 102 entropy_left: 0.9876925088958034 entropy_right : 0.8426578772022391 -> 79 150 -idx: 104 entropy_left: 0.9988455359952018 entropy_right : 0.8589810370425963 -> 79 150 -idx: 105 entropy_left: 0.9957274520849256 entropy_right : 0.8366407419411673 -> 79 150 -idx: 106 entropy_left: 0.9990102708804813 entropy_right : 0.8453509366224365 -> 79 150 -idx: 107 entropy_left: 0.996316519558962 entropy_right : 0.8203636429576732 -> 79 150 -idx: 109 entropy_left: 1.0 entropy_right : 0.8390040613676977 -> 79 150 -idx: 110 entropy_left: 0.9992492479956565 entropy_right : 0.8112781244591328 -> 79 150 -idx: 113 entropy_left: 0.9975025463691153 entropy_right : 0.8418521897563207 -> 79 150 -idx: 114 entropy_left: 0.9994110647387553 entropy_right : 0.8112781244591328 -> 79 150 -idx: 117 entropy_left: 0.9919924034538556 entropy_right : 0.8453509366224365 -> 79 150 -idx: 118 entropy_left: 0.9957274520849256 entropy_right : 0.8112781244591328 -> 79 150 -idx: 120 entropy_left: 0.9892452969285004 entropy_right : 0.8366407419411673 -> 79 150 -idx: 122 entropy_left: 0.996485989886783 entropy_right : 0.74959525725948 -> 79 150 -idx: 127 entropy_left: 0.9798687566511527 entropy_right : 0.828055725379504 -> 79 150 -idx: 130 entropy_left: 0.9930554830121974 entropy_right : 0.6098403047164004 -> 79 150 -idx: 132 entropy_left: 0.987380023288353 entropy_right : 0.6500224216483541 -> 79 150 -idx: 133 entropy_left: 0.9910760598382222 entropy_right : 0.5225593745369408 -> 79 150 -idx: 134 entropy_left: 0.9882836109919162 entropy_right : 0.5435644431995964 -> 79 150 -idx: 135 entropy_left: 0.9917033083725818 entropy_right : 0.35335933502142136 -> 79 150 -idx: 137 entropy_left: 0.9862325350724501 entropy_right : 0.39124356362925566 -> 79 150 -idx: 138 entropy_left: 0.9898220559635811 entropy_right : 0 -> 79 150 -cut: 5.9 index: 81 -start: 79 cut: 81 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9477073729342066 ent1= 0 ent2= 0.9557589912150009 -ig= 0.018871170204135312 delta= 2.823458158619193 N 71 term 0.12609494613470648 -idx: 83 entropy_left: 0 entropy_right : 0.9411864371816835 -> 81 150 -idx: 84 entropy_left: 0.9182958340544896 entropy_right : 0.9456603046006402 -> 81 150 -idx: 87 entropy_left: 0.6500224216483541 entropy_right : 0.9182958340544896 -> 81 150 -idx: 88 entropy_left: 0.863120568566631 entropy_right : 0.9235785996175947 -> 81 150 -idx: 89 entropy_left: 0.8112781244591328 entropy_right : 0.9127341558073343 -> 81 150 -idx: 91 entropy_left: 0.9709505944546686 entropy_right : 0.9238422284571814 -> 81 150 -idx: 95 entropy_left: 0.863120568566631 entropy_right : 0.8698926856041563 -> 81 150 -idx: 97 entropy_left: 0.9544340029249649 entropy_right : 0.8835850861052532 -> 81 150 -idx: 99 entropy_left: 0.9182958340544896 entropy_right : 0.8478617451660526 -> 81 150 -idx: 101 entropy_left: 0.9709505944546686 entropy_right : 0.863120568566631 -> 81 150 -idx: 102 entropy_left: 0.9587118829771318 entropy_right : 0.8426578772022391 -> 81 150 -idx: 104 entropy_left: 0.9876925088958034 entropy_right : 0.8589810370425963 -> 81 150 -idx: 105 entropy_left: 0.9798687566511527 entropy_right : 0.8366407419411673 -> 81 150 -idx: 106 entropy_left: 0.9895875212220557 entropy_right : 0.8453509366224365 -> 81 150 -idx: 107 entropy_left: 0.9828586897127056 entropy_right : 0.8203636429576732 -> 81 150 -idx: 109 entropy_left: 0.996316519558962 entropy_right : 0.8390040613676977 -> 81 150 -idx: 110 entropy_left: 0.9922666387194963 entropy_right : 0.8112781244591328 -> 81 150 -idx: 113 entropy_left: 1.0 entropy_right : 0.8418521897563207 -> 81 150 -idx: 114 entropy_left: 0.9993375041688847 entropy_right : 0.8112781244591328 -> 81 150 -idx: 117 entropy_left: 0.9977724720899821 entropy_right : 0.8453509366224365 -> 81 150 -idx: 118 entropy_left: 0.9994730201859836 entropy_right : 0.8112781244591328 -> 81 150 -idx: 120 entropy_left: 0.9957274520849256 entropy_right : 0.8366407419411673 -> 81 150 -idx: 122 entropy_left: 0.9995708393473224 entropy_right : 0.74959525725948 -> 81 150 -idx: 127 entropy_left: 0.9876925088958034 entropy_right : 0.828055725379504 -> 81 150 -idx: 130 entropy_left: 0.997294381646235 entropy_right : 0.6098403047164004 -> 81 150 -idx: 132 entropy_left: 0.9930554830121974 entropy_right : 0.6500224216483541 -> 81 150 -idx: 133 entropy_left: 0.9957274520849256 entropy_right : 0.5225593745369408 -> 81 150 -idx: 134 entropy_left: 0.9935704757706079 entropy_right : 0.5435644431995964 -> 81 150 -idx: 135 entropy_left: 0.9960383613659183 entropy_right : 0.35335933502142136 -> 81 150 -idx: 137 entropy_left: 0.9917033083725818 entropy_right : 0.39124356362925566 -> 81 150 -idx: 138 entropy_left: 0.9944423248022588 entropy_right : 0 -> 81 150 -cut: 5.95 index: 83 -start: 81 cut: 83 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9557589912150009 ent1= 0 ent2= 0.9411864371816835 -ig= 0.04185332032843869 delta= 2.7782098139909692 N 69 term 0.12848800949625086 -idx: 84 entropy_left: 0 entropy_right : 0.9456603046006402 -> 83 150 -idx: 87 entropy_left: 0.8112781244591328 entropy_right : 0.9182958340544896 -> 83 150 -idx: 88 entropy_left: 0.9709505944546686 entropy_right : 0.9235785996175947 -> 83 150 -idx: 89 entropy_left: 0.9182958340544896 entropy_right : 0.9127341558073343 -> 83 150 -idx: 91 entropy_left: 1.0 entropy_right : 0.9238422284571814 -> 83 150 -idx: 95 entropy_left: 0.9182958340544896 entropy_right : 0.8698926856041563 -> 83 150 -idx: 97 entropy_left: 0.9852281360342516 entropy_right : 0.8835850861052532 -> 83 150 -idx: 99 entropy_left: 0.9544340029249649 entropy_right : 0.8478617451660526 -> 83 150 -idx: 101 entropy_left: 0.9910760598382222 entropy_right : 0.863120568566631 -> 83 150 -idx: 102 entropy_left: 0.9819407868640977 entropy_right : 0.8426578772022391 -> 83 150 -idx: 104 entropy_left: 0.9983636725938131 entropy_right : 0.8589810370425963 -> 83 150 -idx: 105 entropy_left: 0.9940302114769565 entropy_right : 0.8366407419411673 -> 83 150 -idx: 106 entropy_left: 0.9986359641585718 entropy_right : 0.8453509366224365 -> 83 150 -idx: 107 entropy_left: 0.9949848281859701 entropy_right : 0.8203636429576732 -> 83 150 -idx: 109 entropy_left: 1.0 entropy_right : 0.8390040613676977 -> 83 150 -idx: 110 entropy_left: 0.9990102708804813 entropy_right : 0.8112781244591328 -> 83 150 -idx: 113 entropy_left: 0.9967916319816366 entropy_right : 0.8418521897563207 -> 83 150 -idx: 114 entropy_left: 0.9992492479956565 entropy_right : 0.8112781244591328 -> 83 150 -idx: 117 entropy_left: 0.9899927915575188 entropy_right : 0.8453509366224365 -> 83 150 -idx: 118 entropy_left: 0.9946937953613058 entropy_right : 0.8112781244591328 -> 83 150 -idx: 120 entropy_left: 0.9867867202680318 entropy_right : 0.8366407419411673 -> 83 150 -idx: 122 entropy_left: 0.9957274520849256 entropy_right : 0.74959525725948 -> 83 150 -idx: 127 entropy_left: 0.976020648236615 entropy_right : 0.828055725379504 -> 83 150 -idx: 130 entropy_left: 0.9918207974218424 entropy_right : 0.6098403047164004 -> 83 150 -idx: 132 entropy_left: 0.9852281360342516 entropy_right : 0.6500224216483541 -> 83 150 -idx: 133 entropy_left: 0.9895875212220557 entropy_right : 0.5225593745369408 -> 83 150 -idx: 134 entropy_left: 0.9863676072907088 entropy_right : 0.5435644431995964 -> 83 150 -idx: 135 entropy_left: 0.990374836448575 entropy_right : 0.35335933502142136 -> 83 150 -idx: 137 entropy_left: 0.9841095278800533 entropy_right : 0.39124356362925566 -> 83 150 -idx: 138 entropy_left: 0.9882836109919162 entropy_right : 0 -> 83 150 -cut: 6.0 index: 84 -start: 83 cut: 84 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9411864371816835 ent1= 0 ent2= 0.9456603046006402 -ig= 0.009640465485530436 delta= 2.816302656895518 N 67 term 0.1322492056157309 -idx: 87 entropy_left: 0 entropy_right : 0.9182958340544896 -> 84 150 -idx: 88 entropy_left: 0.8112781244591328 entropy_right : 0.9235785996175947 -> 84 150 -idx: 89 entropy_left: 0.7219280948873623 entropy_right : 0.9127341558073343 -> 84 150 -idx: 91 entropy_left: 0.9852281360342516 entropy_right : 0.9238422284571814 -> 84 150 -idx: 95 entropy_left: 0.8453509366224365 entropy_right : 0.8698926856041563 -> 84 150 -idx: 97 entropy_left: 0.961236604722876 entropy_right : 0.8835850861052532 -> 84 150 -idx: 99 entropy_left: 0.9182958340544896 entropy_right : 0.8478617451660526 -> 84 150 -idx: 101 entropy_left: 0.9774178175281716 entropy_right : 0.863120568566631 -> 84 150 -idx: 102 entropy_left: 0.9640787648082292 entropy_right : 0.8426578772022391 -> 84 150 -idx: 104 entropy_left: 0.9927744539878084 entropy_right : 0.8589810370425963 -> 84 150 -idx: 105 entropy_left: 0.9852281360342516 entropy_right : 0.8366407419411673 -> 84 150 -idx: 106 entropy_left: 0.9940302114769565 entropy_right : 0.8453509366224365 -> 84 150 -idx: 107 entropy_left: 0.9876925088958034 entropy_right : 0.8203636429576732 -> 84 150 -idx: 109 entropy_left: 0.9988455359952018 entropy_right : 0.8390040613676977 -> 84 150 -idx: 110 entropy_left: 0.9957274520849256 entropy_right : 0.8112781244591328 -> 84 150 -idx: 113 entropy_left: 0.9991421039919088 entropy_right : 0.8418521897563207 -> 84 150 -idx: 114 entropy_left: 1.0 entropy_right : 0.8112781244591328 -> 84 150 -idx: 117 entropy_left: 0.9940302114769565 entropy_right : 0.8453509366224365 -> 84 150 -idx: 118 entropy_left: 0.9975025463691153 entropy_right : 0.8112781244591328 -> 84 150 -idx: 120 entropy_left: 0.9910760598382222 entropy_right : 0.8366407419411673 -> 84 150 -idx: 122 entropy_left: 0.9980008838722996 entropy_right : 0.74959525725948 -> 84 150 -idx: 127 entropy_left: 0.9807983646944296 entropy_right : 0.828055725379504 -> 84 150 -idx: 130 entropy_left: 0.9945386816500111 entropy_right : 0.6098403047164004 -> 84 150 -idx: 132 entropy_left: 0.9886994082884974 entropy_right : 0.6500224216483541 -> 84 150 -idx: 133 entropy_left: 0.992476003943082 entropy_right : 0.5225593745369408 -> 84 150 -idx: 134 entropy_left: 0.9895875212220557 entropy_right : 0.5435644431995964 -> 84 150 -idx: 135 entropy_left: 0.9930554830121974 entropy_right : 0.35335933502142136 -> 84 150 -idx: 137 entropy_left: 0.987380023288353 entropy_right : 0.39124356362925566 -> 84 150 -idx: 138 entropy_left: 0.9910760598382222 entropy_right : 0 -> 84 150 -cut: 6.0 index: 87 -start: 84 cut: 87 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9456603046006402 ent1= 0 ent2= 0.9182958340544896 -ig= 0.06910519027590012 delta= 2.752625980965303 N 66 term 0.13295445142414786 -idx: 88 entropy_left: 0 entropy_right : 0.9235785996175947 -> 87 150 -idx: 89 entropy_left: 1.0 entropy_right : 0.9127341558073343 -> 87 150 -idx: 91 entropy_left: 0.8112781244591328 entropy_right : 0.9238422284571814 -> 87 150 -idx: 95 entropy_left: 0.9544340029249649 entropy_right : 0.8698926856041563 -> 87 150 -idx: 97 entropy_left: 1.0 entropy_right : 0.8835850861052532 -> 87 150 -idx: 99 entropy_left: 0.9798687566511527 entropy_right : 0.8478617451660526 -> 87 150 -idx: 101 entropy_left: 1.0 entropy_right : 0.863120568566631 -> 87 150 -idx: 102 entropy_left: 0.9967916319816366 entropy_right : 0.8426578772022391 -> 87 150 -idx: 104 entropy_left: 0.9975025463691153 entropy_right : 0.8589810370425963 -> 87 150 -idx: 105 entropy_left: 1.0 entropy_right : 0.8366407419411673 -> 87 150 -idx: 106 entropy_left: 0.9980008838722996 entropy_right : 0.8453509366224365 -> 87 150 -idx: 107 entropy_left: 1.0 entropy_right : 0.8203636429576732 -> 87 150 -idx: 109 entropy_left: 0.9940302114769565 entropy_right : 0.8390040613676977 -> 87 150 -idx: 110 entropy_left: 0.9986359641585718 entropy_right : 0.8112781244591328 -> 87 150 -idx: 113 entropy_left: 0.9828586897127056 entropy_right : 0.8418521897563207 -> 87 150 -idx: 114 entropy_left: 0.9910760598382222 entropy_right : 0.8112781244591328 -> 87 150 -idx: 117 entropy_left: 0.9709505944546686 entropy_right : 0.8453509366224365 -> 87 150 -idx: 118 entropy_left: 0.9811522341999133 entropy_right : 0.8112781244591328 -> 87 150 -idx: 120 entropy_left: 0.9672947789468944 entropy_right : 0.8366407419411673 -> 87 150 -idx: 122 entropy_left: 0.9852281360342516 entropy_right : 0.74959525725948 -> 87 150 -idx: 127 entropy_left: 0.9544340029249649 entropy_right : 0.828055725379504 -> 87 150 -idx: 130 entropy_left: 0.9807983646944296 entropy_right : 0.6098403047164004 -> 87 150 -idx: 132 entropy_left: 0.9709505944546686 entropy_right : 0.6500224216483541 -> 87 150 -idx: 133 entropy_left: 0.978070970973496 entropy_right : 0.5225593745369408 -> 87 150 -idx: 134 entropy_left: 0.9733854352299557 entropy_right : 0.5435644431995964 -> 87 150 -idx: 135 entropy_left: 0.9798687566511527 entropy_right : 0.35335933502142136 -> 87 150 -idx: 137 entropy_left: 0.9709505944546686 entropy_right : 0.39124356362925566 -> 87 150 -idx: 138 entropy_left: 0.9774178175281716 entropy_right : 0 -> 87 150 -cut: 6.0 index: 88 -start: 87 cut: 88 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9182958340544896 ent1= 0 ent2= 0.9235785996175947 -ig= 0.00937721220860277 delta= 2.8179204531838145 N 63 term 0.13923994862810618 -idx: 89 entropy_left: 0 entropy_right : 0.9127341558073343 -> 88 150 -idx: 91 entropy_left: 0.9182958340544896 entropy_right : 0.9238422284571814 -> 88 150 -idx: 95 entropy_left: 0.863120568566631 entropy_right : 0.8698926856041563 -> 88 150 -idx: 97 entropy_left: 0.9910760598382222 entropy_right : 0.8835850861052532 -> 88 150 -idx: 99 entropy_left: 0.9456603046006402 entropy_right : 0.8478617451660526 -> 88 150 -idx: 101 entropy_left: 0.9957274520849256 entropy_right : 0.863120568566631 -> 88 150 -idx: 102 entropy_left: 0.9852281360342516 entropy_right : 0.8426578772022391 -> 88 150 -idx: 104 entropy_left: 1.0 entropy_right : 0.8589810370425963 -> 88 150 -idx: 105 entropy_left: 0.9975025463691153 entropy_right : 0.8366407419411673 -> 88 150 -idx: 106 entropy_left: 1.0 entropy_right : 0.8453509366224365 -> 88 150 -idx: 107 entropy_left: 0.9980008838722996 entropy_right : 0.8203636429576732 -> 88 150 -idx: 109 entropy_left: 0.9983636725938131 entropy_right : 0.8390040613676977 -> 88 150 -idx: 110 entropy_left: 1.0 entropy_right : 0.8112781244591328 -> 88 150 -idx: 113 entropy_left: 0.9895875212220557 entropy_right : 0.8418521897563207 -> 88 150 -idx: 114 entropy_left: 0.9957274520849256 entropy_right : 0.8112781244591328 -> 88 150 -idx: 117 entropy_left: 0.9784493292686189 entropy_right : 0.8453509366224365 -> 88 150 -idx: 118 entropy_left: 0.9871377743721863 entropy_right : 0.8112781244591328 -> 88 150 -idx: 120 entropy_left: 0.9744894033980523 entropy_right : 0.8366407419411673 -> 88 150 -idx: 122 entropy_left: 0.9899927915575188 entropy_right : 0.74959525725948 -> 88 150 -idx: 127 entropy_left: 0.961236604722876 entropy_right : 0.828055725379504 -> 88 150 -idx: 130 entropy_left: 0.9852281360342516 entropy_right : 0.6098403047164004 -> 88 150 -idx: 132 entropy_left: 0.976020648236615 entropy_right : 0.6500224216483541 -> 88 150 -idx: 133 entropy_left: 0.9824740868386409 entropy_right : 0.5225593745369408 -> 88 150 -idx: 134 entropy_left: 0.978070970973496 entropy_right : 0.5435644431995964 -> 88 150 -idx: 135 entropy_left: 0.9839393951635756 entropy_right : 0.35335933502142136 -> 88 150 -idx: 137 entropy_left: 0.9755259511264972 entropy_right : 0.39124356362925566 -> 88 150 -idx: 138 entropy_left: 0.9814538950336535 entropy_right : 0 -> 88 150 -cut: 6.05 index: 89 -start: 88 cut: 89 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9235785996175947 ent1= 0 ent2= 0.9127341558073343 -ig= 0.025565962452314128 delta= 2.7856660344370834 N 62 term 0.14058715116128984 -idx: 91 entropy_left: 0 entropy_right : 0.9238422284571814 -> 89 150 -idx: 95 entropy_left: 0.9182958340544896 entropy_right : 0.8698926856041563 -> 89 150 -idx: 97 entropy_left: 1.0 entropy_right : 0.8835850861052532 -> 89 150 -idx: 99 entropy_left: 0.9709505944546686 entropy_right : 0.8478617451660526 -> 89 150 -idx: 101 entropy_left: 1.0 entropy_right : 0.863120568566631 -> 89 150 -idx: 102 entropy_left: 0.9957274520849256 entropy_right : 0.8426578772022391 -> 89 150 -idx: 104 entropy_left: 0.9967916319816366 entropy_right : 0.8589810370425963 -> 89 150 -idx: 105 entropy_left: 1.0 entropy_right : 0.8366407419411673 -> 89 150 -idx: 106 entropy_left: 0.9975025463691153 entropy_right : 0.8453509366224365 -> 89 150 -idx: 107 entropy_left: 1.0 entropy_right : 0.8203636429576732 -> 89 150 -idx: 109 entropy_left: 0.9927744539878084 entropy_right : 0.8390040613676977 -> 89 150 -idx: 110 entropy_left: 0.9983636725938131 entropy_right : 0.8112781244591328 -> 89 150 -idx: 113 entropy_left: 0.9798687566511527 entropy_right : 0.8418521897563207 -> 89 150 -idx: 114 entropy_left: 0.9895875212220557 entropy_right : 0.8112781244591328 -> 89 150 -idx: 117 entropy_left: 0.9666186325481028 entropy_right : 0.8453509366224365 -> 89 150 -idx: 118 entropy_left: 0.9784493292686189 entropy_right : 0.8112781244591328 -> 89 150 -idx: 120 entropy_left: 0.9629004147713269 entropy_right : 0.8366407419411673 -> 89 150 -idx: 122 entropy_left: 0.9833761901392237 entropy_right : 0.74959525725948 -> 89 150 -idx: 127 entropy_left: 0.9494520153879484 entropy_right : 0.828055725379504 -> 89 150 -idx: 130 entropy_left: 0.9788698505067785 entropy_right : 0.6098403047164004 -> 89 150 -idx: 132 entropy_left: 0.9681647320759548 entropy_right : 0.6500224216483541 -> 89 150 -idx: 133 entropy_left: 0.976020648236615 entropy_right : 0.5225593745369408 -> 89 150 -idx: 134 entropy_left: 0.9709505944546686 entropy_right : 0.5435644431995964 -> 89 150 -idx: 135 entropy_left: 0.978070970973496 entropy_right : 0.35335933502142136 -> 89 150 -idx: 137 entropy_left: 0.9684610087601622 entropy_right : 0.39124356362925566 -> 89 150 -idx: 138 entropy_left: 0.9755259511264972 entropy_right : 0 -> 89 150 -cut: 6.1 index: 91 -start: 89 cut: 91 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9127341558073343 ent1= 0 ent2= 0.9238422284571814 -ig= 0.019181836479896575 delta= 2.8295710673572985 N 61 term 0.14322068299943963 -idx: 95 entropy_left: 0 entropy_right : 0.8698926856041563 -> 91 150 -idx: 97 entropy_left: 0.9182958340544896 entropy_right : 0.8835850861052532 -> 91 150 -idx: 99 entropy_left: 0.8112781244591328 entropy_right : 0.8478617451660526 -> 91 150 -idx: 101 entropy_left: 0.9709505944546686 entropy_right : 0.863120568566631 -> 91 150 -idx: 102 entropy_left: 0.9456603046006402 entropy_right : 0.8426578772022391 -> 91 150 -idx: 104 entropy_left: 0.9957274520849256 entropy_right : 0.8589810370425963 -> 91 150 -idx: 105 entropy_left: 0.9852281360342516 entropy_right : 0.8366407419411673 -> 91 150 -idx: 106 entropy_left: 0.9967916319816366 entropy_right : 0.8453509366224365 -> 91 150 -idx: 107 entropy_left: 0.9886994082884974 entropy_right : 0.8203636429576732 -> 91 150 -idx: 109 entropy_left: 1.0 entropy_right : 0.8390040613676977 -> 91 150 -idx: 110 entropy_left: 0.9980008838722996 entropy_right : 0.8112781244591328 -> 91 150 -idx: 113 entropy_left: 0.9940302114769565 entropy_right : 0.8418521897563207 -> 91 150 -idx: 114 entropy_left: 0.9986359641585718 entropy_right : 0.8112781244591328 -> 91 150 -idx: 117 entropy_left: 0.9828586897127056 entropy_right : 0.8453509366224365 -> 91 150 -idx: 118 entropy_left: 0.9910760598382222 entropy_right : 0.8112781244591328 -> 91 150 -idx: 120 entropy_left: 0.9784493292686189 entropy_right : 0.8366407419411673 -> 91 150 -idx: 122 entropy_left: 0.9932338197397066 entropy_right : 0.74959525725948 -> 91 150 -idx: 127 entropy_left: 0.9640787648082292 entropy_right : 0.828055725379504 -> 91 150 -idx: 130 entropy_left: 0.9881108365218301 entropy_right : 0.6098403047164004 -> 91 150 -idx: 132 entropy_left: 0.9788698505067785 entropy_right : 0.6500224216483541 -> 91 150 -idx: 133 entropy_left: 0.9852281360342516 entropy_right : 0.5225593745369408 -> 91 150 -idx: 134 entropy_left: 0.9807983646944296 entropy_right : 0.5435644431995964 -> 91 150 -idx: 135 entropy_left: 0.9865446300055645 entropy_right : 0.35335933502142136 -> 91 150 -idx: 137 entropy_left: 0.978070970973496 entropy_right : 0.39124356362925566 -> 91 150 -idx: 138 entropy_left: 0.9839393951635756 entropy_right : 0 -> 91 150 -cut: 6.15 index: 95 -start: 91 cut: 95 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9238422284571814 ent1= 0 ent2= 0.8698926856041563 -ig= 0.11292531814822215 delta= 2.6994558363515537 N 59 term 0.14504130222845976 -idx: 97 entropy_left: 0 entropy_right : 0.8835850861052532 -> 95 150 -idx: 99 entropy_left: 1.0 entropy_right : 0.8478617451660526 -> 95 150 -idx: 101 entropy_left: 0.9182958340544896 entropy_right : 0.863120568566631 -> 95 150 -idx: 102 entropy_left: 0.9852281360342516 entropy_right : 0.8426578772022391 -> 95 150 -idx: 104 entropy_left: 0.9182958340544896 entropy_right : 0.8589810370425963 -> 95 150 -idx: 105 entropy_left: 0.9709505944546686 entropy_right : 0.8366407419411673 -> 95 150 -idx: 106 entropy_left: 0.9456603046006402 entropy_right : 0.8453509366224365 -> 95 150 -idx: 107 entropy_left: 0.9798687566511527 entropy_right : 0.8203636429576732 -> 95 150 -idx: 109 entropy_left: 0.9402859586706309 entropy_right : 0.8390040613676977 -> 95 150 -idx: 110 entropy_left: 0.9709505944546686 entropy_right : 0.8112781244591328 -> 95 150 -idx: 113 entropy_left: 0.9182958340544896 entropy_right : 0.8418521897563207 -> 95 150 -idx: 114 entropy_left: 0.9494520153879484 entropy_right : 0.8112781244591328 -> 95 150 -idx: 117 entropy_left: 0.9023932827949789 entropy_right : 0.8453509366224365 -> 95 150 -idx: 118 entropy_left: 0.9321115676166747 entropy_right : 0.8112781244591328 -> 95 150 -idx: 120 entropy_left: 0.904381457724494 entropy_right : 0.8366407419411673 -> 95 150 -idx: 122 entropy_left: 0.9509560484549725 entropy_right : 0.74959525725948 -> 95 150 -idx: 127 entropy_left: 0.8960382325345575 entropy_right : 0.828055725379504 -> 95 150 -idx: 130 entropy_left: 0.9517626756348311 entropy_right : 0.6098403047164004 -> 95 150 -idx: 132 entropy_left: 0.9352691398683566 entropy_right : 0.6500224216483541 -> 95 150 -idx: 133 entropy_left: 0.9494520153879484 entropy_right : 0.5225593745369408 -> 95 150 -idx: 134 entropy_left: 0.9418285354475157 entropy_right : 0.5435644431995964 -> 95 150 -idx: 135 entropy_left: 0.9544340029249649 entropy_right : 0.35335933502142136 -> 95 150 -idx: 137 entropy_left: 0.9402859586706309 entropy_right : 0.39124356362925566 -> 95 150 -idx: 138 entropy_left: 0.9522656254366642 entropy_right : 0 -> 95 150 -cut: 6.2 index: 97 -start: 95 cut: 97 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8698926856041563 ent1= 0 ent2= 0.8835850861052532 -ig= 0.018437966266366845 delta= 2.8347397230597977 N 55 term 0.15617504045860486 -idx: 99 entropy_left: 0 entropy_right : 0.8478617451660526 -> 97 150 -idx: 101 entropy_left: 1.0 entropy_right : 0.863120568566631 -> 97 150 -idx: 102 entropy_left: 0.9709505944546686 entropy_right : 0.8426578772022391 -> 97 150 -idx: 104 entropy_left: 0.9852281360342516 entropy_right : 0.8589810370425963 -> 97 150 -idx: 105 entropy_left: 1.0 entropy_right : 0.8366407419411673 -> 97 150 -idx: 106 entropy_left: 0.9910760598382222 entropy_right : 0.8453509366224365 -> 97 150 -idx: 107 entropy_left: 1.0 entropy_right : 0.8203636429576732 -> 97 150 -idx: 109 entropy_left: 0.9798687566511527 entropy_right : 0.8390040613676977 -> 97 150 -idx: 110 entropy_left: 0.9957274520849256 entropy_right : 0.8112781244591328 -> 97 150 -idx: 113 entropy_left: 0.9544340029249649 entropy_right : 0.8418521897563207 -> 97 150 -idx: 114 entropy_left: 0.9774178175281716 entropy_right : 0.8112781244591328 -> 97 150 -idx: 117 entropy_left: 0.934068055375491 entropy_right : 0.8453509366224365 -> 97 150 -idx: 118 entropy_left: 0.9587118829771318 entropy_right : 0.8112781244591328 -> 97 150 -idx: 120 entropy_left: 0.9321115676166747 entropy_right : 0.8366407419411673 -> 97 150 -idx: 122 entropy_left: 0.9709505944546686 entropy_right : 0.74959525725948 -> 97 150 -idx: 127 entropy_left: 0.9182958340544896 entropy_right : 0.828055725379504 -> 97 150 -idx: 130 entropy_left: 0.9672947789468944 entropy_right : 0.6098403047164004 -> 97 150 -idx: 132 entropy_left: 0.9517626756348311 entropy_right : 0.6500224216483541 -> 97 150 -idx: 133 entropy_left: 0.9640787648082292 entropy_right : 0.5225593745369408 -> 97 150 -idx: 134 entropy_left: 0.9568886656798212 entropy_right : 0.5435644431995964 -> 97 150 -idx: 135 entropy_left: 0.9677884628267679 entropy_right : 0.35335933502142136 -> 97 150 -idx: 137 entropy_left: 0.9544340029249649 entropy_right : 0.39124356362925566 -> 97 150 -idx: 138 entropy_left: 0.9649567669505688 entropy_right : 0 -> 97 150 -cut: 6.25 index: 99 -start: 97 cut: 99 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8835850861052532 ent1= 0 ent2= 0.8478617451660526 -ig= 0.06771812377565545 delta= 2.735908240179203 N 53 term 0.15917637657208103 -idx: 101 entropy_left: 0 entropy_right : 0.863120568566631 -> 99 150 -idx: 102 entropy_left: 0.9182958340544896 entropy_right : 0.8426578772022391 -> 99 150 -idx: 104 entropy_left: 0.7219280948873623 entropy_right : 0.8589810370425963 -> 99 150 -idx: 105 entropy_left: 0.9182958340544896 entropy_right : 0.8366407419411673 -> 99 150 -idx: 106 entropy_left: 0.863120568566631 entropy_right : 0.8453509366224365 -> 99 150 -idx: 107 entropy_left: 0.9544340029249649 entropy_right : 0.8203636429576732 -> 99 150 -idx: 109 entropy_left: 0.8812908992306927 entropy_right : 0.8390040613676977 -> 99 150 -idx: 110 entropy_left: 0.9456603046006402 entropy_right : 0.8112781244591328 -> 99 150 -idx: 113 entropy_left: 0.863120568566631 entropy_right : 0.8418521897563207 -> 99 150 -idx: 114 entropy_left: 0.9182958340544896 entropy_right : 0.8112781244591328 -> 99 150 -idx: 117 entropy_left: 0.8524051786494786 entropy_right : 0.8453509366224365 -> 99 150 -idx: 118 entropy_left: 0.8997437586982626 entropy_right : 0.8112781244591328 -> 99 150 -idx: 120 entropy_left: 0.863120568566631 entropy_right : 0.8366407419411673 -> 99 150 -idx: 122 entropy_left: 0.9321115676166747 entropy_right : 0.74959525725948 -> 99 150 -idx: 127 entropy_left: 0.863120568566631 entropy_right : 0.828055725379504 -> 99 150 -idx: 130 entropy_left: 0.9383153522334069 entropy_right : 0.6098403047164004 -> 99 150 -idx: 132 entropy_left: 0.9182958340544896 entropy_right : 0.6500224216483541 -> 99 150 -idx: 133 entropy_left: 0.9366673818775626 entropy_right : 0.5225593745369408 -> 99 150 -idx: 134 entropy_left: 0.9275265884316759 entropy_right : 0.5435644431995964 -> 99 150 -idx: 135 entropy_left: 0.943601631299382 entropy_right : 0.35335933502142136 -> 99 150 -idx: 137 entropy_left: 0.9268190639645772 entropy_right : 0.39124356362925566 -> 99 150 -idx: 138 entropy_left: 0.9418285354475157 entropy_right : 0 -> 99 150 -cut: 6.3 index: 101 -start: 99 cut: 101 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8478617451660526 ent1= 0 ent2= 0.863120568566631 -ig= 0.018589042033407166 delta= 2.837872568858761 N 51 term 0.16630840703202912 -idx: 102 entropy_left: 0 entropy_right : 0.8426578772022391 -> 101 150 -idx: 104 entropy_left: 0.9182958340544896 entropy_right : 0.8589810370425963 -> 101 150 -idx: 105 entropy_left: 1.0 entropy_right : 0.8366407419411673 -> 101 150 -idx: 106 entropy_left: 0.9709505944546686 entropy_right : 0.8453509366224365 -> 101 150 -idx: 107 entropy_left: 1.0 entropy_right : 0.8203636429576732 -> 101 150 -idx: 109 entropy_left: 0.9544340029249649 entropy_right : 0.8390040613676977 -> 101 150 -idx: 110 entropy_left: 0.9910760598382222 entropy_right : 0.8112781244591328 -> 101 150 -idx: 113 entropy_left: 0.9182958340544896 entropy_right : 0.8418521897563207 -> 101 150 -idx: 114 entropy_left: 0.961236604722876 entropy_right : 0.8112781244591328 -> 101 150 -idx: 117 entropy_left: 0.8960382325345575 entropy_right : 0.8453509366224365 -> 101 150 -idx: 118 entropy_left: 0.9366673818775626 entropy_right : 0.8112781244591328 -> 101 150 -idx: 120 entropy_left: 0.8997437586982626 entropy_right : 0.8366407419411673 -> 101 150 -idx: 122 entropy_left: 0.9587118829771318 entropy_right : 0.74959525725948 -> 101 150 -idx: 127 entropy_left: 0.8904916402194913 entropy_right : 0.828055725379504 -> 101 150 -idx: 130 entropy_left: 0.9575534837147482 entropy_right : 0.6098403047164004 -> 101 150 -idx: 132 entropy_left: 0.9383153522334069 entropy_right : 0.6500224216483541 -> 101 150 -idx: 133 entropy_left: 0.9544340029249649 entropy_right : 0.5225593745369408 -> 101 150 -idx: 134 entropy_left: 0.9456603046006402 entropy_right : 0.5435644431995964 -> 101 150 -idx: 135 entropy_left: 0.9596868937742169 entropy_right : 0.35335933502142136 -> 101 150 -idx: 137 entropy_left: 0.943601631299382 entropy_right : 0.39124356362925566 -> 101 150 -idx: 138 entropy_left: 0.9568886656798212 entropy_right : 0 -> 101 150 -cut: 6.3 index: 102 -start: 101 cut: 102 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.863120568566631 ent1= 0 ent2= 0.8426578772022391 -ig= 0.03765979089913152 delta= 2.7664295393288203 N 49 term 0.17043657224591788 -idx: 104 entropy_left: 0 entropy_right : 0.8589810370425963 -> 102 150 -idx: 105 entropy_left: 0.9182958340544896 entropy_right : 0.8366407419411673 -> 102 150 -idx: 106 entropy_left: 0.8112781244591328 entropy_right : 0.8453509366224365 -> 102 150 -idx: 107 entropy_left: 0.9709505944546686 entropy_right : 0.8203636429576732 -> 102 150 -idx: 109 entropy_left: 0.863120568566631 entropy_right : 0.8390040613676977 -> 102 150 -idx: 110 entropy_left: 0.9544340029249649 entropy_right : 0.8112781244591328 -> 102 150 -idx: 113 entropy_left: 0.8453509366224365 entropy_right : 0.8418521897563207 -> 102 150 -idx: 114 entropy_left: 0.9182958340544896 entropy_right : 0.8112781244591328 -> 102 150 -idx: 117 entropy_left: 0.8366407419411673 entropy_right : 0.8453509366224365 -> 102 150 -idx: 118 entropy_left: 0.8960382325345575 entropy_right : 0.8112781244591328 -> 102 150 -idx: 120 entropy_left: 0.8524051786494786 entropy_right : 0.8366407419411673 -> 102 150 -idx: 122 entropy_left: 0.934068055375491 entropy_right : 0.74959525725948 -> 102 150 -idx: 127 entropy_left: 0.8554508105601307 entropy_right : 0.828055725379504 -> 102 150 -idx: 130 entropy_left: 0.9402859586706309 entropy_right : 0.6098403047164004 -> 102 150 -idx: 132 entropy_left: 0.9182958340544896 entropy_right : 0.6500224216483541 -> 102 150 -idx: 133 entropy_left: 0.9383153522334069 entropy_right : 0.5225593745369408 -> 102 150 -idx: 134 entropy_left: 0.9283620723948678 entropy_right : 0.5435644431995964 -> 102 150 -idx: 135 entropy_left: 0.9456603046006402 entropy_right : 0.35335933502142136 -> 102 150 -idx: 137 entropy_left: 0.9275265884316759 entropy_right : 0.39124356362925566 -> 102 150 -idx: 138 entropy_left: 0.943601631299382 entropy_right : 0 -> 102 150 -cut: 6.3 index: 104 -start: 102 cut: 104 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8426578772022391 ent1= 0 ent2= 0.8589810370425963 -ig= 0.019467716703084226 delta= 2.8400012417383187 N 48 term 0.17488729361283242 -idx: 105 entropy_left: 0 entropy_right : 0.8366407419411673 -> 104 150 -idx: 106 entropy_left: 1.0 entropy_right : 0.8453509366224365 -> 104 150 -idx: 107 entropy_left: 0.9182958340544896 entropy_right : 0.8203636429576732 -> 104 150 -idx: 109 entropy_left: 0.9709505944546686 entropy_right : 0.8390040613676977 -> 104 150 -idx: 110 entropy_left: 1.0 entropy_right : 0.8112781244591328 -> 104 150 -idx: 113 entropy_left: 0.9182958340544896 entropy_right : 0.8418521897563207 -> 104 150 -idx: 114 entropy_left: 0.9709505944546686 entropy_right : 0.8112781244591328 -> 104 150 -idx: 117 entropy_left: 0.8904916402194913 entropy_right : 0.8453509366224365 -> 104 150 -idx: 118 entropy_left: 0.9402859586706309 entropy_right : 0.8112781244591328 -> 104 150 -idx: 120 entropy_left: 0.8960382325345575 entropy_right : 0.8366407419411673 -> 104 150 -idx: 122 entropy_left: 0.9640787648082292 entropy_right : 0.74959525725948 -> 104 150 -idx: 127 entropy_left: 0.8865408928220899 entropy_right : 0.828055725379504 -> 104 150 -idx: 130 entropy_left: 0.961236604722876 entropy_right : 0.6098403047164004 -> 104 150 -idx: 132 entropy_left: 0.9402859586706309 entropy_right : 0.6500224216483541 -> 104 150 -idx: 133 entropy_left: 0.9575534837147482 entropy_right : 0.5225593745369408 -> 104 150 -idx: 134 entropy_left: 0.9480782435939054 entropy_right : 0.5435644431995964 -> 104 150 -idx: 135 entropy_left: 0.9629004147713269 entropy_right : 0.35335933502142136 -> 104 150 -idx: 137 entropy_left: 0.9456603046006402 entropy_right : 0.39124356362925566 -> 104 150 -idx: 138 entropy_left: 0.9596868937742169 entropy_right : 0 -> 104 150 -cut: 6.3 index: 105 -start: 104 cut: 105 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8589810370425963 ent1= 0 ent2= 0.8366407419411673 -ig= 0.040528137317541346 delta= 2.762674331854746 N 46 term 0.17944624843879176 -idx: 106 entropy_left: 0 entropy_right : 0.8453509366224365 -> 105 150 -idx: 107 entropy_left: 1.0 entropy_right : 0.8203636429576732 -> 105 150 -idx: 109 entropy_left: 0.8112781244591328 entropy_right : 0.8390040613676977 -> 105 150 -idx: 110 entropy_left: 0.9709505944546686 entropy_right : 0.8112781244591328 -> 105 150 -idx: 113 entropy_left: 0.8112781244591328 entropy_right : 0.8418521897563207 -> 105 150 -idx: 114 entropy_left: 0.9182958340544896 entropy_right : 0.8112781244591328 -> 105 150 -idx: 117 entropy_left: 0.8112781244591328 entropy_right : 0.8453509366224365 -> 105 150 -idx: 118 entropy_left: 0.8904916402194913 entropy_right : 0.8112781244591328 -> 105 150 -idx: 120 entropy_left: 0.8366407419411673 entropy_right : 0.8366407419411673 -> 105 150 -idx: 122 entropy_left: 0.9366673818775626 entropy_right : 0.74959525725948 -> 105 150 -idx: 127 entropy_left: 0.8453509366224365 entropy_right : 0.828055725379504 -> 105 150 -idx: 130 entropy_left: 0.9426831892554922 entropy_right : 0.6098403047164004 -> 105 150 -idx: 132 entropy_left: 0.9182958340544896 entropy_right : 0.6500224216483541 -> 105 150 -idx: 133 entropy_left: 0.9402859586706309 entropy_right : 0.5225593745369408 -> 105 150 -idx: 134 entropy_left: 0.9293636260137187 entropy_right : 0.5435644431995964 -> 105 150 -idx: 135 entropy_left: 0.9480782435939054 entropy_right : 0.35335933502142136 -> 105 150 -idx: 137 entropy_left: 0.9283620723948678 entropy_right : 0.39124356362925566 -> 105 150 -idx: 138 entropy_left: 0.9456603046006402 entropy_right : 0 -> 105 150 -cut: 6.3 index: 106 -start: 105 cut: 106 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8366407419411673 ent1= 0 ent2= 0.8453509366224365 -ig= 0.010075381688118279 delta= 2.824775311420143 N 45 term 0.18409348733460978 -idx: 107 entropy_left: 0 entropy_right : 0.8203636429576732 -> 106 150 -idx: 109 entropy_left: 0.9182958340544896 entropy_right : 0.8390040613676977 -> 106 150 -idx: 110 entropy_left: 1.0 entropy_right : 0.8112781244591328 -> 106 150 -idx: 113 entropy_left: 0.863120568566631 entropy_right : 0.8418521897563207 -> 106 150 -idx: 114 entropy_left: 0.9544340029249649 entropy_right : 0.8112781244591328 -> 106 150 -idx: 117 entropy_left: 0.8453509366224365 entropy_right : 0.8453509366224365 -> 106 150 -idx: 118 entropy_left: 0.9182958340544896 entropy_right : 0.8112781244591328 -> 106 150 -idx: 120 entropy_left: 0.863120568566631 entropy_right : 0.8366407419411673 -> 106 150 -idx: 122 entropy_left: 0.9544340029249649 entropy_right : 0.74959525725948 -> 106 150 -idx: 127 entropy_left: 0.863120568566631 entropy_right : 0.828055725379504 -> 106 150 -idx: 130 entropy_left: 0.9544340029249649 entropy_right : 0.6098403047164004 -> 106 150 -idx: 132 entropy_left: 0.930586129131993 entropy_right : 0.6500224216483541 -> 106 150 -idx: 133 entropy_left: 0.9509560484549725 entropy_right : 0.5225593745369408 -> 106 150 -idx: 134 entropy_left: 0.9402859586706309 entropy_right : 0.5435644431995964 -> 106 150 -idx: 135 entropy_left: 0.9575534837147482 entropy_right : 0.35335933502142136 -> 106 150 -idx: 137 entropy_left: 0.9383153522334069 entropy_right : 0.39124356362925566 -> 106 150 -idx: 138 entropy_left: 0.9544340029249649 entropy_right : 0 -> 106 150 -cut: 6.3 index: 107 -start: 106 cut: 107 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8453509366224365 ent1= 0 ent2= 0.8203636429576732 -ig= 0.043631921913801386 delta= 2.7573803347280776 N 44 term 0.18599193385068583 -idx: 109 entropy_left: 0 entropy_right : 0.8390040613676977 -> 107 150 -idx: 110 entropy_left: 0.9182958340544896 entropy_right : 0.8112781244591328 -> 107 150 -idx: 113 entropy_left: 0.6500224216483541 entropy_right : 0.8418521897563207 -> 107 150 -idx: 114 entropy_left: 0.863120568566631 entropy_right : 0.8112781244591328 -> 107 150 -idx: 117 entropy_left: 0.7219280948873623 entropy_right : 0.8453509366224365 -> 107 150 -idx: 118 entropy_left: 0.8453509366224365 entropy_right : 0.8112781244591328 -> 107 150 -idx: 120 entropy_left: 0.7793498372920852 entropy_right : 0.8366407419411673 -> 107 150 -idx: 122 entropy_left: 0.9182958340544896 entropy_right : 0.74959525725948 -> 107 150 -idx: 127 entropy_left: 0.8112781244591328 entropy_right : 0.828055725379504 -> 107 150 -idx: 130 entropy_left: 0.9321115676166747 entropy_right : 0.6098403047164004 -> 107 150 -idx: 132 entropy_left: 0.904381457724494 entropy_right : 0.6500224216483541 -> 107 150 -idx: 133 entropy_left: 0.930586129131993 entropy_right : 0.5225593745369408 -> 107 150 -idx: 134 entropy_left: 0.9182958340544896 entropy_right : 0.5435644431995964 -> 107 150 -idx: 135 entropy_left: 0.9402859586706309 entropy_right : 0.35335933502142136 -> 107 150 -idx: 137 entropy_left: 0.9182958340544896 entropy_right : 0.39124356362925566 -> 107 150 -idx: 138 entropy_left: 0.9383153522334069 entropy_right : 0 -> 107 150 -cut: 6.4 index: 109 -start: 107 cut: 109 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8203636429576732 ent1= 0 ent2= 0.8390040613676977 -ig= 0.020383026304752083 delta= 2.8446357588776534 N 43 term 0.19155705073619567 -idx: 110 entropy_left: 0 entropy_right : 0.8112781244591328 -> 109 150 -idx: 113 entropy_left: 0.8112781244591328 entropy_right : 0.8418521897563207 -> 109 150 -idx: 114 entropy_left: 0.9709505944546686 entropy_right : 0.8112781244591328 -> 109 150 -idx: 117 entropy_left: 0.8112781244591328 entropy_right : 0.8453509366224365 -> 109 150 -idx: 118 entropy_left: 0.9182958340544896 entropy_right : 0.8112781244591328 -> 109 150 -idx: 120 entropy_left: 0.8453509366224365 entropy_right : 0.8366407419411673 -> 109 150 -idx: 122 entropy_left: 0.961236604722876 entropy_right : 0.74959525725948 -> 109 150 -idx: 127 entropy_left: 0.8524051786494786 entropy_right : 0.828055725379504 -> 109 150 -idx: 130 entropy_left: 0.9587118829771318 entropy_right : 0.6098403047164004 -> 109 150 -idx: 132 entropy_left: 0.9321115676166747 entropy_right : 0.6500224216483541 -> 109 150 -idx: 133 entropy_left: 0.9544340029249649 entropy_right : 0.5225593745369408 -> 109 150 -idx: 134 entropy_left: 0.9426831892554922 entropy_right : 0.5435644431995964 -> 109 150 -idx: 135 entropy_left: 0.961236604722876 entropy_right : 0.35335933502142136 -> 109 150 -idx: 137 entropy_left: 0.9402859586706309 entropy_right : 0.39124356362925566 -> 109 150 -idx: 138 entropy_left: 0.9575534837147482 entropy_right : 0 -> 109 150 -cut: 6.4 index: 110 -start: 109 cut: 110 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8390040613676977 ent1= 0 ent2= 0.8112781244591328 -ig= 0.04751320823683636 delta= 2.7519030482404743 N 41 term 0.19692271080799603 -idx: 113 entropy_left: 0 entropy_right : 0.8418521897563207 -> 110 150 -idx: 114 entropy_left: 0.8112781244591328 entropy_right : 0.8112781244591328 -> 110 150 -idx: 117 entropy_left: 0.5916727785823275 entropy_right : 0.8453509366224365 -> 110 150 -idx: 118 entropy_left: 0.8112781244591328 entropy_right : 0.8112781244591328 -> 110 150 -idx: 120 entropy_left: 0.7219280948873623 entropy_right : 0.8366407419411673 -> 110 150 -idx: 122 entropy_left: 0.9182958340544896 entropy_right : 0.74959525725948 -> 110 150 -idx: 127 entropy_left: 0.7871265862012691 entropy_right : 0.828055725379504 -> 110 150 -idx: 130 entropy_left: 0.934068055375491 entropy_right : 0.6098403047164004 -> 110 150 -idx: 132 entropy_left: 0.9023932827949789 entropy_right : 0.6500224216483541 -> 110 150 -idx: 133 entropy_left: 0.9321115676166747 entropy_right : 0.5225593745369408 -> 110 150 -idx: 134 entropy_left: 0.9182958340544896 entropy_right : 0.5435644431995964 -> 110 150 -idx: 135 entropy_left: 0.9426831892554922 entropy_right : 0.35335933502142136 -> 110 150 -idx: 137 entropy_left: 0.9182958340544896 entropy_right : 0.39124356362925566 -> 110 150 -idx: 138 entropy_left: 0.9402859586706309 entropy_right : 0 -> 110 150 -cut: 6.4 index: 113 -start: 110 cut: 113 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8112781244591328 ent1= 0 ent2= 0.8418521897563207 -ig= 0.03256484893453615 delta= 2.86850305265198 N 40 term 0.20384763178785575 -idx: 114 entropy_left: 0 entropy_right : 0.8112781244591328 -> 113 150 -idx: 117 entropy_left: 0.8112781244591328 entropy_right : 0.8453509366224365 -> 113 150 -idx: 118 entropy_left: 0.9709505944546686 entropy_right : 0.8112781244591328 -> 113 150 -idx: 120 entropy_left: 0.863120568566631 entropy_right : 0.8366407419411673 -> 113 150 -idx: 122 entropy_left: 0.9910760598382222 entropy_right : 0.74959525725948 -> 113 150 -idx: 127 entropy_left: 0.863120568566631 entropy_right : 0.828055725379504 -> 113 150 -idx: 130 entropy_left: 0.9774178175281716 entropy_right : 0.6098403047164004 -> 113 150 -idx: 132 entropy_left: 0.9494520153879484 entropy_right : 0.6500224216483541 -> 113 150 -idx: 133 entropy_left: 0.9709505944546686 entropy_right : 0.5225593745369408 -> 113 150 -idx: 134 entropy_left: 0.9587118829771318 entropy_right : 0.5435644431995964 -> 113 150 -idx: 135 entropy_left: 0.976020648236615 entropy_right : 0.35335933502142136 -> 113 150 -idx: 137 entropy_left: 0.9544340029249649 entropy_right : 0.39124356362925566 -> 113 150 -idx: 138 entropy_left: 0.9709505944546686 entropy_right : 0 -> 113 150 -cut: 6.4 index: 114 -start: 113 cut: 114 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8418521897563207 ent1= 0 ent2= 0.8112781244591328 -ig= 0.05250050109338056 delta= 2.746206791463228 N 37 term 0.21394950791636597 -idx: 117 entropy_left: 0 entropy_right : 0.8453509366224365 -> 114 150 -idx: 118 entropy_left: 0.8112781244591328 entropy_right : 0.8112781244591328 -> 114 150 -idx: 120 entropy_left: 0.6500224216483541 entropy_right : 0.8366407419411673 -> 114 150 -idx: 122 entropy_left: 0.9544340029249649 entropy_right : 0.74959525725948 -> 114 150 -idx: 127 entropy_left: 0.7793498372920852 entropy_right : 0.828055725379504 -> 114 150 -idx: 130 entropy_left: 0.9544340029249649 entropy_right : 0.6098403047164004 -> 114 150 -idx: 132 entropy_left: 0.9182958340544896 entropy_right : 0.6500224216483541 -> 114 150 -idx: 133 entropy_left: 0.9494520153879484 entropy_right : 0.5225593745369408 -> 114 150 -idx: 134 entropy_left: 0.934068055375491 entropy_right : 0.5435644431995964 -> 114 150 -idx: 135 entropy_left: 0.9587118829771318 entropy_right : 0.35335933502142136 -> 114 150 -idx: 137 entropy_left: 0.9321115676166747 entropy_right : 0.39124356362925566 -> 114 150 -idx: 138 entropy_left: 0.9544340029249649 entropy_right : 0 -> 114 150 -cut: 6.5 index: 117 -start: 114 cut: 117 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8112781244591328 ent1= 0 ent2= 0.8453509366224365 -ig= 0.03637309922189935 delta= 2.8755005463842114 N 36 term 0.22235509898136602 -idx: 118 entropy_left: 0 entropy_right : 0.8112781244591328 -> 117 150 -idx: 120 entropy_left: 0.9182958340544896 entropy_right : 0.8366407419411673 -> 117 150 -idx: 122 entropy_left: 0.9709505944546686 entropy_right : 0.74959525725948 -> 117 150 -idx: 127 entropy_left: 0.8812908992306927 entropy_right : 0.828055725379504 -> 117 150 -idx: 130 entropy_left: 0.9957274520849256 entropy_right : 0.6098403047164004 -> 117 150 -idx: 132 entropy_left: 0.9709505944546686 entropy_right : 0.6500224216483541 -> 117 150 -idx: 133 entropy_left: 0.9886994082884974 entropy_right : 0.5225593745369408 -> 117 150 -idx: 134 entropy_left: 0.9774178175281716 entropy_right : 0.5435644431995964 -> 117 150 -idx: 135 entropy_left: 0.9910760598382222 entropy_right : 0.35335933502142136 -> 117 150 -idx: 137 entropy_left: 0.9709505944546686 entropy_right : 0.39124356362925566 -> 117 150 -idx: 138 entropy_left: 0.9852281360342516 entropy_right : 0 -> 117 150 -cut: 6.5 index: 118 -start: 117 cut: 118 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8453509366224365 ent1= 0 ent2= 0.8112781244591328 -ig= 0.058656997752974394 delta= 2.739209297730997 N 33 term 0.23452149387063628 -idx: 120 entropy_left: 0 entropy_right : 0.8366407419411673 -> 118 150 -idx: 122 entropy_left: 1.0 entropy_right : 0.74959525725948 -> 118 150 -idx: 127 entropy_left: 0.7642045065086203 entropy_right : 0.828055725379504 -> 118 150 -idx: 130 entropy_left: 0.9798687566511527 entropy_right : 0.6098403047164004 -> 118 150 -idx: 132 entropy_left: 0.9402859586706309 entropy_right : 0.6500224216483541 -> 118 150 -idx: 133 entropy_left: 0.9709505944546686 entropy_right : 0.5225593745369408 -> 118 150 -idx: 134 entropy_left: 0.9544340029249649 entropy_right : 0.5435644431995964 -> 118 150 -idx: 135 entropy_left: 0.9774178175281716 entropy_right : 0.35335933502142136 -> 118 150 -idx: 137 entropy_left: 0.9494520153879484 entropy_right : 0.39124356362925566 -> 118 150 -idx: 138 entropy_left: 0.9709505944546686 entropy_right : 0 -> 118 150 -cut: 6.55 index: 120 -start: 118 cut: 120 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8112781244591328 ent1= 0 ent2= 0.8366407419411673 -ig= 0.02692742888928845 delta= 2.858080157021673 N 32 term 0.24413363960651716 -idx: 122 entropy_left: 0 entropy_right : 0.74959525725948 -> 120 150 -idx: 127 entropy_left: 0.863120568566631 entropy_right : 0.828055725379504 -> 120 150 -idx: 130 entropy_left: 1.0 entropy_right : 0.6098403047164004 -> 120 150 -idx: 132 entropy_left: 0.9798687566511527 entropy_right : 0.6500224216483541 -> 120 150 -idx: 133 entropy_left: 0.9957274520849256 entropy_right : 0.5225593745369408 -> 120 150 -idx: 134 entropy_left: 0.9852281360342516 entropy_right : 0.5435644431995964 -> 120 150 -idx: 135 entropy_left: 0.9967916319816366 entropy_right : 0.35335933502142136 -> 120 150 -idx: 137 entropy_left: 0.9774178175281716 entropy_right : 0.39124356362925566 -> 120 150 -idx: 138 entropy_left: 0.9910760598382222 entropy_right : 0 -> 120 150 -cut: 6.65 index: 122 -start: 120 cut: 122 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8366407419411673 ent1= 0 ent2= 0.74959525725948 -ig= 0.13701850183231934 delta= 2.6332639526942296 N 30 term 0.24970816492739342 -idx: 127 entropy_left: 0 entropy_right : 0.828055725379504 -> 122 150 -idx: 130 entropy_left: 0.9544340029249649 entropy_right : 0.6098403047164004 -> 122 150 -idx: 132 entropy_left: 0.8812908992306927 entropy_right : 0.6500224216483541 -> 122 150 -idx: 133 entropy_left: 0.9456603046006402 entropy_right : 0.5225593745369408 -> 122 150 -idx: 134 entropy_left: 0.9182958340544896 entropy_right : 0.5435644431995964 -> 122 150 -idx: 135 entropy_left: 0.961236604722876 entropy_right : 0.35335933502142136 -> 122 150 -idx: 137 entropy_left: 0.9182958340544896 entropy_right : 0.39124356362925566 -> 122 150 -idx: 138 entropy_left: 0.9544340029249649 entropy_right : 0 -> 122 150 -cut: 6.7 index: 127 -start: 122 cut: 127 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.74959525725948 ent1= 0 ent2= 0.828055725379504 -ig= 0.06940662569774458 delta= 2.9642758582976523 N 28 term 0.2756844057307543 -idx: 130 entropy_left: 0 entropy_right : 0.6098403047164004 -> 127 150 -idx: 132 entropy_left: 0.9709505944546686 entropy_right : 0.6500224216483541 -> 127 150 -idx: 133 entropy_left: 0.9182958340544896 entropy_right : 0.5225593745369408 -> 127 150 -idx: 134 entropy_left: 0.9852281360342516 entropy_right : 0.5435644431995964 -> 127 150 -idx: 135 entropy_left: 0.9544340029249649 entropy_right : 0.35335933502142136 -> 127 150 -idx: 137 entropy_left: 1.0 entropy_right : 0.39124356362925566 -> 127 150 -idx: 138 entropy_left: 0.9940302114769565 entropy_right : 0 -> 127 150 -cut: 6.75 index: 130 -start: 127 cut: 130 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.828055725379504 ent1= 0 ent2= 0.6098403047164004 -ig= 0.2977598082348081 delta= 2.370924080731397 N 23 term 0.2969719869290737 -¡Ding! 6.75 130 -idx: 132 entropy_left: 0 entropy_right : 0.6500224216483541 -> 130 150 -idx: 133 entropy_left: 0.9182958340544896 entropy_right : 0.5225593745369408 -> 130 150 -idx: 134 entropy_left: 0.8112781244591328 entropy_right : 0.5435644431995964 -> 130 150 -idx: 135 entropy_left: 0.9709505944546686 entropy_right : 0.35335933502142136 -> 130 150 -idx: 137 entropy_left: 0.863120568566631 entropy_right : 0.39124356362925566 -> 130 150 -idx: 138 entropy_left: 0.9544340029249649 entropy_right : 0 -> 130 150 -cut: 6.8 index: 132 -start: 130 cut: 132 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.6098403047164004 ent1= 0 ent2= 0.6500224216483541 -ig= 0.024820125232881685 delta= 2.887719155921512 N 20 term 0.3567823334682549 -idx: 133 entropy_left: 0 entropy_right : 0.5225593745369408 -> 132 150 -idx: 134 entropy_left: 1.0 entropy_right : 0.5435644431995964 -> 132 150 -idx: 135 entropy_left: 0.9182958340544896 entropy_right : 0.35335933502142136 -> 132 150 -idx: 137 entropy_left: 0.9709505944546686 entropy_right : 0.39124356362925566 -> 132 150 -idx: 138 entropy_left: 1.0 entropy_right : 0 -> 132 150 -cut: 6.85 index: 133 -start: 132 cut: 133 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.6500224216483541 ent1= 0 ent2= 0.5225593745369408 -ig= 0.1564941234745767 delta= 2.5524288278347775 N 18 term 0.36888287050472873 -idx: 134 entropy_left: 0 entropy_right : 0.5435644431995964 -> 133 150 -idx: 135 entropy_left: 1.0 entropy_right : 0.35335933502142136 -> 133 150 -idx: 137 entropy_left: 0.8112781244591328 entropy_right : 0.39124356362925566 -> 133 150 -idx: 138 entropy_left: 0.9709505944546686 entropy_right : 0 -> 133 150 -cut: 6.9 index: 134 -start: 133 cut: 134 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.5225593745369408 ent1= 0 ent2= 0.5435644431995964 -ig= 0.010969310349085326 delta= 2.849365059382915 N 17 term 0.4029038270225244 -idx: 135 entropy_left: 0 entropy_right : 0.35335933502142136 -> 134 150 -idx: 137 entropy_left: 0.9182958340544896 entropy_right : 0.39124356362925566 -> 134 150 -idx: 138 entropy_left: 1.0 entropy_right : 0 -> 134 150 -cut: 6.9 index: 135 -start: 134 cut: 135 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.5435644431995964 ent1= 0 ent2= 0.35335933502142136 -ig= 0.21229006661701388 delta= 2.426944705701254 N 16 term 0.39586470633186077 -idx: 137 entropy_left: 0 entropy_right : 0.39124356362925566 -> 135 150 -idx: 138 entropy_left: 0.9182958340544896 entropy_right : 0 -> 135 150 -cut: 6.95 index: 137 -start: 135 cut: 137 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.35335933502142136 ent1= 0 ent2= 0.39124356362925566 -ig= 0.01428157987606643 delta= 2.8831233792732727 N 15 term 0.44603188675539174 -idx: 138 entropy_left: 0 entropy_right : 0 -> 137 150 -cut: 7.05 index: 138 -start: 137 cut: 138 end: 150 -k= 2 k1= 1 k2= 1 ent= 0.39124356362925566 ent1= 0 ent2= 0 -ig= 0.39124356362925566 delta= 2.0248677947990927 N 13 term 0.4315254073477115 -idx: 20 entropy_left: 0 entropy_right : 1.5485806065228545 -> 0 150 -idx: 21 entropy_left: 0.2761954276479391 entropy_right : 1.549829505666378 -> 0 150 -idx: 22 entropy_left: 0.5304060778306042 entropy_right : 1.5511852922535474 -> 0 150 -idx: 24 entropy_left: 0.4971501836369671 entropy_right : 1.5419822842863982 -> 0 150 -idx: 25 entropy_left: 0.6395563653739031 entropy_right : 1.5433449229510985 -> 0 150 -idx: 29 entropy_left: 0.574828144380386 entropy_right : 1.5202013991459298 -> 0 150 -idx: 30 entropy_left: 0.6746799231474564 entropy_right : 1.521677608876836 -> 0 150 -idx: 33 entropy_left: 0.6311718053929063 entropy_right : 1.4992098113026513 -> 0 150 -idx: 34 entropy_left: 0.7085966983474103 entropy_right : 1.5007111828980744 -> 0 150 -idx: 44 entropy_left: 0.5928251064639408 entropy_right : 1.3764263022492553 -> 0 150 -idx: 45 entropy_left: 0.6531791627726858 entropy_right : 1.3779796176519241 -> 0 150 -idx: 51 entropy_left: 0.5990326006132177 entropy_right : 1.2367928607774141 -> 0 150 -idx: 52 entropy_left: 0.6496096346956632 entropy_right : 1.2377158231343603 -> 0 150 -idx: 53 entropy_left: 0.6412482850735854 entropy_right : 1.2046986815511866 -> 0 150 -idx: 58 entropy_left: 0.8211258609270055 entropy_right : 1.2056112071736118 -> 0 150 -idx: 59 entropy_left: 0.8128223064150747 entropy_right : 1.167065448996099 -> 0 150 -idx: 61 entropy_left: 0.8623538561746379 entropy_right : 1.1653351793699953 -> 0 150 -idx: 62 entropy_left: 0.9353028851500502 entropy_right : 1.1687172769890006 -> 0 150 -idx: 68 entropy_left: 1.031929035599206 entropy_right : 1.1573913563403753 -> 0 150 -idx: 69 entropy_left: 1.0246284743137688 entropy_right : 1.109500797247481 -> 0 150 -idx: 70 entropy_left: 1.036186417911213 entropy_right : 1.105866621101474 -> 0 150 -idx: 71 entropy_left: 1.0895830429620594 entropy_right : 1.1104593064416028 -> 0 150 -idx: 72 entropy_left: 1.0822273380873693 entropy_right : 1.0511407586429597 -> 0 150 -idx: 74 entropy_left: 1.1015727511177442 entropy_right : 1.041722068095403 -> 0 150 -idx: 75 entropy_left: 1.1457749842070042 entropy_right : 1.0462881865460743 -> 0 150 -idx: 76 entropy_left: 1.1387129726704701 entropy_right : 0.9568886656798212 -> 0 150 -idx: 77 entropy_left: 1.1468549240968817 entropy_right : 0.9505668528932196 -> 0 150 -idx: 78 entropy_left: 1.1848333092150132 entropy_right : 0.9544340029249649 -> 0 150 -idx: 79 entropy_left: 1.1918623939938016 entropy_right : 0.9477073729342066 -> 0 150 -idx: 81 entropy_left: 1.2548698305334247 entropy_right : 0.9557589912150009 -> 0 150 -idx: 83 entropy_left: 1.2659342914094807 entropy_right : 0.9411864371816835 -> 0 150 -idx: 84 entropy_left: 1.2922669208691815 entropy_right : 0.9456603046006402 -> 0 150 -idx: 87 entropy_left: 1.3041589171425696 entropy_right : 0.9182958340544896 -> 0 150 -idx: 88 entropy_left: 1.327572716814381 entropy_right : 0.9235785996175947 -> 0 150 -idx: 89 entropy_left: 1.330465426809402 entropy_right : 0.9127341558073343 -> 0 150 -idx: 91 entropy_left: 1.3709454625942779 entropy_right : 0.9238422284571814 -> 0 150 -idx: 95 entropy_left: 1.378063041001916 entropy_right : 0.8698926856041563 -> 0 150 -idx: 97 entropy_left: 1.4115390027326744 entropy_right : 0.8835850861052532 -> 0 150 -idx: 99 entropy_left: 1.4130351465796736 entropy_right : 0.8478617451660526 -> 0 150 -idx: 101 entropy_left: 1.4412464483479606 entropy_right : 0.863120568566631 -> 0 150 -idx: 102 entropy_left: 1.4415827640191903 entropy_right : 0.8426578772022391 -> 0 150 -idx: 104 entropy_left: 1.4655411381577925 entropy_right : 0.8589810370425963 -> 0 150 -idx: 105 entropy_left: 1.465665295753282 entropy_right : 0.8366407419411673 -> 0 150 -idx: 106 entropy_left: 1.4762911618692924 entropy_right : 0.8453509366224365 -> 0 150 -idx: 107 entropy_left: 1.4762132849962355 entropy_right : 0.8203636429576732 -> 0 150 -idx: 109 entropy_left: 1.4951379218217782 entropy_right : 0.8390040613676977 -> 0 150 -idx: 110 entropy_left: 1.4949188482339508 entropy_right : 0.8112781244591328 -> 0 150 -idx: 113 entropy_left: 1.5183041104369397 entropy_right : 0.8418521897563207 -> 0 150 -idx: 114 entropy_left: 1.51802714866133 entropy_right : 0.8112781244591328 -> 0 150 -idx: 117 entropy_left: 1.5364854516368571 entropy_right : 0.8453509366224365 -> 0 150 -idx: 118 entropy_left: 1.5361890331151247 entropy_right : 0.8112781244591328 -> 0 150 -idx: 120 entropy_left: 1.5462566034163763 entropy_right : 0.8366407419411673 -> 0 150 -idx: 122 entropy_left: 1.545378825051491 entropy_right : 0.74959525725948 -> 0 150 -idx: 127 entropy_left: 1.5644893588382582 entropy_right : 0.828055725379504 -> 0 150 -idx: 130 entropy_left: 1.562956340286807 entropy_right : 0.6098403047164004 -> 0 150 -idx: 132 entropy_left: 1.5687623685201277 entropy_right : 0.6500224216483541 -> 0 150 -idx: 133 entropy_left: 1.5680951037987416 entropy_right : 0.5225593745369408 -> 0 150 -idx: 134 entropy_left: 1.5706540443736308 entropy_right : 0.5435644431995964 -> 0 150 -idx: 135 entropy_left: 1.5699201014782036 entropy_right : 0.35335933502142136 -> 0 150 -idx: 137 entropy_left: 1.5744201314186457 entropy_right : 0.39124356362925566 -> 0 150 -idx: 138 entropy_left: 1.5736921054134685 entropy_right : 0 -> 0 150 -cut: 4.9 index: 20 -start: 0 cut: 20 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.584962500721156 ent1= 0 ent2= 1.5485806065228545 -ig= 0.24285930840134884 delta= 4.5347105071798195 N 150 term 0.07835919351761322 -¡Ding! 4.9 20 -idx: 21 entropy_left: 0 entropy_right : 1.549829505666378 -> 20 150 -idx: 22 entropy_left: 1.0 entropy_right : 1.5511852922535474 -> 20 150 -idx: 24 entropy_left: 1.5 entropy_right : 1.5419822842863982 -> 20 150 -idx: 25 entropy_left: 1.5219280948873621 entropy_right : 1.5433449229510985 -> 20 150 -idx: 29 entropy_left: 1.224394445405986 entropy_right : 1.5202013991459298 -> 20 150 -idx: 30 entropy_left: 1.295461844238322 entropy_right : 1.521677608876836 -> 20 150 -idx: 33 entropy_left: 1.1401156785146092 entropy_right : 1.4992098113026513 -> 20 150 -idx: 34 entropy_left: 1.1981174211304033 entropy_right : 1.5007111828980744 -> 20 150 -idx: 44 entropy_left: 0.8886865525783176 entropy_right : 1.3764263022492553 -> 20 150 -idx: 45 entropy_left: 0.9510456605801272 entropy_right : 1.3779796176519241 -> 20 150 -idx: 51 entropy_left: 0.8346464646189744 entropy_right : 1.2367928607774141 -> 20 150 -idx: 52 entropy_left: 0.8873068828532795 entropy_right : 1.2377158231343603 -> 20 150 -idx: 53 entropy_left: 0.8710241897828374 entropy_right : 1.2046986815511866 -> 20 150 -idx: 58 entropy_left: 1.0304227640573047 entropy_right : 1.2056112071736118 -> 20 150 -idx: 59 entropy_left: 1.0178199018513787 entropy_right : 1.167065448996099 -> 20 150 -idx: 61 entropy_left: 1.0529744706120385 entropy_right : 1.1653351793699953 -> 20 150 -idx: 62 entropy_left: 1.142610782439526 entropy_right : 1.1687172769890006 -> 20 150 -idx: 68 entropy_left: 1.1872003066827859 entropy_right : 1.1573913563403753 -> 20 150 -idx: 69 entropy_left: 1.1796779956857995 entropy_right : 1.109500797247481 -> 20 150 -idx: 70 entropy_left: 1.1829661954675215 entropy_right : 1.105866621101474 -> 20 150 -idx: 71 entropy_left: 1.2449863769220126 entropy_right : 1.1104593064416028 -> 20 150 -idx: 72 entropy_left: 1.2374609054755092 entropy_right : 1.0511407586429597 -> 20 150 -idx: 74 entropy_left: 1.2411128360359944 entropy_right : 1.041722068095403 -> 20 150 -idx: 75 entropy_left: 1.2906516322752026 entropy_right : 1.0462881865460743 -> 20 150 -idx: 76 entropy_left: 1.2838868242312453 entropy_right : 0.9568886656798212 -> 20 150 -idx: 77 entropy_left: 1.2846682096460251 entropy_right : 0.9505668528932196 -> 20 150 -idx: 78 entropy_left: 1.3259416273344056 entropy_right : 0.9544340029249649 -> 20 150 -idx: 79 entropy_left: 1.325770873768619 entropy_right : 0.9477073729342066 -> 20 150 -idx: 81 entropy_left: 1.3914372992027793 entropy_right : 0.9557589912150009 -> 20 150 -idx: 83 entropy_left: 1.3888730188280565 entropy_right : 0.9411864371816835 -> 20 150 -idx: 84 entropy_left: 1.4153413978136884 entropy_right : 0.9456603046006402 -> 20 150 -idx: 87 entropy_left: 1.4080568512494867 entropy_right : 0.9182958340544896 -> 20 150 -idx: 88 entropy_left: 1.4313232568395167 entropy_right : 0.9235785996175947 -> 20 150 -idx: 89 entropy_left: 1.4281945908435036 entropy_right : 0.9127341558073343 -> 20 150 -idx: 91 entropy_left: 1.4671107315959304 entropy_right : 0.9238422284571814 -> 20 150 -idx: 95 entropy_left: 1.4523626601521826 entropy_right : 0.8698926856041563 -> 20 150 -idx: 97 entropy_left: 1.483849257492287 entropy_right : 0.8835850861052532 -> 20 150 -idx: 99 entropy_left: 1.475556263923774 entropy_right : 0.8478617451660526 -> 20 150 -idx: 101 entropy_left: 1.5012404120907166 entropy_right : 0.863120568566631 -> 20 150 -idx: 102 entropy_left: 1.497066012780834 entropy_right : 0.8426578772022391 -> 20 150 -idx: 104 entropy_left: 1.5179917001861118 entropy_right : 0.8589810370425963 -> 20 150 -idx: 105 entropy_left: 1.5139223281333773 entropy_right : 0.8366407419411673 -> 20 150 -idx: 106 entropy_left: 1.5229320406896163 entropy_right : 0.8453509366224365 -> 20 150 -idx: 107 entropy_left: 1.518850916195339 entropy_right : 0.8203636429576732 -> 20 150 -idx: 109 entropy_left: 1.5344304388132461 entropy_right : 0.8390040613676977 -> 20 150 -idx: 110 entropy_left: 1.5304930567574824 entropy_right : 0.8112781244591328 -> 20 150 -idx: 113 entropy_left: 1.5485591696772643 entropy_right : 0.8418521897563207 -> 20 150 -idx: 114 entropy_left: 1.5449263511786133 entropy_right : 0.8112781244591328 -> 20 150 -idx: 117 entropy_left: 1.5578738449782061 entropy_right : 0.8453509366224365 -> 20 150 -idx: 118 entropy_left: 1.554551861496516 entropy_right : 0.8112781244591328 -> 20 150 -idx: 120 entropy_left: 1.5609563153489605 entropy_right : 0.8366407419411673 -> 20 150 -idx: 122 entropy_left: 1.554507235050814 entropy_right : 0.74959525725948 -> 20 150 -idx: 127 entropy_left: 1.5649556310074497 entropy_right : 0.828055725379504 -> 20 150 -idx: 130 entropy_left: 1.556474260470719 entropy_right : 0.6098403047164004 -> 20 150 -idx: 132 entropy_left: 1.559164748038155 entropy_right : 0.6500224216483541 -> 20 150 -idx: 133 entropy_left: 1.556375214663463 entropy_right : 0.5225593745369408 -> 20 150 -idx: 134 entropy_left: 1.5574319619297041 entropy_right : 0.5435644431995964 -> 20 150 -idx: 135 entropy_left: 1.554665700667645 entropy_right : 0.35335933502142136 -> 20 150 -idx: 137 entropy_left: 1.5562728756453106 entropy_right : 0.39124356362925566 -> 20 150 -idx: 138 entropy_left: 1.553653448786858 entropy_right : 0 -> 20 150 -cut: 4.9 index: 21 -start: 20 cut: 21 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.5485806065228545 ent1= 0 ent2= 1.549829505666378 -ig= 0.010672866284679339 delta= 4.647602887205295 N 130 term 0.08968330878945038 -idx: 22 entropy_left: 0 entropy_right : 1.5511852922535474 -> 21 150 -idx: 24 entropy_left: 0.9182958340544896 entropy_right : 1.5419822842863982 -> 21 150 -idx: 25 entropy_left: 1.5 entropy_right : 1.5433449229510985 -> 21 150 -idx: 29 entropy_left: 1.061278124459133 entropy_right : 1.5202013991459298 -> 21 150 -idx: 30 entropy_left: 1.224394445405986 entropy_right : 1.521677608876836 -> 21 150 -idx: 33 entropy_left: 1.0408520829727552 entropy_right : 1.4992098113026513 -> 21 150 -idx: 34 entropy_left: 1.1401156785146092 entropy_right : 1.5007111828980744 -> 21 150 -idx: 44 entropy_left: 0.8076702057269436 entropy_right : 1.3764263022492553 -> 21 150 -idx: 45 entropy_left: 0.8886865525783176 entropy_right : 1.3779796176519241 -> 21 150 -idx: 51 entropy_left: 0.7703437707962479 entropy_right : 1.2367928607774141 -> 21 150 -idx: 52 entropy_left: 0.8346464646189744 entropy_right : 1.2377158231343603 -> 21 150 -idx: 53 entropy_left: 0.8180914641842123 entropy_right : 1.2046986815511866 -> 21 150 -idx: 58 entropy_left: 1.0086232677764626 entropy_right : 1.2056112071736118 -> 21 150 -idx: 59 entropy_left: 0.9952632106202363 entropy_right : 1.167065448996099 -> 21 150 -idx: 61 entropy_left: 1.0368902807106744 entropy_right : 1.1653351793699953 -> 21 150 -idx: 62 entropy_left: 1.1282468200554612 entropy_right : 1.1687172769890006 -> 21 150 -idx: 68 entropy_left: 1.1835119881802911 entropy_right : 1.1573913563403753 -> 21 150 -idx: 69 entropy_left: 1.1752835873133531 entropy_right : 1.109500797247481 -> 21 150 -idx: 70 entropy_left: 1.1796779956857995 entropy_right : 1.105866621101474 -> 21 150 -idx: 71 entropy_left: 1.2424272282706346 entropy_right : 1.1104593064416028 -> 21 150 -idx: 72 entropy_left: 1.2342496730246098 entropy_right : 1.0511407586429597 -> 21 150 -idx: 74 entropy_left: 1.23971286514401 entropy_right : 1.041722068095403 -> 21 150 -idx: 75 entropy_left: 1.2897001922180324 entropy_right : 1.0462881865460743 -> 21 150 -idx: 76 entropy_left: 1.2823527363135774 entropy_right : 0.9568886656798212 -> 21 150 -idx: 77 entropy_left: 1.2838868242312453 entropy_right : 0.9505668528932196 -> 21 150 -idx: 78 entropy_left: 1.3254539799066205 entropy_right : 0.9544340029249649 -> 21 150 -idx: 79 entropy_left: 1.3259416273344056 entropy_right : 0.9477073729342066 -> 21 150 -idx: 81 entropy_left: 1.3918884737423507 entropy_right : 0.9557589912150009 -> 21 150 -idx: 83 entropy_left: 1.3904123254348284 entropy_right : 0.9411864371816835 -> 21 150 -idx: 84 entropy_left: 1.4169128979027155 entropy_right : 0.9456603046006402 -> 21 150 -idx: 87 entropy_left: 1.410869033208931 entropy_right : 0.9182958340544896 -> 21 150 -idx: 88 entropy_left: 1.4341193292809176 entropy_right : 0.9235785996175947 -> 21 150 -idx: 89 entropy_left: 1.4313232568395167 entropy_right : 0.9127341558073343 -> 21 150 -idx: 91 entropy_left: 1.4701128093454605 entropy_right : 0.9238422284571814 -> 21 150 -idx: 95 entropy_left: 1.4564064519519933 entropy_right : 0.8698926856041563 -> 21 150 -idx: 97 entropy_left: 1.4876980378788656 entropy_right : 0.8835850861052532 -> 21 150 -idx: 99 entropy_left: 1.479795298385792 entropy_right : 0.8478617451660526 -> 21 150 -idx: 101 entropy_left: 1.5052408149441479 entropy_right : 0.863120568566631 -> 21 150 -idx: 102 entropy_left: 1.5012404120907166 entropy_right : 0.8426578772022391 -> 21 150 -idx: 104 entropy_left: 1.5218962238597613 entropy_right : 0.8589810370425963 -> 21 150 -idx: 105 entropy_left: 1.5179917001861118 entropy_right : 0.8366407419411673 -> 21 150 -idx: 106 entropy_left: 1.5268598488143097 entropy_right : 0.8453509366224365 -> 21 150 -idx: 107 entropy_left: 1.5229320406896163 entropy_right : 0.8203636429576732 -> 21 150 -idx: 109 entropy_left: 1.538221104127535 entropy_right : 0.8390040613676977 -> 21 150 -idx: 110 entropy_left: 1.5344304388132461 entropy_right : 0.8112781244591328 -> 21 150 -idx: 113 entropy_left: 1.5520475061309855 entropy_right : 0.8418521897563207 -> 21 150 -idx: 114 entropy_left: 1.5485591696772643 entropy_right : 0.8112781244591328 -> 21 150 -idx: 117 entropy_left: 1.5610533930605475 entropy_right : 0.8453509366224365 -> 21 150 -idx: 118 entropy_left: 1.5578738449782061 entropy_right : 0.8112781244591328 -> 21 150 -idx: 120 entropy_left: 1.5639799748754695 entropy_right : 0.8366407419411673 -> 21 150 -idx: 122 entropy_left: 1.5577952437611147 entropy_right : 0.74959525725948 -> 21 150 -idx: 127 entropy_left: 1.5675326407964567 entropy_right : 0.828055725379504 -> 21 150 -idx: 130 entropy_left: 1.559417592797962 entropy_right : 0.6098403047164004 -> 21 150 -idx: 132 entropy_left: 1.5618440335577457 entropy_right : 0.6500224216483541 -> 21 150 -idx: 133 entropy_left: 1.559164748038155 entropy_right : 0.5225593745369408 -> 21 150 -idx: 134 entropy_left: 1.5600931752556502 entropy_right : 0.5435644431995964 -> 21 150 -idx: 135 entropy_left: 1.5574319619297041 entropy_right : 0.35335933502142136 -> 21 150 -idx: 137 entropy_left: 1.55878993121613 entropy_right : 0.39124356362925566 -> 21 150 -idx: 138 entropy_left: 1.5562728756453106 entropy_right : 0 -> 21 150 -cut: 4.95 index: 22 -start: 21 cut: 22 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.549829505666378 ent1= 0 ent2= 1.5511852922535474 -ig= 0.01066890560084266 delta= 4.647923549536232 N 129 term 0.09029398100415684 -idx: 24 entropy_left: 0 entropy_right : 1.5419822842863982 -> 22 150 -idx: 25 entropy_left: 0.9182958340544896 entropy_right : 1.5433449229510985 -> 22 150 -idx: 29 entropy_left: 0.5916727785823275 entropy_right : 1.5202013991459298 -> 22 150 -idx: 30 entropy_left: 0.8112781244591328 entropy_right : 1.521677608876836 -> 22 150 -idx: 33 entropy_left: 0.6840384356390417 entropy_right : 1.4992098113026513 -> 22 150 -idx: 34 entropy_left: 0.8112781244591328 entropy_right : 1.5007111828980744 -> 22 150 -idx: 44 entropy_left: 0.5746356978376794 entropy_right : 1.3764263022492553 -> 22 150 -idx: 45 entropy_left: 0.6665783579949205 entropy_right : 1.3779796176519241 -> 22 150 -idx: 51 entropy_left: 0.5787946246321198 entropy_right : 1.2367928607774141 -> 22 150 -idx: 52 entropy_left: 0.6500224216483541 entropy_right : 1.2377158231343603 -> 22 150 -idx: 53 entropy_left: 0.6373874992221911 entropy_right : 1.2046986815511866 -> 22 150 -idx: 58 entropy_left: 0.8524051786494786 entropy_right : 1.2056112071736118 -> 22 150 -idx: 59 entropy_left: 0.8418521897563207 entropy_right : 1.167065448996099 -> 22 150 -idx: 61 entropy_left: 0.8904916402194913 entropy_right : 1.1653351793699953 -> 22 150 -idx: 62 entropy_left: 1.0368902807106744 entropy_right : 1.1687172769890006 -> 22 150 -idx: 68 entropy_left: 1.1009399433532026 entropy_right : 1.1573913563403753 -> 22 150 -idx: 69 entropy_left: 1.093640174154775 entropy_right : 1.109500797247481 -> 22 150 -idx: 70 entropy_left: 1.0992008221161345 entropy_right : 1.105866621101474 -> 22 150 -idx: 71 entropy_left: 1.1796779956857995 entropy_right : 1.1104593064416028 -> 22 150 -idx: 72 entropy_left: 1.1720147574921704 entropy_right : 1.0511407586429597 -> 22 150 -idx: 74 entropy_left: 1.1788990501208314 entropy_right : 1.041722068095403 -> 22 150 -idx: 75 entropy_left: 1.23971286514401 entropy_right : 1.0462881865460743 -> 22 150 -idx: 76 entropy_left: 1.2326602568158207 entropy_right : 0.9568886656798212 -> 22 150 -idx: 77 entropy_left: 1.2346487866075768 entropy_right : 0.9505668528932196 -> 22 150 -idx: 78 entropy_left: 1.2838868242312453 entropy_right : 0.9544340029249649 -> 22 150 -idx: 79 entropy_left: 1.2846682096460251 entropy_right : 0.9477073729342066 -> 22 150 -idx: 81 entropy_left: 1.3613139330585569 entropy_right : 0.9557589912150009 -> 22 150 -idx: 83 entropy_left: 1.3600340979407453 entropy_right : 0.9411864371816835 -> 22 150 -idx: 84 entropy_left: 1.3904123254348284 entropy_right : 0.9456603046006402 -> 22 150 -idx: 87 entropy_left: 1.3844579647165822 entropy_right : 0.9182958340544896 -> 22 150 -idx: 88 entropy_left: 1.410869033208931 entropy_right : 0.9235785996175947 -> 22 150 -idx: 89 entropy_left: 1.4080568512494867 entropy_right : 0.9127341558073343 -> 22 150 -idx: 91 entropy_left: 1.4518947803168825 entropy_right : 0.9238422284571814 -> 22 150 -idx: 95 entropy_left: 1.4378929868805908 entropy_right : 0.8698926856041563 -> 22 150 -idx: 97 entropy_left: 1.472935039619369 entropy_right : 0.8835850861052532 -> 22 150 -idx: 99 entropy_left: 1.4648232488769368 entropy_right : 0.8478617451660526 -> 22 150 -idx: 101 entropy_left: 1.4932162877956365 entropy_right : 0.863120568566631 -> 22 150 -idx: 102 entropy_left: 1.4890907595250464 entropy_right : 0.8426578772022391 -> 22 150 -idx: 104 entropy_left: 1.5121371519329765 entropy_right : 0.8589810370425963 -> 22 150 -idx: 105 entropy_left: 1.508093739822507 entropy_right : 0.8366407419411673 -> 22 150 -idx: 106 entropy_left: 1.5179917001861118 entropy_right : 0.8453509366224365 -> 22 150 -idx: 107 entropy_left: 1.5139223281333773 entropy_right : 0.8203636429576732 -> 22 150 -idx: 109 entropy_left: 1.5310057241873496 entropy_right : 0.8390040613676977 -> 22 150 -idx: 110 entropy_left: 1.5270676736451225 entropy_right : 0.8112781244591328 -> 22 150 -idx: 113 entropy_left: 1.5468616730129405 entropy_right : 0.8418521897563207 -> 22 150 -idx: 114 entropy_left: 1.5432213335160283 entropy_right : 0.8112781244591328 -> 22 150 -idx: 117 entropy_left: 1.5574319619297041 entropy_right : 0.8453509366224365 -> 22 150 -idx: 118 entropy_left: 1.5541004715340199 entropy_right : 0.8112781244591328 -> 22 150 -idx: 120 entropy_left: 1.5611556337477528 entropy_right : 0.8366407419411673 -> 22 150 -idx: 122 entropy_left: 1.5546755409861306 entropy_right : 0.74959525725948 -> 22 150 -idx: 127 entropy_left: 1.566282638423782 entropy_right : 0.828055725379504 -> 22 150 -idx: 130 entropy_left: 1.5577526146923748 entropy_right : 0.6098403047164004 -> 22 150 -idx: 132 entropy_left: 1.5607751276211168 entropy_right : 0.6500224216483541 -> 22 150 -idx: 133 entropy_left: 1.5579642402274387 entropy_right : 0.5225593745369408 -> 22 150 -idx: 134 entropy_left: 1.559164748038155 entropy_right : 0.5435644431995964 -> 22 150 -idx: 135 entropy_left: 1.556375214663463 entropy_right : 0.35335933502142136 -> 22 150 -idx: 137 entropy_left: 1.558231855890965 entropy_right : 0.39124356362925566 -> 22 150 -idx: 138 entropy_left: 1.5555906954881595 entropy_right : 0 -> 22 150 -cut: 5.0 index: 24 -start: 22 cut: 24 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.5511852922535474 ent1= 0 ent2= 1.5419822842863982 -ig= 0.033296481159124314 delta= 4.616247165873277 N 128 term 0.09066353009879252 -idx: 25 entropy_left: 0 entropy_right : 1.5433449229510985 -> 24 150 -idx: 29 entropy_left: 0.7219280948873623 entropy_right : 1.5202013991459298 -> 24 150 -idx: 30 entropy_left: 0.9182958340544896 entropy_right : 1.521677608876836 -> 24 150 -idx: 33 entropy_left: 0.7642045065086203 entropy_right : 1.4992098113026513 -> 24 150 -idx: 34 entropy_left: 0.8812908992306927 entropy_right : 1.5007111828980744 -> 24 150 -idx: 44 entropy_left: 0.6098403047164004 entropy_right : 1.3764263022492553 -> 24 150 -idx: 45 entropy_left: 0.7024665512903903 entropy_right : 1.3779796176519241 -> 24 150 -idx: 51 entropy_left: 0.6051865766334206 entropy_right : 1.2367928607774141 -> 24 150 -idx: 52 entropy_left: 0.676941869780886 entropy_right : 1.2377158231343603 -> 24 150 -idx: 53 entropy_left: 0.6631968402398287 entropy_right : 1.2046986815511866 -> 24 150 -idx: 58 entropy_left: 0.8739810481273578 entropy_right : 1.2056112071736118 -> 24 150 -idx: 59 entropy_left: 0.863120568566631 entropy_right : 1.167065448996099 -> 24 150 -idx: 61 entropy_left: 0.9090221560878149 entropy_right : 1.1653351793699953 -> 24 150 -idx: 62 entropy_left: 1.0606655462587962 entropy_right : 1.1687172769890006 -> 24 150 -idx: 68 entropy_left: 1.1149985556752577 entropy_right : 1.1573913563403753 -> 24 150 -idx: 69 entropy_left: 1.1080734808267854 entropy_right : 1.109500797247481 -> 24 150 -idx: 70 entropy_left: 1.1122129250331756 entropy_right : 1.105866621101474 -> 24 150 -idx: 71 entropy_left: 1.194545119186222 entropy_right : 1.1104593064416028 -> 24 150 -idx: 72 entropy_left: 1.1872003066827859 entropy_right : 1.0511407586429597 -> 24 150 -idx: 74 entropy_left: 1.1914436210393724 entropy_right : 1.041722068095403 -> 24 150 -idx: 75 entropy_left: 1.2532975784630431 entropy_right : 1.0462881865460743 -> 24 150 -idx: 76 entropy_left: 1.2466033489462778 entropy_right : 0.9568886656798212 -> 24 150 -idx: 77 entropy_left: 1.2473860973972195 entropy_right : 0.9505668528932196 -> 24 150 -idx: 78 entropy_left: 1.297231327577664 entropy_right : 0.9544340029249649 -> 24 150 -idx: 79 entropy_left: 1.2968531170351285 entropy_right : 0.9477073729342066 -> 24 150 -idx: 81 entropy_left: 1.3739840876515639 entropy_right : 0.9557589912150009 -> 24 150 -idx: 83 entropy_left: 1.3705732601023841 entropy_right : 0.9411864371816835 -> 24 150 -idx: 84 entropy_left: 1.4009934786687808 entropy_right : 0.9456603046006402 -> 24 150 -idx: 87 entropy_left: 1.3921472236645345 entropy_right : 0.9182958340544896 -> 24 150 -idx: 88 entropy_left: 1.4185644431995963 entropy_right : 0.9235785996175947 -> 24 150 -idx: 89 entropy_left: 1.4148695564698006 entropy_right : 0.9127341558073343 -> 24 150 -idx: 91 entropy_left: 1.4585269870967856 entropy_right : 0.9238422284571814 -> 24 150 -idx: 95 entropy_left: 1.4414340954861538 entropy_right : 0.8698926856041563 -> 24 150 -idx: 97 entropy_left: 1.4762561511389796 entropy_right : 0.8835850861052532 -> 24 150 -idx: 99 entropy_left: 1.4668134449046726 entropy_right : 0.8478617451660526 -> 24 150 -idx: 101 entropy_left: 1.4949188482339508 entropy_right : 0.863120568566631 -> 24 150 -idx: 102 entropy_left: 1.4901944396527276 entropy_right : 0.8426578772022391 -> 24 150 -idx: 104 entropy_left: 1.5128876215181606 entropy_right : 0.8589810370425963 -> 24 150 -idx: 105 entropy_left: 1.5082979986144511 entropy_right : 0.8366407419411673 -> 24 150 -idx: 106 entropy_left: 1.5180083381895495 entropy_right : 0.8453509366224365 -> 24 150 -idx: 107 entropy_left: 1.5134243514707206 entropy_right : 0.8203636429576732 -> 24 150 -idx: 109 entropy_left: 1.530122629268322 entropy_right : 0.8390040613676977 -> 24 150 -idx: 110 entropy_left: 1.5257153697175778 entropy_right : 0.8112781244591328 -> 24 150 -idx: 113 entropy_left: 1.54490062239043 entropy_right : 0.8418521897563207 -> 24 150 -idx: 114 entropy_left: 1.5408469049615863 entropy_right : 0.8112781244591328 -> 24 150 -idx: 117 entropy_left: 1.5544333664039933 entropy_right : 0.8453509366224365 -> 24 150 -idx: 118 entropy_left: 1.5507380564508026 entropy_right : 0.8112781244591328 -> 24 150 -idx: 120 entropy_left: 1.557384036498573 entropy_right : 0.8366407419411673 -> 24 150 -idx: 122 entropy_left: 1.5502477540313635 entropy_right : 0.74959525725948 -> 24 150 -idx: 127 entropy_left: 1.5609148740783336 entropy_right : 0.828055725379504 -> 24 150 -idx: 130 entropy_left: 1.5516017017685246 entropy_right : 0.6098403047164004 -> 24 150 -idx: 132 entropy_left: 1.5542993132861813 entropy_right : 0.6500224216483541 -> 24 150 -idx: 133 entropy_left: 1.551254504144143 entropy_right : 0.5225593745369408 -> 24 150 -idx: 134 entropy_left: 1.552300445892517 entropy_right : 0.5435644431995964 -> 24 150 -idx: 135 entropy_left: 1.5492893488248605 entropy_right : 0.35335933502142136 -> 24 150 -idx: 137 entropy_left: 1.5508523041806783 entropy_right : 0.39124356362925566 -> 24 150 -idx: 138 entropy_left: 1.5480084816425554 entropy_right : 0 -> 24 150 -cut: 5.0 index: 25 -start: 24 cut: 25 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.5419822842863982 ent1= 0 ent2= 1.5433449229510985 -ig= 0.010886130565070262 delta= 4.6479441057688256 N 126 term 0.09217244754310248 -idx: 29 entropy_left: 0 entropy_right : 1.5202013991459298 -> 25 150 -idx: 30 entropy_left: 0.7219280948873623 entropy_right : 1.521677608876836 -> 25 150 -idx: 33 entropy_left: 0.5435644431995964 entropy_right : 1.4992098113026513 -> 25 150 -idx: 34 entropy_left: 0.7642045065086203 entropy_right : 1.5007111828980744 -> 25 150 -idx: 44 entropy_left: 0.4854607607459134 entropy_right : 1.3764263022492553 -> 25 150 -idx: 45 entropy_left: 0.6098403047164004 entropy_right : 1.3779796176519241 -> 25 150 -idx: 51 entropy_left: 0.5159469300074474 entropy_right : 1.2367928607774141 -> 25 150 -idx: 52 entropy_left: 0.6051865766334206 entropy_right : 1.2377158231343603 -> 25 150 -idx: 53 entropy_left: 0.5916727785823275 entropy_right : 1.2046986815511866 -> 25 150 -idx: 58 entropy_left: 0.8453509366224365 entropy_right : 1.2056112071736118 -> 25 150 -idx: 59 entropy_left: 0.833764907210665 entropy_right : 1.167065448996099 -> 25 150 -idx: 61 entropy_left: 0.8879763195151351 entropy_right : 1.1653351793699953 -> 25 150 -idx: 62 entropy_left: 1.043233026456561 entropy_right : 1.1687172769890006 -> 25 150 -idx: 68 entropy_left: 1.1103746838736357 entropy_right : 1.1573913563403753 -> 25 150 -idx: 69 entropy_left: 1.102652051070839 entropy_right : 1.109500797247481 -> 25 150 -idx: 70 entropy_left: 1.1080734808267854 entropy_right : 1.105866621101474 -> 25 150 -idx: 71 entropy_left: 1.191603636543317 entropy_right : 1.1104593064416028 -> 25 150 -idx: 72 entropy_left: 1.1835119881802911 entropy_right : 1.0511407586429597 -> 25 150 -idx: 74 entropy_left: 1.1898011817445777 entropy_right : 1.041722068095403 -> 25 150 -idx: 75 entropy_left: 1.2523479506082373 entropy_right : 1.0462881865460743 -> 25 150 -idx: 76 entropy_left: 1.2449863769220126 entropy_right : 0.9568886656798212 -> 25 150 -idx: 77 entropy_left: 1.2466033489462778 entropy_right : 0.9505668528932196 -> 25 150 -idx: 78 entropy_left: 1.2968901961487296 entropy_right : 0.9544340029249649 -> 25 150 -idx: 79 entropy_left: 1.297231327577664 entropy_right : 0.9477073729342066 -> 25 150 -idx: 81 entropy_left: 1.3747976286297399 entropy_right : 0.9557589912150009 -> 25 150 -idx: 83 entropy_left: 1.3725531875543378 entropy_right : 0.9411864371816835 -> 25 150 -idx: 84 entropy_left: 1.4030409766614365 entropy_right : 0.9456603046006402 -> 25 150 -idx: 87 entropy_left: 1.3954965550573624 entropy_right : 0.9182958340544896 -> 25 150 -idx: 88 entropy_left: 1.4219164254677488 entropy_right : 0.9235785996175947 -> 25 150 -idx: 89 entropy_left: 1.4185644431995963 entropy_right : 0.9127341558073343 -> 25 150 -idx: 91 entropy_left: 1.4621038680842193 entropy_right : 0.9238422284571814 -> 25 150 -idx: 95 entropy_left: 1.4460656059951589 entropy_right : 0.8698926856041563 -> 25 150 -idx: 97 entropy_left: 1.4806821149663847 entropy_right : 0.8835850861052532 -> 25 150 -idx: 99 entropy_left: 1.4716260084832968 entropy_right : 0.8478617451660526 -> 25 150 -idx: 101 entropy_left: 1.4994716801681787 entropy_right : 0.863120568566631 -> 25 150 -idx: 102 entropy_left: 1.4949188482339508 entropy_right : 0.8426578772022391 -> 25 150 -idx: 104 entropy_left: 1.5173143758899288 entropy_right : 0.8589810370425963 -> 25 150 -idx: 105 entropy_left: 1.5128876215181606 entropy_right : 0.8366407419411673 -> 25 150 -idx: 106 entropy_left: 1.5224412847266997 entropy_right : 0.8453509366224365 -> 25 150 -idx: 107 entropy_left: 1.5180083381895495 entropy_right : 0.8203636429576732 -> 25 150 -idx: 109 entropy_left: 1.5343848620488534 entropy_right : 0.8390040613676977 -> 25 150 -idx: 110 entropy_left: 1.530122629268322 entropy_right : 0.8112781244591328 -> 25 150 -idx: 113 entropy_left: 1.5488102670635506 entropy_right : 0.8418521897563207 -> 25 150 -idx: 114 entropy_left: 1.54490062239043 entropy_right : 0.8112781244591328 -> 25 150 -idx: 117 entropy_left: 1.5579855528221356 entropy_right : 0.8453509366224365 -> 25 150 -idx: 118 entropy_left: 1.5544333664039933 entropy_right : 0.8112781244591328 -> 25 150 -idx: 120 entropy_left: 1.5607500907359895 entropy_right : 0.8366407419411673 -> 25 150 -idx: 122 entropy_left: 1.553879521231102 entropy_right : 0.74959525725948 -> 25 150 -idx: 127 entropy_left: 1.563765836340899 entropy_right : 0.828055725379504 -> 25 150 -idx: 130 entropy_left: 1.5548233543094725 entropy_right : 0.6098403047164004 -> 25 150 -idx: 132 entropy_left: 1.557232745700588 entropy_right : 0.6500224216483541 -> 25 150 -idx: 133 entropy_left: 1.5542993132861813 entropy_right : 0.5225593745369408 -> 25 150 -idx: 134 entropy_left: 1.5552054863428957 entropy_right : 0.5435644431995964 -> 25 150 -idx: 135 entropy_left: 1.552300445892517 entropy_right : 0.35335933502142136 -> 25 150 -idx: 137 entropy_left: 1.5535925258546306 entropy_right : 0.39124356362925566 -> 25 150 -idx: 138 entropy_left: 1.5508523041806783 entropy_right : 0 -> 25 150 -cut: 5.0 index: 29 -start: 25 cut: 29 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.5433449229510985 ent1= 0 ent2= 1.5202013991459298 -ig= 0.07178996857783848 delta= 4.574425618359218 N 125 term 0.09222897542996876 -idx: 30 entropy_left: 0 entropy_right : 1.521677608876836 -> 29 150 -idx: 33 entropy_left: 0.8112781244591328 entropy_right : 1.4992098113026513 -> 29 150 -idx: 34 entropy_left: 0.9709505944546686 entropy_right : 1.5007111828980744 -> 29 150 -idx: 44 entropy_left: 0.5665095065529053 entropy_right : 1.3764263022492553 -> 29 150 -idx: 45 entropy_left: 0.6962122601251458 entropy_right : 1.3779796176519241 -> 29 150 -idx: 51 entropy_left: 0.5746356978376794 entropy_right : 1.2367928607774141 -> 29 150 -idx: 52 entropy_left: 0.6665783579949205 entropy_right : 1.2377158231343603 -> 29 150 -idx: 53 entropy_left: 0.6500224216483541 entropy_right : 1.2046986815511866 -> 29 150 -idx: 58 entropy_left: 0.8935711016541907 entropy_right : 1.2056112071736118 -> 29 150 -idx: 59 entropy_left: 0.8812908992306927 entropy_right : 1.167065448996099 -> 29 150 -idx: 61 entropy_left: 0.9283620723948678 entropy_right : 1.1653351793699953 -> 29 150 -idx: 62 entropy_left: 1.096139159256507 entropy_right : 1.1687172769890006 -> 29 150 -idx: 68 entropy_left: 1.1385936501543064 entropy_right : 1.1573913563403753 -> 29 150 -idx: 69 entropy_left: 1.1320689971054545 entropy_right : 1.109500797247481 -> 29 150 -idx: 70 entropy_left: 1.1339874769112017 entropy_right : 1.105866621101474 -> 29 150 -idx: 71 entropy_left: 1.221694907636328 entropy_right : 1.1104593064416028 -> 29 150 -idx: 72 entropy_left: 1.2146234752771463 entropy_right : 1.0511407586429597 -> 29 150 -idx: 74 entropy_left: 1.2145089432839293 entropy_right : 1.041722068095403 -> 29 150 -idx: 75 entropy_left: 1.2793146867260998 entropy_right : 1.0462881865460743 -> 29 150 -idx: 76 entropy_left: 1.2730452470559679 entropy_right : 0.9568886656798212 -> 29 150 -idx: 77 entropy_left: 1.271782221599798 entropy_right : 0.9505668528932196 -> 29 150 -idx: 78 entropy_left: 1.323326866652724 entropy_right : 0.9544340029249649 -> 29 150 -idx: 79 entropy_left: 1.3209242772281589 entropy_right : 0.9477073729342066 -> 29 150 -idx: 81 entropy_left: 1.3993556675323378 entropy_right : 0.9557589912150009 -> 29 150 -idx: 83 entropy_left: 1.3921472236645345 entropy_right : 0.9411864371816835 -> 29 150 -idx: 84 entropy_left: 1.4226381773606827 entropy_right : 0.9456603046006402 -> 29 150 -idx: 87 entropy_left: 1.408454322194389 entropy_right : 0.9182958340544896 -> 29 150 -idx: 88 entropy_left: 1.4348284294343598 entropy_right : 0.9235785996175947 -> 29 150 -idx: 89 entropy_left: 1.4294732983598406 entropy_right : 0.9127341558073343 -> 29 150 -idx: 91 entropy_left: 1.4725137493579352 entropy_right : 0.9238422284571814 -> 29 150 -idx: 95 entropy_left: 1.4495701653254023 entropy_right : 0.8698926856041563 -> 29 150 -idx: 97 entropy_left: 1.4836591643979629 entropy_right : 0.8835850861052532 -> 29 150 -idx: 99 entropy_left: 1.4716774936810642 entropy_right : 0.8478617451660526 -> 29 150 -idx: 101 entropy_left: 1.498872146878066 entropy_right : 0.863120568566631 -> 29 150 -idx: 102 entropy_left: 1.4930166887541538 entropy_right : 0.8426578772022391 -> 29 150 -idx: 104 entropy_left: 1.5146319490241265 entropy_right : 0.8589810370425963 -> 29 150 -idx: 105 entropy_left: 1.5090275125326515 entropy_right : 0.8366407419411673 -> 29 150 -idx: 106 entropy_left: 1.518172665753515 entropy_right : 0.8453509366224365 -> 29 150 -idx: 107 entropy_left: 1.5126362849284707 entropy_right : 0.8203636429576732 -> 29 150 -idx: 109 entropy_left: 1.5281843786247746 entropy_right : 0.8390040613676977 -> 29 150 -idx: 110 entropy_left: 1.52292446851929 entropy_right : 0.8112781244591328 -> 29 150 -idx: 113 entropy_left: 1.540319313990849 entropy_right : 0.8418521897563207 -> 29 150 -idx: 114 entropy_left: 1.5355405577499845 entropy_right : 0.8112781244591328 -> 29 150 -idx: 117 entropy_left: 1.5473158084406657 entropy_right : 0.8453509366224365 -> 29 150 -idx: 118 entropy_left: 1.543007267402686 entropy_right : 0.8112781244591328 -> 29 150 -idx: 120 entropy_left: 1.5484739108446754 entropy_right : 0.8366407419411673 -> 29 150 -idx: 122 entropy_left: 1.5402513451679312 entropy_right : 0.74959525725948 -> 29 150 -idx: 127 entropy_left: 1.5482156423395383 entropy_right : 0.828055725379504 -> 29 150 -idx: 130 entropy_left: 1.5376917861959223 entropy_right : 0.6098403047164004 -> 29 150 -idx: 132 entropy_left: 1.539449789759387 entropy_right : 0.6500224216483541 -> 29 150 -idx: 133 entropy_left: 1.5360485008483817 entropy_right : 0.5225593745369408 -> 29 150 -idx: 134 entropy_left: 1.5366468930089403 entropy_right : 0.5435644431995964 -> 29 150 -idx: 135 entropy_left: 1.5333008164572508 entropy_right : 0.35335933502142136 -> 29 150 -idx: 137 entropy_left: 1.5340120338817291 entropy_right : 0.39124356362925566 -> 29 150 -idx: 138 entropy_left: 1.530871713949455 entropy_right : 0 -> 29 150 -cut: 5.0 index: 30 -start: 29 cut: 30 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.5202013991459298 ent1= 0 ent2= 1.521677608876836 -ig= 0.011099638276340196 delta= 4.6482848189674435 N 121 term 0.09549731747583441 -idx: 33 entropy_left: 0 entropy_right : 1.4992098113026513 -> 30 150 -idx: 34 entropy_left: 0.8112781244591328 entropy_right : 1.5007111828980744 -> 30 150 -idx: 44 entropy_left: 0.37123232664087563 entropy_right : 1.3764263022492553 -> 30 150 -idx: 45 entropy_left: 0.5665095065529053 entropy_right : 1.3779796176519241 -> 30 150 -idx: 51 entropy_left: 0.4537163391869448 entropy_right : 1.2367928607774141 -> 30 150 -idx: 52 entropy_left: 0.5746356978376794 entropy_right : 1.2377158231343603 -> 30 150 -idx: 53 entropy_left: 0.5586293734521992 entropy_right : 1.2046986815511866 -> 30 150 -idx: 58 entropy_left: 0.863120568566631 entropy_right : 1.2056112071736118 -> 30 150 -idx: 59 entropy_left: 0.8497511372532974 entropy_right : 1.167065448996099 -> 30 150 -idx: 61 entropy_left: 0.907165767573082 entropy_right : 1.1653351793699953 -> 30 150 -idx: 62 entropy_left: 1.079439161649138 entropy_right : 1.1687172769890006 -> 30 150 -idx: 68 entropy_left: 1.1363836745395337 entropy_right : 1.1573913563403753 -> 30 150 -idx: 69 entropy_left: 1.1287997673232602 entropy_right : 1.109500797247481 -> 30 150 -idx: 70 entropy_left: 1.1320689971054545 entropy_right : 1.105866621101474 -> 30 150 -idx: 71 entropy_left: 1.221104104343052 entropy_right : 1.1104593064416028 -> 30 150 -idx: 72 entropy_left: 1.2130604396700206 entropy_right : 1.0511407586429597 -> 30 150 -idx: 74 entropy_left: 1.215055533529583 entropy_right : 1.041722068095403 -> 30 150 -idx: 75 entropy_left: 1.2805767575096105 entropy_right : 1.0462881865460743 -> 30 150 -idx: 76 entropy_left: 1.273461732689636 entropy_right : 0.9568886656798212 -> 30 150 -idx: 77 entropy_left: 1.2730452470559679 entropy_right : 0.9505668528932196 -> 30 150 -idx: 78 entropy_left: 1.3250112108241772 entropy_right : 0.9544340029249649 -> 30 150 -idx: 79 entropy_left: 1.323326866652724 entropy_right : 0.9477073729342066 -> 30 150 -idx: 81 entropy_left: 1.402081402756032 entropy_right : 0.9557589912150009 -> 30 150 -idx: 83 entropy_left: 1.3960185675642185 entropy_right : 0.9411864371816835 -> 30 150 -idx: 84 entropy_left: 1.4265076973297228 entropy_right : 0.9456603046006402 -> 30 150 -idx: 87 entropy_left: 1.4135563800703668 entropy_right : 0.9182958340544896 -> 30 150 -idx: 88 entropy_left: 1.4398683625590178 entropy_right : 0.9235785996175947 -> 30 150 -idx: 89 entropy_left: 1.4348284294343598 entropy_right : 0.9127341558073343 -> 30 150 -idx: 91 entropy_left: 1.4776169519137876 entropy_right : 0.9238422284571814 -> 30 150 -idx: 95 entropy_left: 1.4556221732103853 entropy_right : 0.8698926856041563 -> 30 150 -idx: 97 entropy_left: 1.489391643473373 entropy_right : 0.8835850861052532 -> 30 150 -idx: 99 entropy_left: 1.4777468341000446 entropy_right : 0.8478617451660526 -> 30 150 -idx: 101 entropy_left: 1.504577050984356 entropy_right : 0.863120568566631 -> 30 150 -idx: 102 entropy_left: 1.498872146878066 entropy_right : 0.8426578772022391 -> 30 150 -idx: 104 entropy_left: 1.5200907086043647 entropy_right : 0.8589810370425963 -> 30 150 -idx: 105 entropy_left: 1.5146319490241265 entropy_right : 0.8366407419411673 -> 30 150 -idx: 106 entropy_left: 1.5235739093430942 entropy_right : 0.8453509366224365 -> 30 150 -idx: 107 entropy_left: 1.518172665753515 entropy_right : 0.8203636429576732 -> 30 150 -idx: 109 entropy_left: 1.5333121048269875 entropy_right : 0.8390040613676977 -> 30 150 -idx: 110 entropy_left: 1.5281843786247746 entropy_right : 0.8112781244591328 -> 30 150 -idx: 113 entropy_left: 1.544962682484281 entropy_right : 0.8418521897563207 -> 30 150 -idx: 114 entropy_left: 1.540319313990849 entropy_right : 0.8112781244591328 -> 30 150 -idx: 117 entropy_left: 1.551486596164451 entropy_right : 0.8453509366224365 -> 30 150 -idx: 118 entropy_left: 1.5473158084406657 entropy_right : 0.8112781244591328 -> 30 150 -idx: 120 entropy_left: 1.5523892173146852 entropy_right : 0.8366407419411673 -> 30 150 -idx: 122 entropy_left: 1.5444239694802433 entropy_right : 0.74959525725948 -> 30 150 -idx: 127 entropy_left: 1.5514723039742495 entropy_right : 0.828055725379504 -> 30 150 -idx: 130 entropy_left: 1.5413152774012366 entropy_right : 0.6098403047164004 -> 30 150 -idx: 132 entropy_left: 1.5427407553061978 entropy_right : 0.6500224216483541 -> 30 150 -idx: 133 entropy_left: 1.539449789759387 entropy_right : 0.5225593745369408 -> 30 150 -idx: 134 entropy_left: 1.5398878436678525 entropy_right : 0.5435644431995964 -> 30 150 -idx: 135 entropy_left: 1.5366468930089403 entropy_right : 0.35335933502142136 -> 30 150 -idx: 137 entropy_left: 1.5370490001936568 entropy_right : 0.39124356362925566 -> 30 150 -idx: 138 entropy_left: 1.5340120338817291 entropy_right : 0 -> 30 150 -cut: 5.1 index: 33 -start: 30 cut: 33 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.521677608876836 ent1= 0 ent2= 1.4992098113026513 -ig= 0.05994804285675093 delta= 4.57645279705217 N 120 term 0.09559392133633429 -idx: 34 entropy_left: 0 entropy_right : 1.5007111828980744 -> 33 150 -idx: 44 entropy_left: 0.4394969869215134 entropy_right : 1.3764263022492553 -> 33 150 -idx: 45 entropy_left: 0.6500224216483541 entropy_right : 1.3779796176519241 -> 33 150 -idx: 51 entropy_left: 0.5032583347756457 entropy_right : 1.2367928607774141 -> 33 150 -idx: 52 entropy_left: 0.6292492238560345 entropy_right : 1.2377158231343603 -> 33 150 -idx: 53 entropy_left: 0.6098403047164004 entropy_right : 1.2046986815511866 -> 33 150 -idx: 58 entropy_left: 0.904381457724494 entropy_right : 1.2056112071736118 -> 33 150 -idx: 59 entropy_left: 0.8904916402194913 entropy_right : 1.167065448996099 -> 33 150 -idx: 61 entropy_left: 0.9402859586706309 entropy_right : 1.1653351793699953 -> 33 150 -idx: 62 entropy_left: 1.1242592373746325 entropy_right : 1.1687172769890006 -> 33 150 -idx: 68 entropy_left: 1.1561787304889202 entropy_right : 1.1573913563403753 -> 33 150 -idx: 69 entropy_left: 1.1501854804581977 entropy_right : 1.109500797247481 -> 33 150 -idx: 70 entropy_left: 1.1500617154483042 entropy_right : 1.105866621101474 -> 33 150 -idx: 71 entropy_left: 1.2427303803729568 entropy_right : 1.1104593064416028 -> 33 150 -idx: 72 entropy_left: 1.236032213759607 entropy_right : 1.0511407586429597 -> 33 150 -idx: 74 entropy_left: 1.2319621350284407 entropy_right : 1.041722068095403 -> 33 150 -idx: 75 entropy_left: 1.2993633238421214 entropy_right : 1.0462881865460743 -> 33 150 -idx: 76 entropy_left: 1.2936094957266198 entropy_right : 0.9568886656798212 -> 33 150 -idx: 77 entropy_left: 1.2905199077676452 entropy_right : 0.9505668528932196 -> 33 150 -idx: 78 entropy_left: 1.3434702568607588 entropy_right : 0.9544340029249649 -> 33 150 -idx: 79 entropy_left: 1.3392721352590145 entropy_right : 0.9477073729342066 -> 33 150 -idx: 81 entropy_left: 1.4185644431995963 entropy_right : 0.9557589912150009 -> 33 150 -idx: 83 entropy_left: 1.4080488723348807 entropy_right : 0.9411864371816835 -> 33 150 -idx: 84 entropy_left: 1.4384630807544665 entropy_right : 0.9456603046006402 -> 33 150 -idx: 87 entropy_left: 1.4196730020815134 entropy_right : 0.9182958340544896 -> 33 150 -idx: 88 entropy_left: 1.4459033762515259 entropy_right : 0.9235785996175947 -> 33 150 -idx: 89 entropy_left: 1.4391294142581823 entropy_right : 0.9127341558073343 -> 33 150 -idx: 91 entropy_left: 1.4814308333061716 entropy_right : 0.9238422284571814 -> 33 150 -idx: 95 entropy_left: 1.4535828837865412 entropy_right : 0.8698926856041563 -> 33 150 -idx: 97 entropy_left: 1.4869015389218596 entropy_right : 0.8835850861052532 -> 33 150 -idx: 99 entropy_left: 1.47283015230032 entropy_right : 0.8478617451660526 -> 33 150 -idx: 101 entropy_left: 1.4991298893975544 entropy_right : 0.863120568566631 -> 33 150 -idx: 102 entropy_left: 1.4923596540293003 entropy_right : 0.8426578772022391 -> 33 150 -idx: 104 entropy_left: 1.5129527183657314 entropy_right : 0.8589810370425963 -> 33 150 -idx: 105 entropy_left: 1.5065420643391485 entropy_right : 0.8366407419411673 -> 33 150 -idx: 106 entropy_left: 1.5151610003501055 entropy_right : 0.8453509366224365 -> 33 150 -idx: 107 entropy_left: 1.5088745246622877 entropy_right : 0.8203636429576732 -> 33 150 -idx: 109 entropy_left: 1.5233671360000942 entropy_right : 0.8390040613676977 -> 33 150 -idx: 110 entropy_left: 1.5174480580708334 entropy_right : 0.8112781244591328 -> 33 150 -idx: 113 entropy_left: 1.5332288946792918 entropy_right : 0.8418521897563207 -> 33 150 -idx: 114 entropy_left: 1.5279067065978253 entropy_right : 0.8112781244591328 -> 33 150 -idx: 117 entropy_left: 1.538075564045685 entropy_right : 0.8453509366224365 -> 33 150 -idx: 118 entropy_left: 1.5333232048629988 entropy_right : 0.8112781244591328 -> 33 150 -idx: 120 entropy_left: 1.5377559674303916 entropy_right : 0.8366407419411673 -> 33 150 -idx: 122 entropy_left: 1.5287642104483186 entropy_right : 0.74959525725948 -> 33 150 -idx: 127 entropy_left: 1.5343941913830057 entropy_right : 0.828055725379504 -> 33 150 -idx: 130 entropy_left: 1.523071016430478 entropy_right : 0.6098403047164004 -> 33 150 -idx: 132 entropy_left: 1.5240294109795434 entropy_right : 0.6500224216483541 -> 33 150 -idx: 133 entropy_left: 1.520398271617716 entropy_right : 0.5225593745369408 -> 33 150 -idx: 134 entropy_left: 1.5206178114026545 entropy_right : 0.5435644431995964 -> 33 150 -idx: 135 entropy_left: 1.5170584650102175 entropy_right : 0.35335933502142136 -> 33 150 -idx: 137 entropy_left: 1.5170523105906335 entropy_right : 0.39124356362925566 -> 33 150 -idx: 138 entropy_left: 1.5137301230425602 entropy_right : 0 -> 33 150 -cut: 5.1 index: 34 -start: 33 cut: 34 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.4992098113026513 ent1= 0 ent2= 1.5007111828980744 -ig= 0.011325219711397994 delta= 4.648360304560994 N 117 term 0.0983447974332356 -idx: 44 entropy_left: 0 entropy_right : 1.3764263022492553 -> 34 150 -idx: 45 entropy_left: 0.4394969869215134 entropy_right : 1.3779796176519241 -> 34 150 -idx: 51 entropy_left: 0.3227569588973983 entropy_right : 1.2367928607774141 -> 34 150 -idx: 52 entropy_left: 0.5032583347756457 entropy_right : 1.2377158231343603 -> 34 150 -idx: 53 entropy_left: 0.4854607607459134 entropy_right : 1.2046986815511866 -> 34 150 -idx: 58 entropy_left: 0.8708644692353646 entropy_right : 1.2056112071736118 -> 34 150 -idx: 59 entropy_left: 0.8554508105601307 entropy_right : 1.167065448996099 -> 34 150 -idx: 61 entropy_left: 0.9182958340544896 entropy_right : 1.1653351793699953 -> 34 150 -idx: 62 entropy_left: 1.107784384952517 entropy_right : 1.1687172769890006 -> 34 150 -idx: 68 entropy_left: 1.1562272836006513 entropy_right : 1.1573913563403753 -> 34 150 -idx: 69 entropy_left: 1.1488835401005122 entropy_right : 1.109500797247481 -> 34 150 -idx: 70 entropy_left: 1.1501854804581977 entropy_right : 1.105866621101474 -> 34 150 -idx: 71 entropy_left: 1.2443013992660275 entropy_right : 1.1104593064416028 -> 34 150 -idx: 72 entropy_left: 1.2363864108712896 entropy_right : 1.0511407586429597 -> 34 150 -idx: 74 entropy_left: 1.2344977967946407 entropy_right : 1.041722068095403 -> 34 150 -idx: 75 entropy_left: 1.3026227503285144 entropy_right : 1.0462881865460743 -> 34 150 -idx: 76 entropy_left: 1.2958363892911637 entropy_right : 0.9568886656798212 -> 34 150 -idx: 77 entropy_left: 1.2936094957266198 entropy_right : 0.9505668528932196 -> 34 150 -idx: 78 entropy_left: 1.3469477860513406 entropy_right : 0.9544340029249649 -> 34 150 -idx: 79 entropy_left: 1.3434702568607588 entropy_right : 0.9477073729342066 -> 34 150 -idx: 81 entropy_left: 1.422950494647251 entropy_right : 0.9557589912150009 -> 34 150 -idx: 83 entropy_left: 1.4135682830396687 entropy_right : 0.9411864371816835 -> 34 150 -idx: 84 entropy_left: 1.4439032709191701 entropy_right : 0.9456603046006402 -> 34 150 -idx: 87 entropy_left: 1.4262873399004574 entropy_right : 0.9182958340544896 -> 34 150 -idx: 88 entropy_left: 1.4523861943352818 entropy_right : 0.9235785996175947 -> 34 150 -idx: 89 entropy_left: 1.4459033762515259 entropy_right : 0.9127341558073343 -> 34 150 -idx: 91 entropy_left: 1.4878131808507769 entropy_right : 0.9238422284571814 -> 34 150 -idx: 95 entropy_left: 1.4608248015713592 entropy_right : 0.8698926856041563 -> 34 150 -idx: 97 entropy_left: 1.4937095464322434 entropy_right : 0.8835850861052532 -> 34 150 -idx: 99 entropy_left: 1.4799337224591032 entropy_right : 0.8478617451660526 -> 34 150 -idx: 101 entropy_left: 1.5057662831867211 entropy_right : 0.863120568566631 -> 34 150 -idx: 102 entropy_left: 1.4991298893975544 entropy_right : 0.8426578772022391 -> 34 150 -idx: 104 entropy_left: 1.5192305624137816 entropy_right : 0.8589810370425963 -> 34 150 -idx: 105 entropy_left: 1.5129527183657314 entropy_right : 0.8366407419411673 -> 34 150 -idx: 106 entropy_left: 1.5213240183572947 entropy_right : 0.8453509366224365 -> 34 150 -idx: 107 entropy_left: 1.5151610003501055 entropy_right : 0.8203636429576732 -> 34 150 -idx: 109 entropy_left: 1.529162767471135 entropy_right : 0.8390040613676977 -> 34 150 -idx: 110 entropy_left: 1.5233671360000942 entropy_right : 0.8112781244591328 -> 34 150 -idx: 113 entropy_left: 1.5384204755151063 entropy_right : 0.8418521897563207 -> 34 150 -idx: 114 entropy_left: 1.5332288946792918 entropy_right : 0.8112781244591328 -> 34 150 -idx: 117 entropy_left: 1.5426918994072474 entropy_right : 0.8453509366224365 -> 34 150 -idx: 118 entropy_left: 1.538075564045685 entropy_right : 0.8112781244591328 -> 34 150 -idx: 120 entropy_left: 1.5420569181018204 entropy_right : 0.8366407419411673 -> 34 150 -idx: 122 entropy_left: 1.533320797816137 entropy_right : 0.74959525725948 -> 34 150 -idx: 127 entropy_left: 1.5379137608515965 entropy_right : 0.828055725379504 -> 34 150 -idx: 130 entropy_left: 1.5269619764446545 entropy_right : 0.6098403047164004 -> 34 150 -idx: 132 entropy_left: 1.5275487529615783 entropy_right : 0.6500224216483541 -> 34 150 -idx: 133 entropy_left: 1.5240294109795434 entropy_right : 0.5225593745369408 -> 34 150 -idx: 134 entropy_left: 1.524070562860036 entropy_right : 0.5435644431995964 -> 34 150 -idx: 135 entropy_left: 1.5206178114026545 entropy_right : 0.35335933502142136 -> 34 150 -idx: 137 entropy_left: 1.52026917047001 entropy_right : 0.39124356362925566 -> 34 150 -idx: 138 entropy_left: 1.5170523105906335 entropy_right : 0 -> 34 150 -cut: 5.2 index: 44 -start: 34 cut: 44 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.5007111828980744 ent1= 0 ent2= 1.3764263022492553 -ig= 0.24294232049789266 delta= 4.271001547828267 N 116 term 0.09583182412735038 -¡Ding! 5.2 44 -idx: 45 entropy_left: 0 entropy_right : 1.3779796176519241 -> 44 150 -idx: 51 entropy_left: 0.5916727785823275 entropy_right : 1.2367928607774141 -> 44 150 -idx: 52 entropy_left: 0.8112781244591328 entropy_right : 1.2377158231343603 -> 44 150 -idx: 53 entropy_left: 0.7642045065086203 entropy_right : 1.2046986815511866 -> 44 150 -idx: 58 entropy_left: 1.0 entropy_right : 1.2056112071736118 -> 44 150 -idx: 59 entropy_left: 0.9967916319816366 entropy_right : 1.167065448996099 -> 44 150 -idx: 61 entropy_left: 0.9975025463691153 entropy_right : 1.1653351793699953 -> 44 150 -idx: 62 entropy_left: 1.2516291673878228 entropy_right : 1.1687172769890006 -> 44 150 -idx: 68 entropy_left: 1.1431558784658322 entropy_right : 1.1573913563403753 -> 44 150 -idx: 69 entropy_left: 1.1585488318903812 entropy_right : 1.109500797247481 -> 44 150 -idx: 70 entropy_left: 1.1416195253341381 entropy_right : 1.105866621101474 -> 44 150 -idx: 71 entropy_left: 1.2538013905715866 entropy_right : 1.1104593064416028 -> 44 150 -idx: 72 entropy_left: 1.2638091738835462 entropy_right : 1.0511407586429597 -> 44 150 -idx: 74 entropy_left: 1.2309595631140104 entropy_right : 1.041722068095403 -> 44 150 -idx: 75 entropy_left: 1.307976359515949 entropy_right : 1.0462881865460743 -> 44 150 -idx: 76 entropy_left: 1.31664733333952 entropy_right : 0.9568886656798212 -> 44 150 -idx: 77 entropy_left: 1.3013862992796092 entropy_right : 0.9505668528932196 -> 44 150 -idx: 78 entropy_left: 1.3590990012374453 entropy_right : 0.9544340029249649 -> 44 150 -idx: 79 entropy_left: 1.3437884540090375 entropy_right : 0.9477073729342066 -> 44 150 -idx: 81 entropy_left: 1.4256132384104512 entropy_right : 0.9557589912150009 -> 44 150 -idx: 83 entropy_left: 1.3964017465710241 entropy_right : 0.9411864371816835 -> 44 150 -idx: 84 entropy_left: 1.4266098981515114 entropy_right : 0.9456603046006402 -> 44 150 -idx: 87 entropy_left: 1.3843662197304327 entropy_right : 0.9182958340544896 -> 44 150 -idx: 88 entropy_left: 1.4105645152423338 entropy_right : 0.9235785996175947 -> 44 150 -idx: 89 entropy_left: 1.3970713079590378 entropy_right : 0.9127341558073343 -> 44 150 -idx: 91 entropy_left: 1.4378981830488653 entropy_right : 0.9238422284571814 -> 44 150 -idx: 95 entropy_left: 1.3885087415373887 entropy_right : 0.8698926856041563 -> 44 150 -idx: 97 entropy_left: 1.4207503473571672 entropy_right : 0.8835850861052532 -> 44 150 -idx: 99 entropy_left: 1.3982088441853116 entropy_right : 0.8478617451660526 -> 44 150 -idx: 101 entropy_left: 1.4231230542732203 entropy_right : 0.863120568566631 -> 44 150 -idx: 102 entropy_left: 1.4127788804267845 entropy_right : 0.8426578772022391 -> 44 150 -idx: 104 entropy_left: 1.431578033211198 entropy_right : 0.8589810370425963 -> 44 150 -idx: 105 entropy_left: 1.4220900521936763 entropy_right : 0.8366407419411673 -> 44 150 -idx: 106 entropy_left: 1.4297712666969145 entropy_right : 0.8453509366224365 -> 44 150 -idx: 107 entropy_left: 1.4206843409707122 entropy_right : 0.8203636429576732 -> 44 150 -idx: 109 entropy_left: 1.4333020260513436 entropy_right : 0.8390040613676977 -> 44 150 -idx: 110 entropy_left: 1.4249748676560043 entropy_right : 0.8112781244591328 -> 44 150 -idx: 113 entropy_left: 1.4378209282715886 entropy_right : 0.8418521897563207 -> 44 150 -idx: 114 entropy_left: 1.43055418918351 entropy_right : 0.8112781244591328 -> 44 150 -idx: 117 entropy_left: 1.4377707632957772 entropy_right : 0.8453509366224365 -> 44 150 -idx: 118 entropy_left: 1.4314614999501034 entropy_right : 0.8112781244591328 -> 44 150 -idx: 120 entropy_left: 1.4340201993083201 entropy_right : 0.8366407419411673 -> 44 150 -idx: 122 entropy_left: 1.4224171655427815 entropy_right : 0.74959525725948 -> 44 150 -idx: 127 entropy_left: 1.4240650747143373 entropy_right : 0.828055725379504 -> 44 150 -idx: 130 entropy_left: 1.4101818214788366 entropy_right : 0.6098403047164004 -> 44 150 -idx: 132 entropy_left: 1.409921745231479 entropy_right : 0.6500224216483541 -> 44 150 -idx: 133 entropy_left: 1.4055932553758037 entropy_right : 0.5225593745369408 -> 44 150 -idx: 134 entropy_left: 1.4052570450171729 entropy_right : 0.5435644431995964 -> 44 150 -idx: 135 entropy_left: 1.4010688958809001 entropy_right : 0.35335933502142136 -> 44 150 -idx: 137 entropy_left: 1.400052234031507 entropy_right : 0.39124356362925566 -> 44 150 -idx: 138 entropy_left: 1.3962125504871692 entropy_right : 0 -> 44 150 -cut: 5.25 index: 45 -start: 44 cut: 45 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.3764263022492553 ent1= 0 ent2= 1.3779796176519241 -ig= 0.011446492311028678 delta= 4.648516135982731 N 106 term 0.10719586465706465 -idx: 51 entropy_left: 0 entropy_right : 1.2367928607774141 -> 45 150 -idx: 52 entropy_left: 0.5916727785823275 entropy_right : 1.2377158231343603 -> 45 150 -idx: 53 entropy_left: 0.5435644431995964 entropy_right : 1.2046986815511866 -> 45 150 -idx: 58 entropy_left: 0.9957274520849256 entropy_right : 1.2056112071736118 -> 45 150 -idx: 59 entropy_left: 0.9852281360342516 entropy_right : 1.167065448996099 -> 45 150 -idx: 61 entropy_left: 1.0 entropy_right : 1.1653351793699953 -> 45 150 -idx: 62 entropy_left: 1.2639334294856337 entropy_right : 1.1687172769890006 -> 45 150 -idx: 68 entropy_left: 1.1625633078480364 entropy_right : 1.1573913563403753 -> 45 150 -idx: 69 entropy_left: 1.1752835873133531 entropy_right : 1.109500797247481 -> 45 150 -idx: 70 entropy_left: 1.1585488318903812 entropy_right : 1.105866621101474 -> 45 150 -idx: 71 entropy_left: 1.2722595663292235 entropy_right : 1.1104593064416028 -> 45 150 -idx: 72 entropy_left: 1.2799749139041574 entropy_right : 1.0511407586429597 -> 45 150 -idx: 74 entropy_left: 1.2474241244334552 entropy_right : 1.041722068095403 -> 45 150 -idx: 75 entropy_left: 1.3248560371987566 entropy_right : 1.0462881865460743 -> 45 150 -idx: 76 entropy_left: 1.3317607101149553 entropy_right : 0.9568886656798212 -> 45 150 -idx: 77 entropy_left: 1.31664733333952 entropy_right : 0.9505668528932196 -> 45 150 -idx: 78 entropy_left: 1.3743214578138507 entropy_right : 0.9544340029249649 -> 45 150 -idx: 79 entropy_left: 1.3590990012374453 entropy_right : 0.9477073729342066 -> 45 150 -idx: 81 entropy_left: 1.4400876246432754 entropy_right : 0.9557589912150009 -> 45 150 -idx: 83 entropy_left: 1.4110278111359231 entropy_right : 0.9411864371816835 -> 45 150 -idx: 84 entropy_left: 1.440686881996416 entropy_right : 0.9456603046006402 -> 45 150 -idx: 87 entropy_left: 1.3984047495234926 entropy_right : 0.9182958340544896 -> 45 150 -idx: 88 entropy_left: 1.4241055030202836 entropy_right : 0.9235785996175947 -> 45 150 -idx: 89 entropy_left: 1.4105645152423338 entropy_right : 0.9127341558073343 -> 45 150 -idx: 91 entropy_left: 1.4503134017471866 entropy_right : 0.9238422284571814 -> 45 150 -idx: 95 entropy_left: 1.400766637523055 entropy_right : 0.8698926856041563 -> 45 150 -idx: 97 entropy_left: 1.4320792052110205 entropy_right : 0.8835850861052532 -> 45 150 -idx: 99 entropy_left: 1.4094544755772227 entropy_right : 0.8478617451660526 -> 45 150 -idx: 101 entropy_left: 1.4334834517752852 entropy_right : 0.863120568566631 -> 45 150 -idx: 102 entropy_left: 1.4231230542732203 entropy_right : 0.8426578772022391 -> 45 150 -idx: 104 entropy_left: 1.4410541035142095 entropy_right : 0.8589810370425963 -> 45 150 -idx: 105 entropy_left: 1.431578033211198 entropy_right : 0.8366407419411673 -> 45 150 -idx: 106 entropy_left: 1.438841894200673 entropy_right : 0.8453509366224365 -> 45 150 -idx: 107 entropy_left: 1.4297712666969145 entropy_right : 0.8203636429576732 -> 45 150 -idx: 109 entropy_left: 1.4415920755789071 entropy_right : 0.8390040613676977 -> 45 150 -idx: 110 entropy_left: 1.4333020260513436 entropy_right : 0.8112781244591328 -> 45 150 -idx: 113 entropy_left: 1.4450194734840949 entropy_right : 0.8418521897563207 -> 45 150 -idx: 114 entropy_left: 1.4378209282715886 entropy_right : 0.8112781244591328 -> 45 150 -idx: 117 entropy_left: 1.4439881597575672 entropy_right : 0.8453509366224365 -> 45 150 -idx: 118 entropy_left: 1.4377707632957772 entropy_right : 0.8112781244591328 -> 45 150 -idx: 120 entropy_left: 1.4396788919399468 entropy_right : 0.8366407419411673 -> 45 150 -idx: 122 entropy_left: 1.4282619056422832 entropy_right : 0.74959525725948 -> 45 150 -idx: 127 entropy_left: 1.4284735370493284 entropy_right : 0.828055725379504 -> 45 150 -idx: 130 entropy_left: 1.4149076471763113 entropy_right : 0.6098403047164004 -> 45 150 -idx: 132 entropy_left: 1.414152505455283 entropy_right : 0.6500224216483541 -> 45 150 -idx: 133 entropy_left: 1.409921745231479 entropy_right : 0.5225593745369408 -> 45 150 -idx: 134 entropy_left: 1.4093509832105067 entropy_right : 0.5435644431995964 -> 45 150 -idx: 135 entropy_left: 1.4052570450171729 entropy_right : 0.35335933502142136 -> 45 150 -idx: 137 entropy_left: 1.403795504390464 entropy_right : 0.39124356362925566 -> 45 150 -idx: 138 entropy_left: 1.400052234031507 entropy_right : 0 -> 45 150 -cut: 5.4 index: 51 -start: 45 cut: 51 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.3779796176519241 ent1= 0 ent2= 1.2367928607774141 -ig= 0.21186063463321947 delta= 4.220295919151194 N 105 term 0.10400700606945035 -¡Ding! 5.4 51 -idx: 52 entropy_left: 0 entropy_right : 1.2377158231343603 -> 51 150 -idx: 53 entropy_left: 1.0 entropy_right : 1.2046986815511866 -> 51 150 -idx: 58 entropy_left: 0.5916727785823275 entropy_right : 1.2056112071736118 -> 51 150 -idx: 59 entropy_left: 0.8112781244591328 entropy_right : 1.167065448996099 -> 51 150 -idx: 61 entropy_left: 0.7219280948873623 entropy_right : 1.1653351793699953 -> 51 150 -idx: 62 entropy_left: 1.0957952550009338 entropy_right : 1.1687172769890006 -> 51 150 -idx: 68 entropy_left: 0.8343470230852539 entropy_right : 1.1573913563403753 -> 51 150 -idx: 69 entropy_left: 0.9444885341662053 entropy_right : 1.109500797247481 -> 51 150 -idx: 70 entropy_left: 0.9132829641650988 entropy_right : 1.105866621101474 -> 51 150 -idx: 71 entropy_left: 1.0540157730728 entropy_right : 1.1104593064416028 -> 51 150 -idx: 72 entropy_left: 1.1254908068679135 entropy_right : 1.0511407586429597 -> 51 150 -idx: 74 entropy_left: 1.0676111603502403 entropy_right : 1.041722068095403 -> 51 150 -idx: 75 entropy_left: 1.158222675578688 entropy_right : 1.0462881865460743 -> 51 150 -idx: 76 entropy_left: 1.2098003386604828 entropy_right : 0.9568886656798212 -> 51 150 -idx: 77 entropy_left: 1.1841636411194805 entropy_right : 0.9505668528932196 -> 51 150 -idx: 78 entropy_left: 1.2486545206672304 entropy_right : 0.9544340029249649 -> 51 150 -idx: 79 entropy_left: 1.2244883781338565 entropy_right : 0.9477073729342066 -> 51 150 -idx: 81 entropy_left: 1.3125559878021227 entropy_right : 0.9557589912150009 -> 51 150 -idx: 83 entropy_left: 1.2700599575900715 entropy_right : 0.9411864371816835 -> 51 150 -idx: 84 entropy_left: 1.3019762161101505 entropy_right : 0.9456603046006402 -> 51 150 -idx: 87 entropy_left: 1.2449187529382073 entropy_right : 0.9182958340544896 -> 51 150 -idx: 88 entropy_left: 1.2730009199061236 entropy_right : 0.9235785996175947 -> 51 150 -idx: 89 entropy_left: 1.255663165580298 entropy_right : 0.9127341558073343 -> 51 150 -idx: 91 entropy_left: 1.2987949406953985 entropy_right : 0.9238422284571814 -> 51 150 -idx: 95 entropy_left: 1.2387413849552513 entropy_right : 0.8698926856041563 -> 51 150 -idx: 97 entropy_left: 1.2733306660180936 entropy_right : 0.8835850861052532 -> 51 150 -idx: 99 entropy_left: 1.24726924853191 entropy_right : 0.8478617451660526 -> 51 150 -idx: 101 entropy_left: 1.2740022896699967 entropy_right : 0.863120568566631 -> 51 150 -idx: 102 entropy_left: 1.2623741775941766 entropy_right : 0.8426578772022391 -> 51 150 -idx: 104 entropy_left: 1.2824555399511839 entropy_right : 0.8589810370425963 -> 51 150 -idx: 105 entropy_left: 1.2720236796955837 entropy_right : 0.8366407419411673 -> 51 150 -idx: 106 entropy_left: 1.2802412641697223 entropy_right : 0.8453509366224365 -> 51 150 -idx: 107 entropy_left: 1.2703862545896736 entropy_right : 0.8203636429576732 -> 51 150 -idx: 109 entropy_left: 1.2839465152590122 entropy_right : 0.8390040613676977 -> 51 150 -idx: 110 entropy_left: 1.2750978150747438 entropy_right : 0.8112781244591328 -> 51 150 -idx: 113 entropy_left: 1.2890020897815337 entropy_right : 0.8418521897563207 -> 51 150 -idx: 114 entropy_left: 1.2814952229224468 entropy_right : 0.8112781244591328 -> 51 150 -idx: 117 entropy_left: 1.2894949485898448 entropy_right : 0.8453509366224365 -> 51 150 -idx: 118 entropy_left: 1.2831665076655923 entropy_right : 0.8112781244591328 -> 51 150 -idx: 120 entropy_left: 1.2861856515445227 entropy_right : 0.8366407419411673 -> 51 150 -idx: 122 entropy_left: 1.274785294596539 entropy_right : 0.74959525725948 -> 51 150 -idx: 127 entropy_left: 1.277660052784842 entropy_right : 0.828055725379504 -> 51 150 -idx: 130 entropy_left: 1.2647051503145113 entropy_right : 0.6098403047164004 -> 51 150 -idx: 132 entropy_left: 1.2650264370370163 entropy_right : 0.6500224216483541 -> 51 150 -idx: 133 entropy_left: 1.2610549127993207 entropy_right : 0.5225593745369408 -> 51 150 -idx: 134 entropy_left: 1.2610161720734205 entropy_right : 0.5435644431995964 -> 51 150 -idx: 135 entropy_left: 1.2572038836412398 entropy_right : 0.35335933502142136 -> 51 150 -idx: 137 entropy_left: 1.2567949149026907 entropy_right : 0.39124356362925566 -> 51 150 -idx: 138 entropy_left: 1.2533710321988052 entropy_right : 0 -> 51 150 -cut: 5.45 index: 52 -start: 51 cut: 52 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.2367928607774141 ent1= 0 ent2= 1.2377158231343603 -ig= 0.011579217674714037 delta= 4.646625076845563 N 99 term 0.11375085778748256 -idx: 53 entropy_left: 0 entropy_right : 1.2046986815511866 -> 52 150 -idx: 58 entropy_left: 0.6500224216483541 entropy_right : 1.2056112071736118 -> 52 150 -idx: 59 entropy_left: 0.863120568566631 entropy_right : 1.167065448996099 -> 52 150 -idx: 61 entropy_left: 0.7642045065086203 entropy_right : 1.1653351793699953 -> 52 150 -idx: 62 entropy_left: 1.1567796494470395 entropy_right : 1.1687172769890006 -> 52 150 -idx: 68 entropy_left: 0.8683927290103626 entropy_right : 1.1573913563403753 -> 52 150 -idx: 69 entropy_left: 0.9780155566622415 entropy_right : 1.109500797247481 -> 52 150 -idx: 70 entropy_left: 0.9444885341662053 entropy_right : 1.105866621101474 -> 52 150 -idx: 71 entropy_left: 1.086987702339905 entropy_right : 1.1104593064416028 -> 52 150 -idx: 72 entropy_left: 1.1567796494470395 entropy_right : 1.0511407586429597 -> 52 150 -idx: 74 entropy_left: 1.0957952550009338 entropy_right : 1.041722068095403 -> 52 150 -idx: 75 entropy_left: 1.1863929342238186 entropy_right : 1.0462881865460743 -> 52 150 -idx: 76 entropy_left: 1.2364405016961446 entropy_right : 0.9568886656798212 -> 52 150 -idx: 77 entropy_left: 1.2098003386604828 entropy_right : 0.9505668528932196 -> 52 150 -idx: 78 entropy_left: 1.2736509190759928 entropy_right : 0.9544340029249649 -> 52 150 -idx: 79 entropy_left: 1.2486545206672304 entropy_right : 0.9477073729342066 -> 52 150 -idx: 81 entropy_left: 1.334599425999111 entropy_right : 0.9557589912150009 -> 52 150 -idx: 83 entropy_left: 1.2910357498542626 entropy_right : 0.9411864371816835 -> 52 150 -idx: 84 entropy_left: 1.3218847866691474 entropy_right : 0.9456603046006402 -> 52 150 -idx: 87 entropy_left: 1.2634815907120713 entropy_right : 0.9182958340544896 -> 52 150 -idx: 88 entropy_left: 1.2907148496715317 entropy_right : 0.9235785996175947 -> 52 150 -idx: 89 entropy_left: 1.2730009199061236 entropy_right : 0.9127341558073343 -> 52 150 -idx: 91 entropy_left: 1.314427310128449 entropy_right : 0.9238422284571814 -> 52 150 -idx: 95 entropy_left: 1.2533610514248106 entropy_right : 0.8698926856041563 -> 52 150 -idx: 97 entropy_left: 1.2866280229807059 entropy_right : 0.8835850861052532 -> 52 150 -idx: 99 entropy_left: 1.2602078229255897 entropy_right : 0.8478617451660526 -> 52 150 -idx: 101 entropy_left: 1.285743981839722 entropy_right : 0.863120568566631 -> 52 150 -idx: 102 entropy_left: 1.2740022896699967 entropy_right : 0.8426578772022391 -> 52 150 -idx: 104 entropy_left: 1.2929449855174395 entropy_right : 0.8589810370425963 -> 52 150 -idx: 105 entropy_left: 1.2824555399511839 entropy_right : 0.8366407419411673 -> 52 150 -idx: 106 entropy_left: 1.290137339650643 entropy_right : 0.8453509366224365 -> 52 150 -idx: 107 entropy_left: 1.2802412641697223 entropy_right : 0.8203636429576732 -> 52 150 -idx: 109 entropy_left: 1.2927975726087082 entropy_right : 0.8390040613676977 -> 52 150 -idx: 110 entropy_left: 1.2839465152590122 entropy_right : 0.8112781244591328 -> 52 150 -idx: 113 entropy_left: 1.2964607361371667 entropy_right : 0.8418521897563207 -> 52 150 -idx: 114 entropy_left: 1.2890020897815337 entropy_right : 0.8112781244591328 -> 52 150 -idx: 117 entropy_left: 1.2957378005380122 entropy_right : 0.8453509366224365 -> 52 150 -idx: 118 entropy_left: 1.2894949485898448 entropy_right : 0.8112781244591328 -> 52 150 -idx: 120 entropy_left: 1.2917436782389615 entropy_right : 0.8366407419411673 -> 52 150 -idx: 122 entropy_left: 1.2805280377491564 entropy_right : 0.74959525725948 -> 52 150 -idx: 127 entropy_left: 1.2817402106919733 entropy_right : 0.828055725379504 -> 52 150 -idx: 130 entropy_left: 1.269129492403553 entropy_right : 0.6098403047164004 -> 52 150 -idx: 132 entropy_left: 1.26889047905874 entropy_right : 0.6500224216483541 -> 52 150 -idx: 133 entropy_left: 1.2650264370370163 entropy_right : 0.5225593745369408 -> 52 150 -idx: 134 entropy_left: 1.2647242262739549 entropy_right : 0.5435644431995964 -> 52 150 -idx: 135 entropy_left: 1.2610161720734205 entropy_right : 0.35335933502142136 -> 52 150 -idx: 137 entropy_left: 1.2601109425506647 entropy_right : 0.39124356362925566 -> 52 150 -idx: 138 entropy_left: 1.2567949149026907 entropy_right : 0 -> 52 150 -cut: 5.5 index: 53 -start: 52 cut: 53 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.2377158231343603 ent1= 0 ent2= 1.2046986815511866 -ig= 0.04530998527247143 delta= 4.544804765025203 N 98 term 0.11372160823686052 -idx: 58 entropy_left: 0 entropy_right : 1.2056112071736118 -> 53 150 -idx: 59 entropy_left: 0.6500224216483541 entropy_right : 1.167065448996099 -> 53 150 -idx: 61 entropy_left: 0.5435644431995964 entropy_right : 1.1653351793699953 -> 53 150 -idx: 62 entropy_left: 0.9864267287308424 entropy_right : 1.1687172769890006 -> 53 150 -idx: 68 entropy_left: 0.6998428398862386 entropy_right : 1.1573913563403753 -> 53 150 -idx: 69 entropy_left: 0.8683927290103626 entropy_right : 1.109500797247481 -> 53 150 -idx: 70 entropy_left: 0.8343470230852539 entropy_right : 1.105866621101474 -> 53 150 -idx: 71 entropy_left: 0.9864267287308424 entropy_right : 1.1104593064416028 -> 53 150 -idx: 72 entropy_left: 1.086987702339905 entropy_right : 1.0511407586429597 -> 53 150 -idx: 74 entropy_left: 1.0230370655328809 entropy_right : 1.041722068095403 -> 53 150 -idx: 75 entropy_left: 1.1180782093497093 entropy_right : 1.0462881865460743 -> 53 150 -idx: 76 entropy_left: 1.1863929342238186 entropy_right : 0.9568886656798212 -> 53 150 -idx: 77 entropy_left: 1.158222675578688 entropy_right : 0.9505668528932196 -> 53 150 -idx: 78 entropy_left: 1.224381457724494 entropy_right : 0.9544340029249649 -> 53 150 -idx: 79 entropy_left: 1.198183947911799 entropy_right : 0.9477073729342066 -> 53 150 -idx: 81 entropy_left: 1.287054028118727 entropy_right : 0.9557589912150009 -> 53 150 -idx: 83 entropy_left: 1.2419460322060458 entropy_right : 0.9411864371816835 -> 53 150 -idx: 84 entropy_left: 1.2738722345110536 entropy_right : 0.9456603046006402 -> 53 150 -idx: 87 entropy_left: 1.2141272693763827 entropy_right : 0.9182958340544896 -> 53 150 -idx: 88 entropy_left: 1.2423708743932154 entropy_right : 0.9235785996175947 -> 53 150 -idx: 89 entropy_left: 1.224394445405986 entropy_right : 0.9127341558073343 -> 53 150 -idx: 91 entropy_left: 1.2674438038072338 entropy_right : 0.9238422284571814 -> 53 150 -idx: 95 entropy_left: 1.2060026902433665 entropy_right : 0.8698926856041563 -> 53 150 -idx: 97 entropy_left: 1.2406705316766886 entropy_right : 0.8835850861052532 -> 53 150 -idx: 99 entropy_left: 1.214295263080721 entropy_right : 0.8478617451660526 -> 53 150 -idx: 101 entropy_left: 1.2410106928656977 entropy_right : 0.863120568566631 -> 53 150 -idx: 102 entropy_left: 1.2293413843029717 entropy_right : 0.8426578772022391 -> 53 150 -idx: 104 entropy_left: 1.2492864082069246 entropy_right : 0.8589810370425963 -> 53 150 -idx: 105 entropy_left: 1.2389012566026305 entropy_right : 0.8366407419411673 -> 53 150 -idx: 106 entropy_left: 1.2470361469923357 entropy_right : 0.8453509366224365 -> 53 150 -idx: 107 entropy_left: 1.237260201421159 entropy_right : 0.8203636429576732 -> 53 150 -idx: 109 entropy_left: 1.2506472668030133 entropy_right : 0.8390040613676977 -> 53 150 -idx: 110 entropy_left: 1.2419363412184317 entropy_right : 0.8112781244591328 -> 53 150 -idx: 113 entropy_left: 1.2555367253996503 entropy_right : 0.8418521897563207 -> 53 150 -idx: 114 entropy_left: 1.2482389571842902 entropy_right : 0.8112781244591328 -> 53 150 -idx: 117 entropy_left: 1.2559170259774697 entropy_right : 0.8453509366224365 -> 53 150 -idx: 118 entropy_left: 1.2498492777008952 entropy_right : 0.8112781244591328 -> 53 150 -idx: 120 entropy_left: 1.2526673604527443 entropy_right : 0.8366407419411673 -> 53 150 -idx: 122 entropy_left: 1.2418112963539676 entropy_right : 0.74959525725948 -> 53 150 -idx: 127 entropy_left: 1.2443013992660277 entropy_right : 0.828055725379504 -> 53 150 -idx: 130 entropy_left: 1.2322458629112465 entropy_right : 0.6098403047164004 -> 53 150 -idx: 132 entropy_left: 1.232472282457445 entropy_right : 0.6500224216483541 -> 53 150 -idx: 133 entropy_left: 1.228789740397119 entropy_right : 0.5225593745369408 -> 53 150 -idx: 134 entropy_left: 1.22871127017127 entropy_right : 0.5435644431995964 -> 53 150 -idx: 135 entropy_left: 1.2251826138221809 entropy_right : 0.35335933502142136 -> 53 150 -idx: 137 entropy_left: 1.2247083872970776 entropy_right : 0.39124356362925566 -> 53 150 -idx: 138 entropy_left: 1.2215701626281463 entropy_right : 0 -> 53 150 -cut: 5.5 index: 58 -start: 53 cut: 58 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.2046986815511866 ent1= 0 ent2= 1.2056112071736118 -ig= 0.06123238196384362 delta= 4.646593766642 N 97 term 0.11578923986972327 -idx: 59 entropy_left: 0 entropy_right : 1.167065448996099 -> 58 150 -idx: 61 entropy_left: 0.9182958340544896 entropy_right : 1.1653351793699953 -> 58 150 -idx: 62 entropy_left: 1.5 entropy_right : 1.1687172769890006 -> 58 150 -idx: 68 entropy_left: 0.9219280948873623 entropy_right : 1.1573913563403753 -> 58 150 -idx: 69 entropy_left: 1.0957952550009338 entropy_right : 1.109500797247481 -> 58 150 -idx: 70 entropy_left: 1.0408520829727552 entropy_right : 1.105866621101474 -> 58 150 -idx: 71 entropy_left: 1.198183947911799 entropy_right : 1.1104593064416028 -> 58 150 -idx: 72 entropy_left: 1.287054028118727 entropy_right : 1.0511407586429597 -> 58 150 -idx: 74 entropy_left: 1.1994602933016414 entropy_right : 1.041722068095403 -> 58 150 -idx: 75 entropy_left: 1.289608558348151 entropy_right : 1.0462881865460743 -> 58 150 -idx: 76 entropy_left: 1.3472230399326601 entropy_right : 0.9568886656798212 -> 58 150 -idx: 77 entropy_left: 1.312430802347936 entropy_right : 0.9505668528932196 -> 58 150 -idx: 78 entropy_left: 1.3709505944546687 entropy_right : 0.9544340029249649 -> 58 150 -idx: 79 entropy_left: 1.3396642639295127 entropy_right : 0.9477073729342066 -> 58 150 -idx: 81 entropy_left: 1.4098449412673983 entropy_right : 0.9557589912150009 -> 58 150 -idx: 83 entropy_left: 1.359330832236536 entropy_right : 0.9411864371816835 -> 58 150 -idx: 84 entropy_left: 1.3829457416591304 entropy_right : 0.9456603046006402 -> 58 150 -idx: 87 entropy_left: 1.3162522199425772 entropy_right : 0.9182958340544896 -> 58 150 -idx: 88 entropy_left: 1.3382689280764646 entropy_right : 0.9235785996175947 -> 58 150 -idx: 89 entropy_left: 1.3183697698891939 entropy_right : 0.9127341558073343 -> 58 150 -idx: 91 entropy_left: 1.3495485525614308 entropy_right : 0.9238422284571814 -> 58 150 -idx: 95 entropy_left: 1.283474826759087 entropy_right : 0.8698926856041563 -> 58 150 -idx: 97 entropy_left: 1.309466962504167 entropy_right : 0.8835850861052532 -> 58 150 -idx: 99 entropy_left: 1.2815531082029132 entropy_right : 0.8478617451660526 -> 58 150 -idx: 101 entropy_left: 1.3006979255585032 entropy_right : 0.863120568566631 -> 58 150 -idx: 102 entropy_left: 1.288649764535596 entropy_right : 0.8426578772022391 -> 58 150 -idx: 104 entropy_left: 1.301574289281613 entropy_right : 0.8589810370425963 -> 58 150 -idx: 105 entropy_left: 1.2911428397964957 entropy_right : 0.8366407419411673 -> 58 150 -idx: 106 entropy_left: 1.2960285244780434 entropy_right : 0.8453509366224365 -> 58 150 -idx: 107 entropy_left: 1.286285229444419 entropy_right : 0.8203636429576732 -> 58 150 -idx: 109 entropy_left: 1.2936692523040243 entropy_right : 0.8390040613676977 -> 58 150 -idx: 110 entropy_left: 1.285207571715559 entropy_right : 0.8112781244591328 -> 58 150 -idx: 113 entropy_left: 1.2906516322752029 entropy_right : 0.8418521897563207 -> 58 150 -idx: 114 entropy_left: 1.2838868242312453 entropy_right : 0.8112781244591328 -> 58 150 -idx: 117 entropy_left: 1.284285038978389 entropy_right : 0.8453509366224365 -> 58 150 -idx: 118 entropy_left: 1.2789490895024977 entropy_right : 0.8112781244591328 -> 58 150 -idx: 120 entropy_left: 1.2773890816706368 entropy_right : 0.8366407419411673 -> 58 150 -idx: 122 entropy_left: 1.2680161172305842 entropy_right : 0.74959525725948 -> 58 150 -idx: 127 entropy_left: 1.261205530128474 entropy_right : 0.828055725379504 -> 58 150 -idx: 130 entropy_left: 1.2516291673878228 entropy_right : 0.6098403047164004 -> 58 150 -idx: 132 entropy_left: 1.2487636811095608 entropy_right : 0.6500224216483541 -> 58 150 -idx: 133 entropy_left: 1.2458385420854454 entropy_right : 0.5225593745369408 -> 58 150 -idx: 134 entropy_left: 1.2443133013206253 entropy_right : 0.5435644431995964 -> 58 150 -idx: 135 entropy_left: 1.2415118510334717 entropy_right : 0.35335933502142136 -> 58 150 -idx: 137 entropy_left: 1.238324798314731 entropy_right : 0.39124356362925566 -> 58 150 -idx: 138 entropy_left: 1.235922331588627 entropy_right : 0 -> 58 150 -cut: 5.55 index: 59 -start: 58 cut: 59 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.2056112071736118 ent1= 0 ent2= 1.167065448996099 -ig= 0.051231252188340015 delta= 4.528218915242186 N 92 term 0.11995666908087914 -idx: 61 entropy_left: 0 entropy_right : 1.1653351793699953 -> 59 150 -idx: 62 entropy_left: 0.9182958340544896 entropy_right : 1.1687172769890006 -> 59 150 -idx: 68 entropy_left: 0.5032583347756457 entropy_right : 1.1573913563403753 -> 59 150 -idx: 69 entropy_left: 0.9219280948873623 entropy_right : 1.109500797247481 -> 59 150 -idx: 70 entropy_left: 0.8658566174572235 entropy_right : 1.105866621101474 -> 59 150 -idx: 71 entropy_left: 1.0408520829727552 entropy_right : 1.1104593064416028 -> 59 150 -idx: 72 entropy_left: 1.198183947911799 entropy_right : 1.0511407586429597 -> 59 150 -idx: 74 entropy_left: 1.103307408607834 entropy_right : 1.041722068095403 -> 59 150 -idx: 75 entropy_left: 1.1994602933016414 entropy_right : 1.0462881865460743 -> 59 150 -idx: 76 entropy_left: 1.289608558348151 entropy_right : 0.9568886656798212 -> 59 150 -idx: 77 entropy_left: 1.2516291673878228 entropy_right : 0.9505668528932196 -> 59 150 -idx: 78 entropy_left: 1.3124308023479359 entropy_right : 0.9544340029249649 -> 59 150 -idx: 79 entropy_left: 1.278897902987479 entropy_right : 0.9477073729342066 -> 59 150 -idx: 81 entropy_left: 1.3516871258043608 entropy_right : 0.9557589912150009 -> 59 150 -idx: 83 entropy_left: 1.2987949406953985 entropy_right : 0.9411864371816835 -> 59 150 -idx: 84 entropy_left: 1.3234669541469457 entropy_right : 0.9456603046006402 -> 59 150 -idx: 87 entropy_left: 1.2550327083958783 entropy_right : 0.9182958340544896 -> 59 150 -idx: 88 entropy_left: 1.2782038389853276 entropy_right : 0.9235785996175947 -> 59 150 -idx: 89 entropy_left: 1.258040253688799 entropy_right : 0.9127341558073343 -> 59 150 -idx: 91 entropy_left: 1.2911002747979619 entropy_right : 0.9238422284571814 -> 59 150 -idx: 95 entropy_left: 1.2250335169881907 entropy_right : 0.8698926856041563 -> 59 150 -idx: 97 entropy_left: 1.252760079229674 entropy_right : 0.8835850861052532 -> 59 150 -idx: 99 entropy_left: 1.2251570385077257 entropy_right : 0.8478617451660526 -> 59 150 -idx: 101 entropy_left: 1.2457873952707117 entropy_right : 0.863120568566631 -> 59 150 -idx: 102 entropy_left: 1.2339557062686486 entropy_right : 0.8426578772022391 -> 59 150 -idx: 104 entropy_left: 1.2481570924667444 entropy_right : 0.8589810370425963 -> 59 150 -idx: 105 entropy_left: 1.237978259087945 entropy_right : 0.8366407419411673 -> 59 150 -idx: 106 entropy_left: 1.2434459078088524 entropy_right : 0.8453509366224365 -> 59 150 -idx: 107 entropy_left: 1.2339688836163196 entropy_right : 0.8203636429576732 -> 59 150 -idx: 109 entropy_left: 1.2424272282706346 entropy_right : 0.8390040613676977 -> 59 150 -idx: 110 entropy_left: 1.2342496730246095 entropy_right : 0.8112781244591328 -> 59 150 -idx: 113 entropy_left: 1.2411128360359944 entropy_right : 0.8418521897563207 -> 59 150 -idx: 114 entropy_left: 1.2346487866075766 entropy_right : 0.8112781244591328 -> 59 150 -idx: 117 entropy_left: 1.2362911655622766 entropy_right : 0.8453509366224365 -> 59 150 -idx: 118 entropy_left: 1.2312637634546426 entropy_right : 0.8112781244591328 -> 59 150 -idx: 120 entropy_left: 1.2304597034223903 entropy_right : 0.8366407419411673 -> 59 150 -idx: 122 entropy_left: 1.221694907636328 entropy_right : 0.74959525725948 -> 59 150 -idx: 127 entropy_left: 1.216582055353392 entropy_right : 0.828055725379504 -> 59 150 -idx: 130 entropy_left: 1.2078853229682496 entropy_right : 0.6098403047164004 -> 59 150 -idx: 132 entropy_left: 1.2056338170088083 entropy_right : 0.6500224216483541 -> 59 150 -idx: 133 entropy_left: 1.2029885192377856 entropy_right : 0.5225593745369408 -> 59 150 -idx: 134 entropy_left: 1.2017577888491018 entropy_right : 0.5435644431995964 -> 59 150 -idx: 135 entropy_left: 1.1992296370476179 entropy_right : 0.35335933502142136 -> 59 150 -idx: 137 entropy_left: 1.1966085324354425 entropy_right : 0.39124356362925566 -> 59 150 -idx: 138 entropy_left: 1.1944725384801118 entropy_right : 0 -> 59 150 -cut: 5.6 index: 61 -start: 59 cut: 61 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.167065448996099 ent1= 0 ent2= 1.1653351793699953 -ig= 0.027342031810059675 delta= 4.638665380896414 N 91 term 0.12231338985962735 -idx: 62 entropy_left: 0 entropy_right : 1.1687172769890006 -> 61 150 -idx: 68 entropy_left: 0.5916727785823275 entropy_right : 1.1573913563403753 -> 61 150 -idx: 69 entropy_left: 1.061278124459133 entropy_right : 1.109500797247481 -> 61 150 -idx: 70 entropy_left: 0.9864267287308424 entropy_right : 1.105866621101474 -> 61 150 -idx: 71 entropy_left: 1.1567796494470395 entropy_right : 1.1104593064416028 -> 61 150 -idx: 72 entropy_left: 1.3092966682370037 entropy_right : 1.0511407586429597 -> 61 150 -idx: 74 entropy_left: 1.198183947911799 entropy_right : 1.041722068095403 -> 61 150 -idx: 75 entropy_left: 1.287054028118727 entropy_right : 1.0462881865460743 -> 61 150 -idx: 76 entropy_left: 1.3709505944546687 entropy_right : 0.9568886656798212 -> 61 150 -idx: 77 entropy_left: 1.3294340029249652 entropy_right : 0.9505668528932196 -> 61 150 -idx: 78 entropy_left: 1.383099991189334 entropy_right : 0.9544340029249649 -> 61 150 -idx: 79 entropy_left: 1.3472230399326601 entropy_right : 0.9477073729342066 -> 61 150 -idx: 81 entropy_left: 1.4060075793123286 entropy_right : 0.9557589912150009 -> 61 150 -idx: 83 entropy_left: 1.3516871258043608 entropy_right : 0.9411864371816835 -> 61 150 -idx: 84 entropy_left: 1.370862465083061 entropy_right : 0.9456603046006402 -> 61 150 -idx: 87 entropy_left: 1.3001946428885267 entropy_right : 0.9182958340544896 -> 61 150 -idx: 88 entropy_left: 1.3195212983796363 entropy_right : 0.9235785996175947 -> 61 150 -idx: 89 entropy_left: 1.2987207862212027 entropy_right : 0.9127341558073343 -> 61 150 -idx: 91 entropy_left: 1.3248560371987566 entropy_right : 0.9238422284571814 -> 61 150 -idx: 95 entropy_left: 1.2576735962682495 entropy_right : 0.8698926856041563 -> 61 150 -idx: 97 entropy_left: 1.280672129520887 entropy_right : 0.8835850861052532 -> 61 150 -idx: 99 entropy_left: 1.252760079229674 entropy_right : 0.8478617451660526 -> 61 150 -idx: 101 entropy_left: 1.269433559880332 entropy_right : 0.863120568566631 -> 61 150 -idx: 102 entropy_left: 1.2576262380747258 entropy_right : 0.8426578772022391 -> 61 150 -idx: 104 entropy_left: 1.2682650449469532 entropy_right : 0.8589810370425963 -> 61 150 -idx: 105 entropy_left: 1.2582658857615794 entropy_right : 0.8366407419411673 -> 61 150 -idx: 106 entropy_left: 1.2621161952677336 entropy_right : 0.8453509366224365 -> 61 150 -idx: 107 entropy_left: 1.2528404674681515 entropy_right : 0.8203636429576732 -> 61 150 -idx: 109 entropy_left: 1.2583595230282398 entropy_right : 0.8390040613676977 -> 61 150 -idx: 110 entropy_left: 1.2504757050130606 entropy_right : 0.8112781244591328 -> 61 150 -idx: 113 entropy_left: 1.2534330706295986 entropy_right : 0.8418521897563207 -> 61 150 -idx: 114 entropy_left: 1.2473860973972197 entropy_right : 0.8112781244591328 -> 61 150 -idx: 117 entropy_left: 1.2456186709121666 entropy_right : 0.8453509366224365 -> 61 150 -idx: 118 entropy_left: 1.2410875386343703 entropy_right : 0.8112781244591328 -> 61 150 -idx: 120 entropy_left: 1.2382651015774901 entropy_right : 0.8366407419411673 -> 61 150 -idx: 122 entropy_left: 1.2304597034223903 entropy_right : 0.74959525725948 -> 61 150 -idx: 127 entropy_left: 1.2211369508106262 entropy_right : 0.828055725379504 -> 61 150 -idx: 130 entropy_left: 1.213906716130705 entropy_right : 0.6098403047164004 -> 61 150 -idx: 132 entropy_left: 1.2102772503893786 entropy_right : 0.6500224216483541 -> 61 150 -idx: 133 entropy_left: 1.2080704223069119 entropy_right : 0.5225593745369408 -> 61 150 -idx: 134 entropy_left: 1.206198549451098 entropy_right : 0.5435644431995964 -> 61 150 -idx: 135 entropy_left: 1.2040872420186723 entropy_right : 0.35335933502142136 -> 61 150 -idx: 137 entropy_left: 1.2002701176230874 entropy_right : 0.39124356362925566 -> 61 150 -idx: 138 entropy_left: 1.198547104867554 entropy_right : 0 -> 61 150 -cut: 5.6 index: 62 -start: 61 cut: 62 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.1653351793699953 ent1= 0 ent2= 1.1687172769890006 -ig= 0.009749557178623913 delta= 4.65400248263174 N 89 term 0.1248700460816746 -idx: 68 entropy_left: 0 entropy_right : 1.1573913563403753 -> 62 150 -idx: 69 entropy_left: 0.5916727785823275 entropy_right : 1.109500797247481 -> 62 150 -idx: 70 entropy_left: 0.5435644431995964 entropy_right : 1.105866621101474 -> 62 150 -idx: 71 entropy_left: 0.9864267287308424 entropy_right : 1.1104593064416028 -> 62 150 -idx: 72 entropy_left: 1.1567796494470395 entropy_right : 1.0511407586429597 -> 62 150 -idx: 74 entropy_left: 1.0408520829727552 entropy_right : 1.041722068095403 -> 62 150 -idx: 75 entropy_left: 1.198183947911799 entropy_right : 1.0462881865460743 -> 62 150 -idx: 76 entropy_left: 1.287054028118727 entropy_right : 0.9568886656798212 -> 62 150 -idx: 77 entropy_left: 1.2419460322060458 entropy_right : 0.9505668528932196 -> 62 150 -idx: 78 entropy_left: 1.3294340029249652 entropy_right : 0.9544340029249649 -> 62 150 -idx: 79 entropy_left: 1.289608558348151 entropy_right : 0.9477073729342066 -> 62 150 -idx: 81 entropy_left: 1.383807735464083 entropy_right : 0.9557589912150009 -> 62 150 -idx: 83 entropy_left: 1.322305788853309 entropy_right : 0.9411864371816835 -> 62 150 -idx: 84 entropy_left: 1.3516871258043608 entropy_right : 0.9456603046006402 -> 62 150 -idx: 87 entropy_left: 1.2732696895151085 entropy_right : 0.9182958340544896 -> 62 150 -idx: 88 entropy_left: 1.3001946428885267 entropy_right : 0.9235785996175947 -> 62 150 -idx: 89 entropy_left: 1.2773600852070808 entropy_right : 0.9127341558073343 -> 62 150 -idx: 91 entropy_left: 1.3141506221482602 entropy_right : 0.9238422284571814 -> 62 150 -idx: 95 entropy_left: 1.2406705316766886 entropy_right : 0.8698926856041563 -> 62 150 -idx: 97 entropy_left: 1.2707886973584608 entropy_right : 0.8835850861052532 -> 62 150 -idx: 99 entropy_left: 1.2405193035617867 entropy_right : 0.8478617451660526 -> 62 150 -idx: 101 entropy_left: 1.2622604540594544 entropy_right : 0.863120568566631 -> 62 150 -idx: 102 entropy_left: 1.249435498504727 entropy_right : 0.8426578772022391 -> 62 150 -idx: 104 entropy_left: 1.2638091738835462 entropy_right : 0.8589810370425963 -> 62 150 -idx: 105 entropy_left: 1.2529007737565314 entropy_right : 0.8366407419411673 -> 62 150 -idx: 106 entropy_left: 1.2582658857615794 entropy_right : 0.8453509366224365 -> 62 150 -idx: 107 entropy_left: 1.2481570924667444 entropy_right : 0.8203636429576732 -> 62 150 -idx: 109 entropy_left: 1.2561852304054355 entropy_right : 0.8390040613676977 -> 62 150 -idx: 110 entropy_left: 1.2475562489182657 entropy_right : 0.8112781244591328 -> 62 150 -idx: 113 entropy_left: 1.2532975784630431 entropy_right : 0.8418521897563207 -> 62 150 -idx: 114 entropy_left: 1.2466033489462778 entropy_right : 0.8112781244591328 -> 62 150 -idx: 117 entropy_left: 1.2468156164867663 entropy_right : 0.8453509366224365 -> 62 150 -idx: 118 entropy_left: 1.2417221295902683 entropy_right : 0.8112781244591328 -> 62 150 -idx: 120 entropy_left: 1.2399160118080643 entropy_right : 0.8366407419411673 -> 62 150 -idx: 122 entropy_left: 1.2311171656781021 entropy_right : 0.74959525725948 -> 62 150 -idx: 127 entropy_left: 1.223674601549228 entropy_right : 0.828055725379504 -> 62 150 -idx: 130 entropy_left: 1.2152759335052197 entropy_right : 0.6098403047164004 -> 62 150 -idx: 132 entropy_left: 1.212231159180624 entropy_right : 0.6500224216483541 -> 62 150 -idx: 133 entropy_left: 1.2096795274755798 entropy_right : 0.5225593745369408 -> 62 150 -idx: 134 entropy_left: 1.2080704223069119 entropy_right : 0.5435644431995964 -> 62 150 -idx: 135 entropy_left: 1.2056338170088083 entropy_right : 0.35335933502142136 -> 62 150 -idx: 137 entropy_left: 1.2022921890824148 entropy_right : 0.39124356362925566 -> 62 150 -idx: 138 entropy_left: 1.2002701176230874 entropy_right : 0 -> 62 150 -cut: 5.7 index: 68 -start: 62 cut: 68 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.1687172769890006 ent1= 0 ent2= 1.1573913563403753 -ig= 0.09023896767183293 delta= 4.609878427828848 N 88 term 0.12560024913269974 -idx: 69 entropy_left: 0 entropy_right : 1.109500797247481 -> 68 150 -idx: 70 entropy_left: 1.0 entropy_right : 1.105866621101474 -> 68 150 -idx: 71 entropy_left: 1.584962500721156 entropy_right : 1.1104593064416028 -> 68 150 -idx: 72 entropy_left: 1.5 entropy_right : 1.0511407586429597 -> 68 150 -idx: 74 entropy_left: 1.4591479170272448 entropy_right : 1.041722068095403 -> 68 150 -idx: 75 entropy_left: 1.5566567074628228 entropy_right : 1.0462881865460743 -> 68 150 -idx: 76 entropy_left: 1.5612781244591327 entropy_right : 0.9568886656798212 -> 68 150 -idx: 77 entropy_left: 1.5304930567574824 entropy_right : 0.9505668528932196 -> 68 150 -idx: 78 entropy_left: 1.5709505944546684 entropy_right : 0.9544340029249649 -> 68 150 -idx: 79 entropy_left: 1.5394847569315018 entropy_right : 0.9477073729342066 -> 68 150 -idx: 81 entropy_left: 1.5485806065228545 entropy_right : 0.9557589912150009 -> 68 150 -idx: 83 entropy_left: 1.5058231002082845 entropy_right : 0.9411864371816835 -> 68 150 -idx: 84 entropy_left: 1.5052408149441479 entropy_right : 0.9456603046006402 -> 68 150 -idx: 87 entropy_left: 1.432983121056005 entropy_right : 0.9182958340544896 -> 68 150 -idx: 88 entropy_left: 1.4406454496153462 entropy_right : 0.9235785996175947 -> 68 150 -idx: 89 entropy_left: 1.4180260055608096 entropy_right : 0.9127341558073343 -> 68 150 -idx: 91 entropy_left: 1.4219115073546411 entropy_right : 0.9238422284571814 -> 68 150 -idx: 95 entropy_left: 1.3516441151533924 entropy_right : 0.8698926856041563 -> 68 150 -idx: 97 entropy_left: 1.3610156764620025 entropy_right : 0.8835850861052532 -> 68 150 -idx: 99 entropy_left: 1.3317607101149556 entropy_right : 0.8478617451660526 -> 68 150 -idx: 101 entropy_left: 1.336894963623501 entropy_right : 0.863120568566631 -> 68 150 -idx: 102 entropy_left: 1.3251318452515368 entropy_right : 0.8426578772022391 -> 68 150 -idx: 104 entropy_left: 1.3250112108241772 entropy_right : 0.8589810370425963 -> 68 150 -idx: 105 entropy_left: 1.315700144231129 entropy_right : 0.8366407419411673 -> 68 150 -idx: 106 entropy_left: 1.3146246119280174 entropy_right : 0.8453509366224365 -> 68 150 -idx: 107 entropy_left: 1.3060830034799225 entropy_right : 0.8203636429576732 -> 68 150 -idx: 109 entropy_left: 1.3026227503285146 entropy_right : 0.8390040613676977 -> 68 150 -idx: 110 entropy_left: 1.2958363892911637 entropy_right : 0.8112781244591328 -> 68 150 -idx: 113 entropy_left: 1.2866926683547546 entropy_right : 0.8418521897563207 -> 68 150 -idx: 114 entropy_left: 1.2822348040887959 entropy_right : 0.8112781244591328 -> 68 150 -idx: 117 entropy_left: 1.2697816169827234 entropy_right : 0.8453509366224365 -> 68 150 -idx: 118 entropy_left: 1.2671379395990745 entropy_right : 0.8112781244591328 -> 68 150 -idx: 120 entropy_left: 1.2579734650037238 entropy_right : 0.8366407419411673 -> 68 150 -idx: 122 entropy_left: 1.2537259296042096 entropy_right : 0.74959525725948 -> 68 150 -idx: 127 entropy_left: 1.2312637634546426 entropy_right : 0.828055725379504 -> 68 150 -idx: 130 entropy_left: 1.22934290810027 entropy_right : 0.6098403047164004 -> 68 150 -idx: 132 entropy_left: 1.2214713865842914 entropy_right : 0.6500224216483541 -> 68 150 -idx: 133 entropy_left: 1.2208087007255004 entropy_right : 0.5225593745369408 -> 68 150 -idx: 134 entropy_left: 1.2169687714285353 entropy_right : 0.5435644431995964 -> 68 150 -idx: 135 entropy_left: 1.216307966981197 entropy_right : 0.35335933502142136 -> 68 150 -idx: 137 entropy_left: 1.2088301752949477 entropy_right : 0.39124356362925566 -> 68 150 -idx: 138 entropy_left: 1.208536257286683 entropy_right : 0 -> 68 150 -cut: 5.7 index: 69 -start: 68 cut: 69 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.1573913563403753 ent1= 0 ent2= 1.109500797247481 -ig= 0.061421056620302616 delta= 4.500184512496042 N 82 term 0.13219554287049595 -idx: 70 entropy_left: 0 entropy_right : 1.105866621101474 -> 69 150 -idx: 71 entropy_left: 1.0 entropy_right : 1.1104593064416028 -> 69 150 -idx: 72 entropy_left: 1.584962500721156 entropy_right : 1.0511407586429597 -> 69 150 -idx: 74 entropy_left: 1.3709505944546687 entropy_right : 1.041722068095403 -> 69 150 -idx: 75 entropy_left: 1.4591479170272446 entropy_right : 1.0462881865460743 -> 69 150 -idx: 76 entropy_left: 1.5566567074628228 entropy_right : 0.9568886656798212 -> 69 150 -idx: 77 entropy_left: 1.5 entropy_right : 0.9505668528932196 -> 69 150 -idx: 78 entropy_left: 1.5304930567574826 entropy_right : 0.9544340029249649 -> 69 150 -idx: 79 entropy_left: 1.4854752972273344 entropy_right : 0.9477073729342066 -> 69 150 -idx: 81 entropy_left: 1.4833557549816874 entropy_right : 0.9557589912150009 -> 69 150 -idx: 83 entropy_left: 1.4315602842833155 entropy_right : 0.9411864371816835 -> 69 150 -idx: 84 entropy_left: 1.4294732983598406 entropy_right : 0.9456603046006402 -> 69 150 -idx: 87 entropy_left: 1.3516441151533924 entropy_right : 0.9182958340544896 -> 69 150 -idx: 88 entropy_left: 1.3599924922184878 entropy_right : 0.9235785996175947 -> 69 150 -idx: 89 entropy_left: 1.3366664819166876 entropy_right : 0.9127341558073343 -> 69 150 -idx: 91 entropy_left: 1.342019217819521 entropy_right : 0.9238422284571814 -> 69 150 -idx: 95 entropy_left: 1.2722595663292235 entropy_right : 0.8698926856041563 -> 69 150 -idx: 97 entropy_left: 1.2838868242312453 entropy_right : 0.8835850861052532 -> 69 150 -idx: 99 entropy_left: 1.2555367253996503 entropy_right : 0.8478617451660526 -> 69 150 -idx: 101 entropy_left: 1.2627317300909384 entropy_right : 0.863120568566631 -> 69 150 -idx: 102 entropy_left: 1.251534532637368 entropy_right : 0.8426578772022391 -> 69 150 -idx: 104 entropy_left: 1.2532256180852694 entropy_right : 0.8589810370425963 -> 69 150 -idx: 105 entropy_left: 1.2445366211768707 entropy_right : 0.8366407419411673 -> 69 150 -idx: 106 entropy_left: 1.2443013992660277 entropy_right : 0.8453509366224365 -> 69 150 -idx: 107 entropy_left: 1.2363864108712896 entropy_right : 0.8203636429576732 -> 69 150 -idx: 109 entropy_left: 1.2344977967946407 entropy_right : 0.8390040613676977 -> 69 150 -idx: 110 entropy_left: 1.2283491776835573 entropy_right : 0.8112781244591328 -> 69 150 -idx: 113 entropy_left: 1.2213104423484806 entropy_right : 0.8418521897563207 -> 69 150 -idx: 114 entropy_left: 1.2174939521435744 entropy_right : 0.8112781244591328 -> 69 150 -idx: 117 entropy_left: 1.206908425151817 entropy_right : 0.8453509366224365 -> 69 150 -idx: 118 entropy_left: 1.2048930072454316 entropy_right : 0.8112781244591328 -> 69 150 -idx: 120 entropy_left: 1.1968693094032665 entropy_right : 0.8366407419411673 -> 69 150 -idx: 122 entropy_left: 1.193810314637982 entropy_right : 0.74959525725948 -> 69 150 -idx: 127 entropy_left: 1.1739035750178954 entropy_right : 0.828055725379504 -> 69 150 -idx: 130 entropy_left: 1.1735894123234432 entropy_right : 0.6098403047164004 -> 69 150 -idx: 132 entropy_left: 1.1666300226040138 entropy_right : 0.6500224216483541 -> 69 150 -idx: 133 entropy_left: 1.1664616437886164 entropy_right : 0.5225593745369408 -> 69 150 -idx: 134 entropy_left: 1.16305726747136 entropy_right : 0.5435644431995964 -> 69 150 -idx: 135 entropy_left: 1.1628720819225884 entropy_right : 0.35335933502142136 -> 69 150 -idx: 137 entropy_left: 1.1562272836006513 entropy_right : 0.39124356362925566 -> 69 150 -idx: 138 entropy_left: 1.1563884325185114 entropy_right : 0 -> 69 150 -cut: 5.7 index: 70 -start: 69 cut: 70 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.109500797247481 ent1= 0 ent2= 1.105866621101474 -ig= 0.017286850480593197 delta= 4.632953661336703 N 81 term 0.135245453780544 -idx: 71 entropy_left: 0 entropy_right : 1.1104593064416028 -> 70 150 -idx: 72 entropy_left: 1.0 entropy_right : 1.0511407586429597 -> 70 150 -idx: 74 entropy_left: 1.5 entropy_right : 1.041722068095403 -> 70 150 -idx: 75 entropy_left: 1.5219280948873621 entropy_right : 1.0462881865460743 -> 70 150 -idx: 76 entropy_left: 1.584962500721156 entropy_right : 0.9568886656798212 -> 70 150 -idx: 77 entropy_left: 1.5566567074628228 entropy_right : 0.9505668528932196 -> 70 150 -idx: 78 entropy_left: 1.5612781244591325 entropy_right : 0.9544340029249649 -> 70 150 -idx: 79 entropy_left: 1.5304930567574826 entropy_right : 0.9477073729342066 -> 70 150 -idx: 81 entropy_left: 1.4949188482339508 entropy_right : 0.9557589912150009 -> 70 150 -idx: 83 entropy_left: 1.4604846813131114 entropy_right : 0.9411864371816835 -> 70 150 -idx: 84 entropy_left: 1.4488156357251847 entropy_right : 0.9456603046006402 -> 70 150 -idx: 87 entropy_left: 1.3792804872910602 entropy_right : 0.9182958340544896 -> 70 150 -idx: 88 entropy_left: 1.3821022532543101 entropy_right : 0.9235785996175947 -> 70 150 -idx: 89 entropy_left: 1.3599924922184878 entropy_right : 0.9127341558073343 -> 70 150 -idx: 91 entropy_left: 1.3566695198333112 entropy_right : 0.9238422284571814 -> 70 150 -idx: 95 entropy_left: 1.290564432903234 entropy_right : 0.8698926856041563 -> 70 150 -idx: 97 entropy_left: 1.2972313275776637 entropy_right : 0.8835850861052532 -> 70 150 -idx: 99 entropy_left: 1.2699207259892868 entropy_right : 0.8478617451660526 -> 70 150 -idx: 101 entropy_left: 1.2733667511664173 entropy_right : 0.863120568566631 -> 70 150 -idx: 102 entropy_left: 1.2627317300909384 entropy_right : 0.8426578772022391 -> 70 150 -idx: 104 entropy_left: 1.2612796872684706 entropy_right : 0.8589810370425963 -> 70 150 -idx: 105 entropy_left: 1.2532256180852694 entropy_right : 0.8366407419411673 -> 70 150 -idx: 106 entropy_left: 1.2516291673878228 entropy_right : 0.8453509366224365 -> 70 150 -idx: 107 entropy_left: 1.2443013992660277 entropy_right : 0.8203636429576732 -> 70 150 -idx: 109 entropy_left: 1.2400362501086653 entropy_right : 0.8390040613676977 -> 70 150 -idx: 110 entropy_left: 1.2344977967946407 entropy_right : 0.8112781244591328 -> 70 150 -idx: 113 entropy_left: 1.2244687599090465 entropy_right : 0.8418521897563207 -> 70 150 -idx: 114 entropy_left: 1.2213104423484806 entropy_right : 0.8112781244591328 -> 70 150 -idx: 117 entropy_left: 1.2082534070890902 entropy_right : 0.8453509366224365 -> 70 150 -idx: 118 entropy_left: 1.206908425151817 entropy_right : 0.8112781244591328 -> 70 150 -idx: 120 entropy_left: 1.1974776241409462 entropy_right : 0.8366407419411673 -> 70 150 -idx: 122 entropy_left: 1.1956217818146277 entropy_right : 0.74959525725948 -> 70 150 -idx: 127 entropy_left: 1.172904301194551 entropy_right : 0.828055725379504 -> 70 150 -idx: 130 entropy_left: 1.174189792601739 entropy_right : 0.6098403047164004 -> 70 150 -idx: 132 entropy_left: 1.1663419797861878 entropy_right : 0.6500224216483541 -> 70 150 -idx: 133 entropy_left: 1.1666300226040138 entropy_right : 0.5225593745369408 -> 70 150 -idx: 134 entropy_left: 1.1628175871855553 entropy_right : 0.5435644431995964 -> 70 150 -idx: 135 entropy_left: 1.16305726747136 entropy_right : 0.35335933502142136 -> 70 150 -idx: 137 entropy_left: 1.1556601022395212 entropy_right : 0.39124356362925566 -> 70 150 -idx: 138 entropy_left: 1.1562272836006513 entropy_right : 0 -> 70 150 -cut: 5.7 index: 71 -start: 70 cut: 71 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.105866621101474 ent1= 0 ent2= 1.1104593064416028 -ig= 0.009288055990391175 delta= 4.65763424579511 N 80 term 0.13701768742465267 -idx: 72 entropy_left: 0 entropy_right : 1.0511407586429597 -> 71 150 -idx: 74 entropy_left: 0.9182958340544896 entropy_right : 1.041722068095403 -> 71 150 -idx: 75 entropy_left: 1.5 entropy_right : 1.0462881865460743 -> 71 150 -idx: 76 entropy_left: 1.5219280948873621 entropy_right : 0.9568886656798212 -> 71 150 -idx: 77 entropy_left: 1.4591479170272448 entropy_right : 0.9505668528932196 -> 71 150 -idx: 78 entropy_left: 1.5566567074628228 entropy_right : 0.9544340029249649 -> 71 150 -idx: 79 entropy_left: 1.5 entropy_right : 0.9477073729342066 -> 71 150 -idx: 81 entropy_left: 1.5219280948873621 entropy_right : 0.9557589912150009 -> 71 150 -idx: 83 entropy_left: 1.4591479170272446 entropy_right : 0.9411864371816835 -> 71 150 -idx: 84 entropy_left: 1.4604846813131114 entropy_right : 0.9456603046006402 -> 71 150 -idx: 87 entropy_left: 1.3663146570363986 entropy_right : 0.9182958340544896 -> 71 150 -idx: 88 entropy_left: 1.3792804872910602 entropy_right : 0.9235785996175947 -> 71 150 -idx: 89 entropy_left: 1.3516441151533924 entropy_right : 0.9127341558073343 -> 71 150 -idx: 91 entropy_left: 1.360964047443681 entropy_right : 0.9238422284571814 -> 71 150 -idx: 95 entropy_left: 1.280672129520887 entropy_right : 0.8698926856041563 -> 71 150 -idx: 97 entropy_left: 1.2957378005380122 entropy_right : 0.8835850861052532 -> 71 150 -idx: 99 entropy_left: 1.2638091738835462 entropy_right : 0.8478617451660526 -> 71 150 -idx: 101 entropy_left: 1.272905595320056 entropy_right : 0.863120568566631 -> 71 150 -idx: 102 entropy_left: 1.2604408810349512 entropy_right : 0.8426578772022391 -> 71 150 -idx: 104 entropy_left: 1.2628839008717194 entropy_right : 0.8589810370425963 -> 71 150 -idx: 105 entropy_left: 1.2532975784630431 entropy_right : 0.8366407419411673 -> 71 150 -idx: 106 entropy_left: 1.2532256180852694 entropy_right : 0.8453509366224365 -> 71 150 -idx: 107 entropy_left: 1.2445366211768707 entropy_right : 0.8203636429576732 -> 71 150 -idx: 109 entropy_left: 1.2427303803729566 entropy_right : 0.8390040613676977 -> 71 150 -idx: 110 entropy_left: 1.236032213759607 entropy_right : 0.8112781244591328 -> 71 150 -idx: 113 entropy_left: 1.2285763800288914 entropy_right : 0.8418521897563207 -> 71 150 -idx: 114 entropy_left: 1.2244687599090465 entropy_right : 0.8112781244591328 -> 71 150 -idx: 117 entropy_left: 1.2131143284990724 entropy_right : 0.8453509366224365 -> 71 150 -idx: 118 entropy_left: 1.2109841580748322 entropy_right : 0.8112781244591328 -> 71 150 -idx: 120 entropy_left: 1.2023853470868684 entropy_right : 0.8366407419411673 -> 71 150 -idx: 122 entropy_left: 1.1991801505660864 entropy_right : 0.74959525725948 -> 71 150 -idx: 127 entropy_left: 1.1779653169582593 entropy_right : 0.828055725379504 -> 71 150 -idx: 130 entropy_left: 1.1777501607742278 entropy_right : 0.6098403047164004 -> 71 150 -idx: 132 entropy_left: 1.170377295621679 entropy_right : 0.6500224216483541 -> 71 150 -idx: 133 entropy_left: 1.1702295713931186 entropy_right : 0.5225593745369408 -> 71 150 -idx: 134 entropy_left: 1.1666300226040138 entropy_right : 0.5435644431995964 -> 71 150 -idx: 135 entropy_left: 1.1664616437886164 entropy_right : 0.35335933502142136 -> 71 150 -idx: 137 entropy_left: 1.1594493549376441 entropy_right : 0.39124356362925566 -> 71 150 -idx: 138 entropy_left: 1.159647049243901 entropy_right : 0 -> 71 150 -cut: 5.7 index: 72 -start: 71 cut: 72 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.1104593064416028 ent1= 0 ent2= 1.0511407586429597 -ig= 0.07262412702197163 delta= 4.465900546378795 N 79 term 0.1360924400663423 -idx: 74 entropy_left: 0 entropy_right : 1.041722068095403 -> 72 150 -idx: 75 entropy_left: 0.9182958340544896 entropy_right : 1.0462881865460743 -> 72 150 -idx: 76 entropy_left: 1.5 entropy_right : 0.9568886656798212 -> 72 150 -idx: 77 entropy_left: 1.3709505944546687 entropy_right : 0.9505668528932196 -> 72 150 -idx: 78 entropy_left: 1.4591479170272446 entropy_right : 0.9544340029249649 -> 72 150 -idx: 79 entropy_left: 1.3787834934861758 entropy_right : 0.9477073729342066 -> 72 150 -idx: 81 entropy_left: 1.3921472236645345 entropy_right : 0.9557589912150009 -> 72 150 -idx: 83 entropy_left: 1.3221793455166668 entropy_right : 0.9411864371816835 -> 72 150 -idx: 84 entropy_left: 1.3250112108241772 entropy_right : 0.9456603046006402 -> 72 150 -idx: 87 entropy_left: 1.2309595631140104 entropy_right : 0.9182958340544896 -> 72 150 -idx: 88 entropy_left: 1.2475562489182657 entropy_right : 0.9235785996175947 -> 72 150 -idx: 89 entropy_left: 1.2210477851797181 entropy_right : 0.9127341558073343 -> 72 150 -idx: 91 entropy_left: 1.2363864108712896 entropy_right : 0.9238422284571814 -> 72 150 -idx: 95 entropy_left: 1.1625633078480364 entropy_right : 0.8698926856041563 -> 72 150 -idx: 97 entropy_left: 1.1829661954675212 entropy_right : 0.8835850861052532 -> 72 150 -idx: 99 entropy_left: 1.154173392945927 entropy_right : 0.8478617451660526 -> 72 150 -idx: 101 entropy_left: 1.1676516844843352 entropy_right : 0.863120568566631 -> 72 150 -idx: 102 entropy_left: 1.1566766519448637 entropy_right : 0.8426578772022391 -> 72 150 -idx: 104 entropy_left: 1.1628175871855553 entropy_right : 0.8589810370425963 -> 72 150 -idx: 105 entropy_left: 1.154648091032148 entropy_right : 0.8366407419411673 -> 72 150 -idx: 106 entropy_left: 1.1562272836006513 entropy_right : 0.8453509366224365 -> 72 150 -idx: 107 entropy_left: 1.148883540100512 entropy_right : 0.8203636429576732 -> 72 150 -idx: 109 entropy_left: 1.1500617154483042 entropy_right : 0.8390040613676977 -> 72 150 -idx: 110 entropy_left: 1.14462671873298 entropy_right : 0.8112781244591328 -> 72 150 -idx: 113 entropy_left: 1.1410367900938279 entropy_right : 0.8418521897563207 -> 72 150 -idx: 114 entropy_left: 1.1380977138239694 entropy_right : 0.8112781244591328 -> 72 150 -idx: 117 entropy_left: 1.1300621881593356 entropy_right : 0.8453509366224365 -> 72 150 -idx: 118 entropy_left: 1.1290093343324077 entropy_right : 0.8112781244591328 -> 72 150 -idx: 120 entropy_left: 1.1223812433380593 entropy_right : 0.8366407419411673 -> 72 150 -idx: 122 entropy_left: 1.1211460945412073 entropy_right : 0.74959525725948 -> 72 150 -idx: 127 entropy_left: 1.104163024696236 entropy_right : 0.828055725379504 -> 72 150 -idx: 130 entropy_left: 1.106452022253965 entropy_right : 0.6098403047164004 -> 72 150 -idx: 132 entropy_left: 1.1005245529682912 entropy_right : 0.6500224216483541 -> 72 150 -idx: 133 entropy_left: 1.1011317995692322 entropy_right : 0.5225593745369408 -> 72 150 -idx: 134 entropy_left: 1.0982133465732966 entropy_right : 0.5435644431995964 -> 72 150 -idx: 135 entropy_left: 1.0987647679835901 entropy_right : 0.35335933502142136 -> 72 150 -idx: 137 entropy_left: 1.093039283001171 entropy_right : 0.39124356362925566 -> 72 150 -idx: 138 entropy_left: 1.093914976004978 entropy_right : 0 -> 72 150 -cut: 5.8 index: 74 -start: 72 cut: 74 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.0511407586429597 ent1= 0 ent2= 1.041722068095403 -ig= 0.03612951280641341 delta= 4.615600118132054 N 78 term 0.13951777767726867 -idx: 75 entropy_left: 0 entropy_right : 1.0462881865460743 -> 74 150 -idx: 76 entropy_left: 1.0 entropy_right : 0.9568886656798212 -> 74 150 -idx: 77 entropy_left: 1.584962500721156 entropy_right : 0.9505668528932196 -> 74 150 -idx: 78 entropy_left: 1.5 entropy_right : 0.9544340029249649 -> 74 150 -idx: 79 entropy_left: 1.5219280948873621 entropy_right : 0.9477073729342066 -> 74 150 -idx: 81 entropy_left: 1.3787834934861756 entropy_right : 0.9557589912150009 -> 74 150 -idx: 83 entropy_left: 1.3921472236645345 entropy_right : 0.9411864371816835 -> 74 150 -idx: 84 entropy_left: 1.360964047443681 entropy_right : 0.9456603046006402 -> 74 150 -idx: 87 entropy_left: 1.2957378005380122 entropy_right : 0.9182958340544896 -> 74 150 -idx: 88 entropy_left: 1.2958363892911637 entropy_right : 0.9235785996175947 -> 74 150 -idx: 89 entropy_left: 1.272905595320056 entropy_right : 0.9127341558073343 -> 74 150 -idx: 91 entropy_left: 1.2639334294856335 entropy_right : 0.9238422284571814 -> 74 150 -idx: 95 entropy_left: 1.2009102795095283 entropy_right : 0.8698926856041563 -> 74 150 -idx: 97 entropy_left: 1.2088301752949477 entropy_right : 0.8835850861052532 -> 74 150 -idx: 99 entropy_left: 1.1829661954675212 entropy_right : 0.8478617451660526 -> 74 150 -idx: 101 entropy_left: 1.1873868015167897 entropy_right : 0.863120568566631 -> 74 150 -idx: 102 entropy_left: 1.1779653169582593 entropy_right : 0.8426578772022391 -> 74 150 -idx: 104 entropy_left: 1.1766796675107107 entropy_right : 0.8589810370425963 -> 74 150 -idx: 105 entropy_left: 1.1702295713931186 entropy_right : 0.8366407419411673 -> 74 150 -idx: 106 entropy_left: 1.168645033308507 entropy_right : 0.8453509366224365 -> 74 150 -idx: 107 entropy_left: 1.1628720819225884 entropy_right : 0.8203636429576732 -> 74 150 -idx: 109 entropy_left: 1.1586048283017796 entropy_right : 0.8390040613676977 -> 74 150 -idx: 110 entropy_left: 1.1547717145751626 entropy_right : 0.8112781244591328 -> 74 150 -idx: 113 entropy_left: 1.1444480669722774 entropy_right : 0.8418521897563207 -> 74 150 -idx: 114 entropy_left: 1.143198478557978 entropy_right : 0.8112781244591328 -> 74 150 -idx: 117 entropy_left: 1.1296938769174603 entropy_right : 0.8453509366224365 -> 74 150 -idx: 118 entropy_left: 1.1303296439314212 entropy_right : 0.8112781244591328 -> 74 150 -idx: 120 entropy_left: 1.1206278986197225 entropy_right : 0.8366407419411673 -> 74 150 -idx: 122 entropy_left: 1.1223812433380593 entropy_right : 0.74959525725948 -> 74 150 -idx: 127 entropy_left: 1.0993503889353484 entropy_right : 0.828055725379504 -> 74 150 -idx: 130 entropy_left: 1.1055134468321814 entropy_right : 0.6098403047164004 -> 74 150 -idx: 132 entropy_left: 1.097698154707432 entropy_right : 0.6500224216483541 -> 74 150 -idx: 133 entropy_left: 1.0993984278081397 entropy_right : 0.5225593745369408 -> 74 150 -idx: 134 entropy_left: 1.0956166187668959 entropy_right : 0.5435644431995964 -> 74 150 -idx: 135 entropy_left: 1.0971804769523517 entropy_right : 0.35335933502142136 -> 74 150 -idx: 137 entropy_left: 1.0898693179207501 entropy_right : 0.39124356362925566 -> 74 150 -idx: 138 entropy_left: 1.0917055717080197 entropy_right : 0 -> 74 150 -cut: 5.8 index: 75 -start: 74 cut: 75 end: 150 -k= 3 k1= 1 k2= 3 ent= 1.041722068095403 ent1= 0 ent2= 1.0462881865460743 -ig= 0.00920083137230332 delta= 4.657554545126739 N 76 term 0.1432417531002976 -idx: 76 entropy_left: 0 entropy_right : 0.9568886656798212 -> 75 150 -idx: 77 entropy_left: 1.0 entropy_right : 0.9505668528932196 -> 75 150 -idx: 78 entropy_left: 1.584962500721156 entropy_right : 0.9544340029249649 -> 75 150 -idx: 79 entropy_left: 1.5 entropy_right : 0.9477073729342066 -> 75 150 -idx: 81 entropy_left: 1.4591479170272448 entropy_right : 0.9557589912150009 -> 75 150 -idx: 83 entropy_left: 1.4056390622295662 entropy_right : 0.9411864371816835 -> 75 150 -idx: 84 entropy_left: 1.3921472236645345 entropy_right : 0.9456603046006402 -> 75 150 -idx: 87 entropy_left: 1.280672129520887 entropy_right : 0.9182958340544896 -> 75 150 -idx: 88 entropy_left: 1.2957378005380122 entropy_right : 0.9235785996175947 -> 75 150 -idx: 89 entropy_left: 1.2638091738835462 entropy_right : 0.9127341558073343 -> 75 150 -idx: 91 entropy_left: 1.271782221599798 entropy_right : 0.9238422284571814 -> 75 150 -idx: 95 entropy_left: 1.1883763717345075 entropy_right : 0.8698926856041563 -> 75 150 -idx: 97 entropy_left: 1.2072100267448116 entropy_right : 0.8835850861052532 -> 75 150 -idx: 99 entropy_left: 1.1752835873133534 entropy_right : 0.8478617451660526 -> 75 150 -idx: 101 entropy_left: 1.1867198445327565 entropy_right : 0.863120568566631 -> 75 150 -idx: 102 entropy_left: 1.1749946599731707 entropy_right : 0.8426578772022391 -> 75 150 -idx: 104 entropy_left: 1.1783577099564695 entropy_right : 0.8589810370425963 -> 75 150 -idx: 105 entropy_left: 1.1700333844140454 entropy_right : 0.8366407419411673 -> 75 150 -idx: 106 entropy_left: 1.1702295713931186 entropy_right : 0.8453509366224365 -> 75 150 -idx: 107 entropy_left: 1.1628175871855553 entropy_right : 0.8203636429576732 -> 75 150 -idx: 109 entropy_left: 1.1613784794486992 entropy_right : 0.8390040613676977 -> 75 150 -idx: 110 entropy_left: 1.1561787304889202 entropy_right : 0.8112781244591328 -> 75 150 -idx: 113 entropy_left: 1.1487361244596448 entropy_right : 0.8418521897563207 -> 75 150 -idx: 114 entropy_left: 1.1463959237120882 entropy_right : 0.8112781244591328 -> 75 150 -idx: 117 entropy_left: 1.1347431759823636 entropy_right : 0.8453509366224365 -> 75 150 -idx: 118 entropy_left: 1.1344959754516843 entropy_right : 0.8112781244591328 -> 75 150 -idx: 120 entropy_left: 1.1256828315506748 entropy_right : 0.8366407419411673 -> 75 150 -idx: 122 entropy_left: 1.1259378808834186 entropy_right : 0.74959525725948 -> 75 150 -idx: 127 entropy_left: 1.1044984783580127 entropy_right : 0.828055725379504 -> 75 150 -idx: 130 entropy_left: 1.1090351025597922 entropy_right : 0.6098403047164004 -> 75 150 -idx: 132 entropy_left: 1.1017235165092814 entropy_right : 0.6500224216483541 -> 75 150 -idx: 133 entropy_left: 1.1029548176506492 entropy_right : 0.5225593745369408 -> 75 150 -idx: 134 entropy_left: 1.0993984278081397 entropy_right : 0.5435644431995964 -> 75 150 -idx: 135 entropy_left: 1.1005245529682912 entropy_right : 0.35335933502142136 -> 75 150 -idx: 137 entropy_left: 1.093620517468727 entropy_right : 0.39124356362925566 -> 75 150 -idx: 138 entropy_left: 1.0950628692122266 entropy_right : 0 -> 75 150 -cut: 5.8 index: 76 -start: 75 cut: 76 end: 150 -k= 3 k1= 1 k2= 2 ent= 1.0462881865460743 ent1= 0 ent2= 0.9568886656798212 -ig= 0.10215803640865062 delta= 3.418768961496144 N 75 term 0.12837629769500125 -idx: 77 entropy_left: 0 entropy_right : 0.9505668528932196 -> 76 150 -idx: 78 entropy_left: 1.0 entropy_right : 0.9544340029249649 -> 76 150 -idx: 79 entropy_left: 0.9182958340544896 entropy_right : 0.9477073729342066 -> 76 150 -idx: 81 entropy_left: 0.9709505944546686 entropy_right : 0.9557589912150009 -> 76 150 -idx: 83 entropy_left: 0.9852281360342516 entropy_right : 0.9411864371816835 -> 76 150 -idx: 84 entropy_left: 1.0 entropy_right : 0.9456603046006402 -> 76 150 -idx: 87 entropy_left: 0.9456603046006402 entropy_right : 0.9182958340544896 -> 76 150 -idx: 88 entropy_left: 0.9798687566511527 entropy_right : 0.9235785996175947 -> 76 150 -idx: 89 entropy_left: 0.961236604722876 entropy_right : 0.9127341558073343 -> 76 150 -idx: 91 entropy_left: 0.9967916319816366 entropy_right : 0.9238422284571814 -> 76 150 -idx: 95 entropy_left: 0.9494520153879484 entropy_right : 0.8698926856041563 -> 76 150 -idx: 97 entropy_left: 0.9852281360342516 entropy_right : 0.8835850861052532 -> 76 150 -idx: 99 entropy_left: 0.9656361333706098 entropy_right : 0.8478617451660526 -> 76 150 -idx: 101 entropy_left: 0.9895875212220557 entropy_right : 0.863120568566631 -> 76 150 -idx: 102 entropy_left: 0.9828586897127056 entropy_right : 0.8426578772022391 -> 76 150 -idx: 104 entropy_left: 0.996316519558962 entropy_right : 0.8589810370425963 -> 76 150 -idx: 105 entropy_left: 0.9922666387194963 entropy_right : 0.8366407419411673 -> 76 150 -idx: 106 entropy_left: 0.9967916319816366 entropy_right : 0.8453509366224365 -> 76 150 -idx: 107 entropy_left: 0.9932338197397066 entropy_right : 0.8203636429576732 -> 76 150 -idx: 109 entropy_left: 0.9993375041688847 entropy_right : 0.8390040613676977 -> 76 150 -idx: 110 entropy_left: 0.9975025463691153 entropy_right : 0.8112781244591328 -> 76 150 -idx: 113 entropy_left: 0.9994730201859836 entropy_right : 0.8418521897563207 -> 76 150 -idx: 114 entropy_left: 1.0 entropy_right : 0.8112781244591328 -> 76 150 -idx: 117 entropy_left: 0.9961344835095796 entropy_right : 0.8453509366224365 -> 76 150 -idx: 118 entropy_left: 0.9983636725938131 entropy_right : 0.8112781244591328 -> 76 150 -idx: 120 entropy_left: 0.9940302114769565 entropy_right : 0.8366407419411673 -> 76 150 -idx: 122 entropy_left: 0.9986359641585718 entropy_right : 0.74959525725948 -> 76 150 -idx: 127 entropy_left: 0.9863676072907088 entropy_right : 0.828055725379504 -> 76 150 -idx: 130 entropy_left: 0.9960383613659183 entropy_right : 0.6098403047164004 -> 76 150 -idx: 132 entropy_left: 0.9917033083725818 entropy_right : 0.6500224216483541 -> 76 150 -idx: 133 entropy_left: 0.9944423248022588 entropy_right : 0.5225593745369408 -> 76 150 -idx: 134 entropy_left: 0.9922666387194963 entropy_right : 0.5435644431995964 -> 76 150 -idx: 135 entropy_left: 0.9948131754904235 entropy_right : 0.35335933502142136 -> 76 150 -idx: 137 entropy_left: 0.9904799742690307 entropy_right : 0.39124356362925566 -> 76 150 -idx: 138 entropy_left: 0.9932338197397066 entropy_right : 0 -> 76 150 -cut: 5.8 index: 77 -start: 76 cut: 77 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9568886656798212 ent1= 0 ent2= 0.9505668528932196 -ig= 0.019167310798672066 delta= 2.794711296484401 N 74 term 0.12141264669411377 -idx: 78 entropy_left: 0 entropy_right : 0.9544340029249649 -> 77 150 -idx: 79 entropy_left: 1.0 entropy_right : 0.9477073729342066 -> 77 150 -idx: 81 entropy_left: 0.8112781244591328 entropy_right : 0.9557589912150009 -> 77 150 -idx: 83 entropy_left: 1.0 entropy_right : 0.9411864371816835 -> 77 150 -idx: 84 entropy_left: 0.9852281360342516 entropy_right : 0.9456603046006402 -> 77 150 -idx: 87 entropy_left: 0.9709505944546686 entropy_right : 0.9182958340544896 -> 77 150 -idx: 88 entropy_left: 0.9940302114769565 entropy_right : 0.9235785996175947 -> 77 150 -idx: 89 entropy_left: 0.9798687566511527 entropy_right : 0.9127341558073343 -> 77 150 -idx: 91 entropy_left: 1.0 entropy_right : 0.9238422284571814 -> 77 150 -idx: 95 entropy_left: 0.9640787648082292 entropy_right : 0.8698926856041563 -> 77 150 -idx: 97 entropy_left: 0.9927744539878084 entropy_right : 0.8835850861052532 -> 77 150 -idx: 99 entropy_left: 0.976020648236615 entropy_right : 0.8478617451660526 -> 77 150 -idx: 101 entropy_left: 0.9949848281859701 entropy_right : 0.863120568566631 -> 77 150 -idx: 102 entropy_left: 0.9895875212220557 entropy_right : 0.8426578772022391 -> 77 150 -idx: 104 entropy_left: 0.9990102708804813 entropy_right : 0.8589810370425963 -> 77 150 -idx: 105 entropy_left: 0.996316519558962 entropy_right : 0.8366407419411673 -> 77 150 -idx: 106 entropy_left: 0.9991421039919088 entropy_right : 0.8453509366224365 -> 77 150 -idx: 107 entropy_left: 0.9967916319816366 entropy_right : 0.8203636429576732 -> 77 150 -idx: 109 entropy_left: 1.0 entropy_right : 0.8390040613676977 -> 77 150 -idx: 110 entropy_left: 0.9993375041688847 entropy_right : 0.8112781244591328 -> 77 150 -idx: 113 entropy_left: 0.9977724720899821 entropy_right : 0.8418521897563207 -> 77 150 -idx: 114 entropy_left: 0.9994730201859836 entropy_right : 0.8112781244591328 -> 77 150 -idx: 117 entropy_left: 0.9927744539878084 entropy_right : 0.8453509366224365 -> 77 150 -idx: 118 entropy_left: 0.9961344835095796 entropy_right : 0.8112781244591328 -> 77 150 -idx: 120 entropy_left: 0.9902246902198684 entropy_right : 0.8366407419411673 -> 77 150 -idx: 122 entropy_left: 0.9967916319816366 entropy_right : 0.74959525725948 -> 77 150 -idx: 127 entropy_left: 0.9814538950336535 entropy_right : 0.828055725379504 -> 77 150 -idx: 130 entropy_left: 0.9935704757706079 entropy_right : 0.6098403047164004 -> 77 150 -idx: 132 entropy_left: 0.9882836109919162 entropy_right : 0.6500224216483541 -> 77 150 -idx: 133 entropy_left: 0.9917033083725818 entropy_right : 0.5225593745369408 -> 77 150 -idx: 134 entropy_left: 0.9890934397021431 entropy_right : 0.5435644431995964 -> 77 150 -idx: 135 entropy_left: 0.9922666387194963 entropy_right : 0.35335933502142136 -> 77 150 -idx: 137 entropy_left: 0.9871377743721863 entropy_right : 0.39124356362925566 -> 77 150 -idx: 138 entropy_left: 0.9904799742690307 entropy_right : 0 -> 77 150 -cut: 5.8 index: 78 -start: 77 cut: 78 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9505668528932196 ent1= 0 ent2= 0.9544340029249649 -ig= 0.009207288364487143 delta= 2.815089222121095 N 73 term 0.12308238662415626 -idx: 79 entropy_left: 0 entropy_right : 0.9477073729342066 -> 78 150 -idx: 81 entropy_left: 0.9182958340544896 entropy_right : 0.9557589912150009 -> 78 150 -idx: 83 entropy_left: 0.9709505944546686 entropy_right : 0.9411864371816835 -> 78 150 -idx: 84 entropy_left: 1.0 entropy_right : 0.9456603046006402 -> 78 150 -idx: 87 entropy_left: 0.9182958340544896 entropy_right : 0.9182958340544896 -> 78 150 -idx: 88 entropy_left: 0.9709505944546686 entropy_right : 0.9235785996175947 -> 78 150 -idx: 89 entropy_left: 0.9456603046006402 entropy_right : 0.9127341558073343 -> 78 150 -idx: 91 entropy_left: 0.9957274520849256 entropy_right : 0.9238422284571814 -> 78 150 -idx: 95 entropy_left: 0.9366673818775626 entropy_right : 0.8698926856041563 -> 78 150 -idx: 97 entropy_left: 0.9819407868640977 entropy_right : 0.8835850861052532 -> 78 150 -idx: 99 entropy_left: 0.9587118829771318 entropy_right : 0.8478617451660526 -> 78 150 -idx: 101 entropy_left: 0.9876925088958034 entropy_right : 0.863120568566631 -> 78 150 -idx: 102 entropy_left: 0.9798687566511527 entropy_right : 0.8426578772022391 -> 78 150 -idx: 104 entropy_left: 0.9957274520849256 entropy_right : 0.8589810370425963 -> 78 150 -idx: 105 entropy_left: 0.9910760598382222 entropy_right : 0.8366407419411673 -> 78 150 -idx: 106 entropy_left: 0.996316519558962 entropy_right : 0.8453509366224365 -> 78 150 -idx: 107 entropy_left: 0.9922666387194963 entropy_right : 0.8203636429576732 -> 78 150 -idx: 109 entropy_left: 0.9992492479956565 entropy_right : 0.8390040613676977 -> 78 150 -idx: 110 entropy_left: 0.9971803988942642 entropy_right : 0.8112781244591328 -> 78 150 -idx: 113 entropy_left: 0.9994110647387553 entropy_right : 0.8418521897563207 -> 78 150 -idx: 114 entropy_left: 1.0 entropy_right : 0.8112781244591328 -> 78 150 -idx: 117 entropy_left: 0.9957274520849256 entropy_right : 0.8453509366224365 -> 78 150 -idx: 118 entropy_left: 0.99819587904281 entropy_right : 0.8112781244591328 -> 78 150 -idx: 120 entropy_left: 0.9934472383802027 entropy_right : 0.8366407419411673 -> 78 150 -idx: 122 entropy_left: 0.9985090989176322 entropy_right : 0.74959525725948 -> 78 150 -idx: 127 entropy_left: 0.9852281360342516 entropy_right : 0.828055725379504 -> 78 150 -idx: 130 entropy_left: 0.9957274520849256 entropy_right : 0.6098403047164004 -> 78 150 -idx: 132 entropy_left: 0.9910760598382222 entropy_right : 0.6500224216483541 -> 78 150 -idx: 133 entropy_left: 0.9940302114769565 entropy_right : 0.5225593745369408 -> 78 150 -idx: 134 entropy_left: 0.9917033083725818 entropy_right : 0.5435644431995964 -> 78 150 -idx: 135 entropy_left: 0.9944423248022588 entropy_right : 0.35335933502142136 -> 78 150 -idx: 137 entropy_left: 0.9898220559635811 entropy_right : 0.39124356362925566 -> 78 150 -idx: 138 entropy_left: 0.9927744539878084 entropy_right : 0 -> 78 150 -cut: 5.8 index: 79 -start: 78 cut: 79 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9544340029249649 ent1= 0 ent2= 0.9477073729342066 -ig= 0.019889232392622302 delta= 2.7939016620760873 N 72 term 0.12421734418862179 -idx: 81 entropy_left: 0 entropy_right : 0.9557589912150009 -> 79 150 -idx: 83 entropy_left: 1.0 entropy_right : 0.9411864371816835 -> 79 150 -idx: 84 entropy_left: 0.9709505944546686 entropy_right : 0.9456603046006402 -> 79 150 -idx: 87 entropy_left: 0.9544340029249649 entropy_right : 0.9182958340544896 -> 79 150 -idx: 88 entropy_left: 0.9910760598382222 entropy_right : 0.9235785996175947 -> 79 150 -idx: 89 entropy_left: 0.9709505944546686 entropy_right : 0.9127341558073343 -> 79 150 -idx: 91 entropy_left: 1.0 entropy_right : 0.9238422284571814 -> 79 150 -idx: 95 entropy_left: 0.9544340029249649 entropy_right : 0.8698926856041563 -> 79 150 -idx: 97 entropy_left: 0.9910760598382222 entropy_right : 0.8835850861052532 -> 79 150 -idx: 99 entropy_left: 0.9709505944546686 entropy_right : 0.8478617451660526 -> 79 150 -idx: 101 entropy_left: 0.9940302114769565 entropy_right : 0.863120568566631 -> 79 150 -idx: 102 entropy_left: 0.9876925088958034 entropy_right : 0.8426578772022391 -> 79 150 -idx: 104 entropy_left: 0.9988455359952018 entropy_right : 0.8589810370425963 -> 79 150 -idx: 105 entropy_left: 0.9957274520849256 entropy_right : 0.8366407419411673 -> 79 150 -idx: 106 entropy_left: 0.9990102708804813 entropy_right : 0.8453509366224365 -> 79 150 -idx: 107 entropy_left: 0.996316519558962 entropy_right : 0.8203636429576732 -> 79 150 -idx: 109 entropy_left: 1.0 entropy_right : 0.8390040613676977 -> 79 150 -idx: 110 entropy_left: 0.9992492479956565 entropy_right : 0.8112781244591328 -> 79 150 -idx: 113 entropy_left: 0.9975025463691153 entropy_right : 0.8418521897563207 -> 79 150 -idx: 114 entropy_left: 0.9994110647387553 entropy_right : 0.8112781244591328 -> 79 150 -idx: 117 entropy_left: 0.9919924034538556 entropy_right : 0.8453509366224365 -> 79 150 -idx: 118 entropy_left: 0.9957274520849256 entropy_right : 0.8112781244591328 -> 79 150 -idx: 120 entropy_left: 0.9892452969285004 entropy_right : 0.8366407419411673 -> 79 150 -idx: 122 entropy_left: 0.996485989886783 entropy_right : 0.74959525725948 -> 79 150 -idx: 127 entropy_left: 0.9798687566511527 entropy_right : 0.828055725379504 -> 79 150 -idx: 130 entropy_left: 0.9930554830121974 entropy_right : 0.6098403047164004 -> 79 150 -idx: 132 entropy_left: 0.987380023288353 entropy_right : 0.6500224216483541 -> 79 150 -idx: 133 entropy_left: 0.9910760598382222 entropy_right : 0.5225593745369408 -> 79 150 -idx: 134 entropy_left: 0.9882836109919162 entropy_right : 0.5435644431995964 -> 79 150 -idx: 135 entropy_left: 0.9917033083725818 entropy_right : 0.35335933502142136 -> 79 150 -idx: 137 entropy_left: 0.9862325350724501 entropy_right : 0.39124356362925566 -> 79 150 -idx: 138 entropy_left: 0.9898220559635811 entropy_right : 0 -> 79 150 -cut: 5.9 index: 81 -start: 79 cut: 81 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9477073729342066 ent1= 0 ent2= 0.9557589912150009 -ig= 0.018871170204135312 delta= 2.823458158619193 N 71 term 0.12609494613470648 -idx: 83 entropy_left: 0 entropy_right : 0.9411864371816835 -> 81 150 -idx: 84 entropy_left: 0.9182958340544896 entropy_right : 0.9456603046006402 -> 81 150 -idx: 87 entropy_left: 0.6500224216483541 entropy_right : 0.9182958340544896 -> 81 150 -idx: 88 entropy_left: 0.863120568566631 entropy_right : 0.9235785996175947 -> 81 150 -idx: 89 entropy_left: 0.8112781244591328 entropy_right : 0.9127341558073343 -> 81 150 -idx: 91 entropy_left: 0.9709505944546686 entropy_right : 0.9238422284571814 -> 81 150 -idx: 95 entropy_left: 0.863120568566631 entropy_right : 0.8698926856041563 -> 81 150 -idx: 97 entropy_left: 0.9544340029249649 entropy_right : 0.8835850861052532 -> 81 150 -idx: 99 entropy_left: 0.9182958340544896 entropy_right : 0.8478617451660526 -> 81 150 -idx: 101 entropy_left: 0.9709505944546686 entropy_right : 0.863120568566631 -> 81 150 -idx: 102 entropy_left: 0.9587118829771318 entropy_right : 0.8426578772022391 -> 81 150 -idx: 104 entropy_left: 0.9876925088958034 entropy_right : 0.8589810370425963 -> 81 150 -idx: 105 entropy_left: 0.9798687566511527 entropy_right : 0.8366407419411673 -> 81 150 -idx: 106 entropy_left: 0.9895875212220557 entropy_right : 0.8453509366224365 -> 81 150 -idx: 107 entropy_left: 0.9828586897127056 entropy_right : 0.8203636429576732 -> 81 150 -idx: 109 entropy_left: 0.996316519558962 entropy_right : 0.8390040613676977 -> 81 150 -idx: 110 entropy_left: 0.9922666387194963 entropy_right : 0.8112781244591328 -> 81 150 -idx: 113 entropy_left: 1.0 entropy_right : 0.8418521897563207 -> 81 150 -idx: 114 entropy_left: 0.9993375041688847 entropy_right : 0.8112781244591328 -> 81 150 -idx: 117 entropy_left: 0.9977724720899821 entropy_right : 0.8453509366224365 -> 81 150 -idx: 118 entropy_left: 0.9994730201859836 entropy_right : 0.8112781244591328 -> 81 150 -idx: 120 entropy_left: 0.9957274520849256 entropy_right : 0.8366407419411673 -> 81 150 -idx: 122 entropy_left: 0.9995708393473224 entropy_right : 0.74959525725948 -> 81 150 -idx: 127 entropy_left: 0.9876925088958034 entropy_right : 0.828055725379504 -> 81 150 -idx: 130 entropy_left: 0.997294381646235 entropy_right : 0.6098403047164004 -> 81 150 -idx: 132 entropy_left: 0.9930554830121974 entropy_right : 0.6500224216483541 -> 81 150 -idx: 133 entropy_left: 0.9957274520849256 entropy_right : 0.5225593745369408 -> 81 150 -idx: 134 entropy_left: 0.9935704757706079 entropy_right : 0.5435644431995964 -> 81 150 -idx: 135 entropy_left: 0.9960383613659183 entropy_right : 0.35335933502142136 -> 81 150 -idx: 137 entropy_left: 0.9917033083725818 entropy_right : 0.39124356362925566 -> 81 150 -idx: 138 entropy_left: 0.9944423248022588 entropy_right : 0 -> 81 150 -cut: 5.95 index: 83 -start: 81 cut: 83 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9557589912150009 ent1= 0 ent2= 0.9411864371816835 -ig= 0.04185332032843869 delta= 2.7782098139909692 N 69 term 0.12848800949625086 -idx: 84 entropy_left: 0 entropy_right : 0.9456603046006402 -> 83 150 -idx: 87 entropy_left: 0.8112781244591328 entropy_right : 0.9182958340544896 -> 83 150 -idx: 88 entropy_left: 0.9709505944546686 entropy_right : 0.9235785996175947 -> 83 150 -idx: 89 entropy_left: 0.9182958340544896 entropy_right : 0.9127341558073343 -> 83 150 -idx: 91 entropy_left: 1.0 entropy_right : 0.9238422284571814 -> 83 150 -idx: 95 entropy_left: 0.9182958340544896 entropy_right : 0.8698926856041563 -> 83 150 -idx: 97 entropy_left: 0.9852281360342516 entropy_right : 0.8835850861052532 -> 83 150 -idx: 99 entropy_left: 0.9544340029249649 entropy_right : 0.8478617451660526 -> 83 150 -idx: 101 entropy_left: 0.9910760598382222 entropy_right : 0.863120568566631 -> 83 150 -idx: 102 entropy_left: 0.9819407868640977 entropy_right : 0.8426578772022391 -> 83 150 -idx: 104 entropy_left: 0.9983636725938131 entropy_right : 0.8589810370425963 -> 83 150 -idx: 105 entropy_left: 0.9940302114769565 entropy_right : 0.8366407419411673 -> 83 150 -idx: 106 entropy_left: 0.9986359641585718 entropy_right : 0.8453509366224365 -> 83 150 -idx: 107 entropy_left: 0.9949848281859701 entropy_right : 0.8203636429576732 -> 83 150 -idx: 109 entropy_left: 1.0 entropy_right : 0.8390040613676977 -> 83 150 -idx: 110 entropy_left: 0.9990102708804813 entropy_right : 0.8112781244591328 -> 83 150 -idx: 113 entropy_left: 0.9967916319816366 entropy_right : 0.8418521897563207 -> 83 150 -idx: 114 entropy_left: 0.9992492479956565 entropy_right : 0.8112781244591328 -> 83 150 -idx: 117 entropy_left: 0.9899927915575188 entropy_right : 0.8453509366224365 -> 83 150 -idx: 118 entropy_left: 0.9946937953613058 entropy_right : 0.8112781244591328 -> 83 150 -idx: 120 entropy_left: 0.9867867202680318 entropy_right : 0.8366407419411673 -> 83 150 -idx: 122 entropy_left: 0.9957274520849256 entropy_right : 0.74959525725948 -> 83 150 -idx: 127 entropy_left: 0.976020648236615 entropy_right : 0.828055725379504 -> 83 150 -idx: 130 entropy_left: 0.9918207974218424 entropy_right : 0.6098403047164004 -> 83 150 -idx: 132 entropy_left: 0.9852281360342516 entropy_right : 0.6500224216483541 -> 83 150 -idx: 133 entropy_left: 0.9895875212220557 entropy_right : 0.5225593745369408 -> 83 150 -idx: 134 entropy_left: 0.9863676072907088 entropy_right : 0.5435644431995964 -> 83 150 -idx: 135 entropy_left: 0.990374836448575 entropy_right : 0.35335933502142136 -> 83 150 -idx: 137 entropy_left: 0.9841095278800533 entropy_right : 0.39124356362925566 -> 83 150 -idx: 138 entropy_left: 0.9882836109919162 entropy_right : 0 -> 83 150 -cut: 6.0 index: 84 -start: 83 cut: 84 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9411864371816835 ent1= 0 ent2= 0.9456603046006402 -ig= 0.009640465485530436 delta= 2.816302656895518 N 67 term 0.1322492056157309 -idx: 87 entropy_left: 0 entropy_right : 0.9182958340544896 -> 84 150 -idx: 88 entropy_left: 0.8112781244591328 entropy_right : 0.9235785996175947 -> 84 150 -idx: 89 entropy_left: 0.7219280948873623 entropy_right : 0.9127341558073343 -> 84 150 -idx: 91 entropy_left: 0.9852281360342516 entropy_right : 0.9238422284571814 -> 84 150 -idx: 95 entropy_left: 0.8453509366224365 entropy_right : 0.8698926856041563 -> 84 150 -idx: 97 entropy_left: 0.961236604722876 entropy_right : 0.8835850861052532 -> 84 150 -idx: 99 entropy_left: 0.9182958340544896 entropy_right : 0.8478617451660526 -> 84 150 -idx: 101 entropy_left: 0.9774178175281716 entropy_right : 0.863120568566631 -> 84 150 -idx: 102 entropy_left: 0.9640787648082292 entropy_right : 0.8426578772022391 -> 84 150 -idx: 104 entropy_left: 0.9927744539878084 entropy_right : 0.8589810370425963 -> 84 150 -idx: 105 entropy_left: 0.9852281360342516 entropy_right : 0.8366407419411673 -> 84 150 -idx: 106 entropy_left: 0.9940302114769565 entropy_right : 0.8453509366224365 -> 84 150 -idx: 107 entropy_left: 0.9876925088958034 entropy_right : 0.8203636429576732 -> 84 150 -idx: 109 entropy_left: 0.9988455359952018 entropy_right : 0.8390040613676977 -> 84 150 -idx: 110 entropy_left: 0.9957274520849256 entropy_right : 0.8112781244591328 -> 84 150 -idx: 113 entropy_left: 0.9991421039919088 entropy_right : 0.8418521897563207 -> 84 150 -idx: 114 entropy_left: 1.0 entropy_right : 0.8112781244591328 -> 84 150 -idx: 117 entropy_left: 0.9940302114769565 entropy_right : 0.8453509366224365 -> 84 150 -idx: 118 entropy_left: 0.9975025463691153 entropy_right : 0.8112781244591328 -> 84 150 -idx: 120 entropy_left: 0.9910760598382222 entropy_right : 0.8366407419411673 -> 84 150 -idx: 122 entropy_left: 0.9980008838722996 entropy_right : 0.74959525725948 -> 84 150 -idx: 127 entropy_left: 0.9807983646944296 entropy_right : 0.828055725379504 -> 84 150 -idx: 130 entropy_left: 0.9945386816500111 entropy_right : 0.6098403047164004 -> 84 150 -idx: 132 entropy_left: 0.9886994082884974 entropy_right : 0.6500224216483541 -> 84 150 -idx: 133 entropy_left: 0.992476003943082 entropy_right : 0.5225593745369408 -> 84 150 -idx: 134 entropy_left: 0.9895875212220557 entropy_right : 0.5435644431995964 -> 84 150 -idx: 135 entropy_left: 0.9930554830121974 entropy_right : 0.35335933502142136 -> 84 150 -idx: 137 entropy_left: 0.987380023288353 entropy_right : 0.39124356362925566 -> 84 150 -idx: 138 entropy_left: 0.9910760598382222 entropy_right : 0 -> 84 150 -cut: 6.0 index: 87 -start: 84 cut: 87 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9456603046006402 ent1= 0 ent2= 0.9182958340544896 -ig= 0.06910519027590012 delta= 2.752625980965303 N 66 term 0.13295445142414786 -idx: 88 entropy_left: 0 entropy_right : 0.9235785996175947 -> 87 150 -idx: 89 entropy_left: 1.0 entropy_right : 0.9127341558073343 -> 87 150 -idx: 91 entropy_left: 0.8112781244591328 entropy_right : 0.9238422284571814 -> 87 150 -idx: 95 entropy_left: 0.9544340029249649 entropy_right : 0.8698926856041563 -> 87 150 -idx: 97 entropy_left: 1.0 entropy_right : 0.8835850861052532 -> 87 150 -idx: 99 entropy_left: 0.9798687566511527 entropy_right : 0.8478617451660526 -> 87 150 -idx: 101 entropy_left: 1.0 entropy_right : 0.863120568566631 -> 87 150 -idx: 102 entropy_left: 0.9967916319816366 entropy_right : 0.8426578772022391 -> 87 150 -idx: 104 entropy_left: 0.9975025463691153 entropy_right : 0.8589810370425963 -> 87 150 -idx: 105 entropy_left: 1.0 entropy_right : 0.8366407419411673 -> 87 150 -idx: 106 entropy_left: 0.9980008838722996 entropy_right : 0.8453509366224365 -> 87 150 -idx: 107 entropy_left: 1.0 entropy_right : 0.8203636429576732 -> 87 150 -idx: 109 entropy_left: 0.9940302114769565 entropy_right : 0.8390040613676977 -> 87 150 -idx: 110 entropy_left: 0.9986359641585718 entropy_right : 0.8112781244591328 -> 87 150 -idx: 113 entropy_left: 0.9828586897127056 entropy_right : 0.8418521897563207 -> 87 150 -idx: 114 entropy_left: 0.9910760598382222 entropy_right : 0.8112781244591328 -> 87 150 -idx: 117 entropy_left: 0.9709505944546686 entropy_right : 0.8453509366224365 -> 87 150 -idx: 118 entropy_left: 0.9811522341999133 entropy_right : 0.8112781244591328 -> 87 150 -idx: 120 entropy_left: 0.9672947789468944 entropy_right : 0.8366407419411673 -> 87 150 -idx: 122 entropy_left: 0.9852281360342516 entropy_right : 0.74959525725948 -> 87 150 -idx: 127 entropy_left: 0.9544340029249649 entropy_right : 0.828055725379504 -> 87 150 -idx: 130 entropy_left: 0.9807983646944296 entropy_right : 0.6098403047164004 -> 87 150 -idx: 132 entropy_left: 0.9709505944546686 entropy_right : 0.6500224216483541 -> 87 150 -idx: 133 entropy_left: 0.978070970973496 entropy_right : 0.5225593745369408 -> 87 150 -idx: 134 entropy_left: 0.9733854352299557 entropy_right : 0.5435644431995964 -> 87 150 -idx: 135 entropy_left: 0.9798687566511527 entropy_right : 0.35335933502142136 -> 87 150 -idx: 137 entropy_left: 0.9709505944546686 entropy_right : 0.39124356362925566 -> 87 150 -idx: 138 entropy_left: 0.9774178175281716 entropy_right : 0 -> 87 150 -cut: 6.0 index: 88 -start: 87 cut: 88 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9182958340544896 ent1= 0 ent2= 0.9235785996175947 -ig= 0.00937721220860277 delta= 2.8179204531838145 N 63 term 0.13923994862810618 -idx: 89 entropy_left: 0 entropy_right : 0.9127341558073343 -> 88 150 -idx: 91 entropy_left: 0.9182958340544896 entropy_right : 0.9238422284571814 -> 88 150 -idx: 95 entropy_left: 0.863120568566631 entropy_right : 0.8698926856041563 -> 88 150 -idx: 97 entropy_left: 0.9910760598382222 entropy_right : 0.8835850861052532 -> 88 150 -idx: 99 entropy_left: 0.9456603046006402 entropy_right : 0.8478617451660526 -> 88 150 -idx: 101 entropy_left: 0.9957274520849256 entropy_right : 0.863120568566631 -> 88 150 -idx: 102 entropy_left: 0.9852281360342516 entropy_right : 0.8426578772022391 -> 88 150 -idx: 104 entropy_left: 1.0 entropy_right : 0.8589810370425963 -> 88 150 -idx: 105 entropy_left: 0.9975025463691153 entropy_right : 0.8366407419411673 -> 88 150 -idx: 106 entropy_left: 1.0 entropy_right : 0.8453509366224365 -> 88 150 -idx: 107 entropy_left: 0.9980008838722996 entropy_right : 0.8203636429576732 -> 88 150 -idx: 109 entropy_left: 0.9983636725938131 entropy_right : 0.8390040613676977 -> 88 150 -idx: 110 entropy_left: 1.0 entropy_right : 0.8112781244591328 -> 88 150 -idx: 113 entropy_left: 0.9895875212220557 entropy_right : 0.8418521897563207 -> 88 150 -idx: 114 entropy_left: 0.9957274520849256 entropy_right : 0.8112781244591328 -> 88 150 -idx: 117 entropy_left: 0.9784493292686189 entropy_right : 0.8453509366224365 -> 88 150 -idx: 118 entropy_left: 0.9871377743721863 entropy_right : 0.8112781244591328 -> 88 150 -idx: 120 entropy_left: 0.9744894033980523 entropy_right : 0.8366407419411673 -> 88 150 -idx: 122 entropy_left: 0.9899927915575188 entropy_right : 0.74959525725948 -> 88 150 -idx: 127 entropy_left: 0.961236604722876 entropy_right : 0.828055725379504 -> 88 150 -idx: 130 entropy_left: 0.9852281360342516 entropy_right : 0.6098403047164004 -> 88 150 -idx: 132 entropy_left: 0.976020648236615 entropy_right : 0.6500224216483541 -> 88 150 -idx: 133 entropy_left: 0.9824740868386409 entropy_right : 0.5225593745369408 -> 88 150 -idx: 134 entropy_left: 0.978070970973496 entropy_right : 0.5435644431995964 -> 88 150 -idx: 135 entropy_left: 0.9839393951635756 entropy_right : 0.35335933502142136 -> 88 150 -idx: 137 entropy_left: 0.9755259511264972 entropy_right : 0.39124356362925566 -> 88 150 -idx: 138 entropy_left: 0.9814538950336535 entropy_right : 0 -> 88 150 -cut: 6.05 index: 89 -start: 88 cut: 89 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9235785996175947 ent1= 0 ent2= 0.9127341558073343 -ig= 0.025565962452314128 delta= 2.7856660344370834 N 62 term 0.14058715116128984 -idx: 91 entropy_left: 0 entropy_right : 0.9238422284571814 -> 89 150 -idx: 95 entropy_left: 0.9182958340544896 entropy_right : 0.8698926856041563 -> 89 150 -idx: 97 entropy_left: 1.0 entropy_right : 0.8835850861052532 -> 89 150 -idx: 99 entropy_left: 0.9709505944546686 entropy_right : 0.8478617451660526 -> 89 150 -idx: 101 entropy_left: 1.0 entropy_right : 0.863120568566631 -> 89 150 -idx: 102 entropy_left: 0.9957274520849256 entropy_right : 0.8426578772022391 -> 89 150 -idx: 104 entropy_left: 0.9967916319816366 entropy_right : 0.8589810370425963 -> 89 150 -idx: 105 entropy_left: 1.0 entropy_right : 0.8366407419411673 -> 89 150 -idx: 106 entropy_left: 0.9975025463691153 entropy_right : 0.8453509366224365 -> 89 150 -idx: 107 entropy_left: 1.0 entropy_right : 0.8203636429576732 -> 89 150 -idx: 109 entropy_left: 0.9927744539878084 entropy_right : 0.8390040613676977 -> 89 150 -idx: 110 entropy_left: 0.9983636725938131 entropy_right : 0.8112781244591328 -> 89 150 -idx: 113 entropy_left: 0.9798687566511527 entropy_right : 0.8418521897563207 -> 89 150 -idx: 114 entropy_left: 0.9895875212220557 entropy_right : 0.8112781244591328 -> 89 150 -idx: 117 entropy_left: 0.9666186325481028 entropy_right : 0.8453509366224365 -> 89 150 -idx: 118 entropy_left: 0.9784493292686189 entropy_right : 0.8112781244591328 -> 89 150 -idx: 120 entropy_left: 0.9629004147713269 entropy_right : 0.8366407419411673 -> 89 150 -idx: 122 entropy_left: 0.9833761901392237 entropy_right : 0.74959525725948 -> 89 150 -idx: 127 entropy_left: 0.9494520153879484 entropy_right : 0.828055725379504 -> 89 150 -idx: 130 entropy_left: 0.9788698505067785 entropy_right : 0.6098403047164004 -> 89 150 -idx: 132 entropy_left: 0.9681647320759548 entropy_right : 0.6500224216483541 -> 89 150 -idx: 133 entropy_left: 0.976020648236615 entropy_right : 0.5225593745369408 -> 89 150 -idx: 134 entropy_left: 0.9709505944546686 entropy_right : 0.5435644431995964 -> 89 150 -idx: 135 entropy_left: 0.978070970973496 entropy_right : 0.35335933502142136 -> 89 150 -idx: 137 entropy_left: 0.9684610087601622 entropy_right : 0.39124356362925566 -> 89 150 -idx: 138 entropy_left: 0.9755259511264972 entropy_right : 0 -> 89 150 -cut: 6.1 index: 91 -start: 89 cut: 91 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9127341558073343 ent1= 0 ent2= 0.9238422284571814 -ig= 0.019181836479896575 delta= 2.8295710673572985 N 61 term 0.14322068299943963 -idx: 95 entropy_left: 0 entropy_right : 0.8698926856041563 -> 91 150 -idx: 97 entropy_left: 0.9182958340544896 entropy_right : 0.8835850861052532 -> 91 150 -idx: 99 entropy_left: 0.8112781244591328 entropy_right : 0.8478617451660526 -> 91 150 -idx: 101 entropy_left: 0.9709505944546686 entropy_right : 0.863120568566631 -> 91 150 -idx: 102 entropy_left: 0.9456603046006402 entropy_right : 0.8426578772022391 -> 91 150 -idx: 104 entropy_left: 0.9957274520849256 entropy_right : 0.8589810370425963 -> 91 150 -idx: 105 entropy_left: 0.9852281360342516 entropy_right : 0.8366407419411673 -> 91 150 -idx: 106 entropy_left: 0.9967916319816366 entropy_right : 0.8453509366224365 -> 91 150 -idx: 107 entropy_left: 0.9886994082884974 entropy_right : 0.8203636429576732 -> 91 150 -idx: 109 entropy_left: 1.0 entropy_right : 0.8390040613676977 -> 91 150 -idx: 110 entropy_left: 0.9980008838722996 entropy_right : 0.8112781244591328 -> 91 150 -idx: 113 entropy_left: 0.9940302114769565 entropy_right : 0.8418521897563207 -> 91 150 -idx: 114 entropy_left: 0.9986359641585718 entropy_right : 0.8112781244591328 -> 91 150 -idx: 117 entropy_left: 0.9828586897127056 entropy_right : 0.8453509366224365 -> 91 150 -idx: 118 entropy_left: 0.9910760598382222 entropy_right : 0.8112781244591328 -> 91 150 -idx: 120 entropy_left: 0.9784493292686189 entropy_right : 0.8366407419411673 -> 91 150 -idx: 122 entropy_left: 0.9932338197397066 entropy_right : 0.74959525725948 -> 91 150 -idx: 127 entropy_left: 0.9640787648082292 entropy_right : 0.828055725379504 -> 91 150 -idx: 130 entropy_left: 0.9881108365218301 entropy_right : 0.6098403047164004 -> 91 150 -idx: 132 entropy_left: 0.9788698505067785 entropy_right : 0.6500224216483541 -> 91 150 -idx: 133 entropy_left: 0.9852281360342516 entropy_right : 0.5225593745369408 -> 91 150 -idx: 134 entropy_left: 0.9807983646944296 entropy_right : 0.5435644431995964 -> 91 150 -idx: 135 entropy_left: 0.9865446300055645 entropy_right : 0.35335933502142136 -> 91 150 -idx: 137 entropy_left: 0.978070970973496 entropy_right : 0.39124356362925566 -> 91 150 -idx: 138 entropy_left: 0.9839393951635756 entropy_right : 0 -> 91 150 -cut: 6.15 index: 95 -start: 91 cut: 95 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.9238422284571814 ent1= 0 ent2= 0.8698926856041563 -ig= 0.11292531814822215 delta= 2.6994558363515537 N 59 term 0.14504130222845976 -idx: 97 entropy_left: 0 entropy_right : 0.8835850861052532 -> 95 150 -idx: 99 entropy_left: 1.0 entropy_right : 0.8478617451660526 -> 95 150 -idx: 101 entropy_left: 0.9182958340544896 entropy_right : 0.863120568566631 -> 95 150 -idx: 102 entropy_left: 0.9852281360342516 entropy_right : 0.8426578772022391 -> 95 150 -idx: 104 entropy_left: 0.9182958340544896 entropy_right : 0.8589810370425963 -> 95 150 -idx: 105 entropy_left: 0.9709505944546686 entropy_right : 0.8366407419411673 -> 95 150 -idx: 106 entropy_left: 0.9456603046006402 entropy_right : 0.8453509366224365 -> 95 150 -idx: 107 entropy_left: 0.9798687566511527 entropy_right : 0.8203636429576732 -> 95 150 -idx: 109 entropy_left: 0.9402859586706309 entropy_right : 0.8390040613676977 -> 95 150 -idx: 110 entropy_left: 0.9709505944546686 entropy_right : 0.8112781244591328 -> 95 150 -idx: 113 entropy_left: 0.9182958340544896 entropy_right : 0.8418521897563207 -> 95 150 -idx: 114 entropy_left: 0.9494520153879484 entropy_right : 0.8112781244591328 -> 95 150 -idx: 117 entropy_left: 0.9023932827949789 entropy_right : 0.8453509366224365 -> 95 150 -idx: 118 entropy_left: 0.9321115676166747 entropy_right : 0.8112781244591328 -> 95 150 -idx: 120 entropy_left: 0.904381457724494 entropy_right : 0.8366407419411673 -> 95 150 -idx: 122 entropy_left: 0.9509560484549725 entropy_right : 0.74959525725948 -> 95 150 -idx: 127 entropy_left: 0.8960382325345575 entropy_right : 0.828055725379504 -> 95 150 -idx: 130 entropy_left: 0.9517626756348311 entropy_right : 0.6098403047164004 -> 95 150 -idx: 132 entropy_left: 0.9352691398683566 entropy_right : 0.6500224216483541 -> 95 150 -idx: 133 entropy_left: 0.9494520153879484 entropy_right : 0.5225593745369408 -> 95 150 -idx: 134 entropy_left: 0.9418285354475157 entropy_right : 0.5435644431995964 -> 95 150 -idx: 135 entropy_left: 0.9544340029249649 entropy_right : 0.35335933502142136 -> 95 150 -idx: 137 entropy_left: 0.9402859586706309 entropy_right : 0.39124356362925566 -> 95 150 -idx: 138 entropy_left: 0.9522656254366642 entropy_right : 0 -> 95 150 -cut: 6.2 index: 97 -start: 95 cut: 97 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8698926856041563 ent1= 0 ent2= 0.8835850861052532 -ig= 0.018437966266366845 delta= 2.8347397230597977 N 55 term 0.15617504045860486 -idx: 99 entropy_left: 0 entropy_right : 0.8478617451660526 -> 97 150 -idx: 101 entropy_left: 1.0 entropy_right : 0.863120568566631 -> 97 150 -idx: 102 entropy_left: 0.9709505944546686 entropy_right : 0.8426578772022391 -> 97 150 -idx: 104 entropy_left: 0.9852281360342516 entropy_right : 0.8589810370425963 -> 97 150 -idx: 105 entropy_left: 1.0 entropy_right : 0.8366407419411673 -> 97 150 -idx: 106 entropy_left: 0.9910760598382222 entropy_right : 0.8453509366224365 -> 97 150 -idx: 107 entropy_left: 1.0 entropy_right : 0.8203636429576732 -> 97 150 -idx: 109 entropy_left: 0.9798687566511527 entropy_right : 0.8390040613676977 -> 97 150 -idx: 110 entropy_left: 0.9957274520849256 entropy_right : 0.8112781244591328 -> 97 150 -idx: 113 entropy_left: 0.9544340029249649 entropy_right : 0.8418521897563207 -> 97 150 -idx: 114 entropy_left: 0.9774178175281716 entropy_right : 0.8112781244591328 -> 97 150 -idx: 117 entropy_left: 0.934068055375491 entropy_right : 0.8453509366224365 -> 97 150 -idx: 118 entropy_left: 0.9587118829771318 entropy_right : 0.8112781244591328 -> 97 150 -idx: 120 entropy_left: 0.9321115676166747 entropy_right : 0.8366407419411673 -> 97 150 -idx: 122 entropy_left: 0.9709505944546686 entropy_right : 0.74959525725948 -> 97 150 -idx: 127 entropy_left: 0.9182958340544896 entropy_right : 0.828055725379504 -> 97 150 -idx: 130 entropy_left: 0.9672947789468944 entropy_right : 0.6098403047164004 -> 97 150 -idx: 132 entropy_left: 0.9517626756348311 entropy_right : 0.6500224216483541 -> 97 150 -idx: 133 entropy_left: 0.9640787648082292 entropy_right : 0.5225593745369408 -> 97 150 -idx: 134 entropy_left: 0.9568886656798212 entropy_right : 0.5435644431995964 -> 97 150 -idx: 135 entropy_left: 0.9677884628267679 entropy_right : 0.35335933502142136 -> 97 150 -idx: 137 entropy_left: 0.9544340029249649 entropy_right : 0.39124356362925566 -> 97 150 -idx: 138 entropy_left: 0.9649567669505688 entropy_right : 0 -> 97 150 -cut: 6.25 index: 99 -start: 97 cut: 99 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8835850861052532 ent1= 0 ent2= 0.8478617451660526 -ig= 0.06771812377565545 delta= 2.735908240179203 N 53 term 0.15917637657208103 -idx: 101 entropy_left: 0 entropy_right : 0.863120568566631 -> 99 150 -idx: 102 entropy_left: 0.9182958340544896 entropy_right : 0.8426578772022391 -> 99 150 -idx: 104 entropy_left: 0.7219280948873623 entropy_right : 0.8589810370425963 -> 99 150 -idx: 105 entropy_left: 0.9182958340544896 entropy_right : 0.8366407419411673 -> 99 150 -idx: 106 entropy_left: 0.863120568566631 entropy_right : 0.8453509366224365 -> 99 150 -idx: 107 entropy_left: 0.9544340029249649 entropy_right : 0.8203636429576732 -> 99 150 -idx: 109 entropy_left: 0.8812908992306927 entropy_right : 0.8390040613676977 -> 99 150 -idx: 110 entropy_left: 0.9456603046006402 entropy_right : 0.8112781244591328 -> 99 150 -idx: 113 entropy_left: 0.863120568566631 entropy_right : 0.8418521897563207 -> 99 150 -idx: 114 entropy_left: 0.9182958340544896 entropy_right : 0.8112781244591328 -> 99 150 -idx: 117 entropy_left: 0.8524051786494786 entropy_right : 0.8453509366224365 -> 99 150 -idx: 118 entropy_left: 0.8997437586982626 entropy_right : 0.8112781244591328 -> 99 150 -idx: 120 entropy_left: 0.863120568566631 entropy_right : 0.8366407419411673 -> 99 150 -idx: 122 entropy_left: 0.9321115676166747 entropy_right : 0.74959525725948 -> 99 150 -idx: 127 entropy_left: 0.863120568566631 entropy_right : 0.828055725379504 -> 99 150 -idx: 130 entropy_left: 0.9383153522334069 entropy_right : 0.6098403047164004 -> 99 150 -idx: 132 entropy_left: 0.9182958340544896 entropy_right : 0.6500224216483541 -> 99 150 -idx: 133 entropy_left: 0.9366673818775626 entropy_right : 0.5225593745369408 -> 99 150 -idx: 134 entropy_left: 0.9275265884316759 entropy_right : 0.5435644431995964 -> 99 150 -idx: 135 entropy_left: 0.943601631299382 entropy_right : 0.35335933502142136 -> 99 150 -idx: 137 entropy_left: 0.9268190639645772 entropy_right : 0.39124356362925566 -> 99 150 -idx: 138 entropy_left: 0.9418285354475157 entropy_right : 0 -> 99 150 -cut: 6.3 index: 101 -start: 99 cut: 101 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8478617451660526 ent1= 0 ent2= 0.863120568566631 -ig= 0.018589042033407166 delta= 2.837872568858761 N 51 term 0.16630840703202912 -idx: 102 entropy_left: 0 entropy_right : 0.8426578772022391 -> 101 150 -idx: 104 entropy_left: 0.9182958340544896 entropy_right : 0.8589810370425963 -> 101 150 -idx: 105 entropy_left: 1.0 entropy_right : 0.8366407419411673 -> 101 150 -idx: 106 entropy_left: 0.9709505944546686 entropy_right : 0.8453509366224365 -> 101 150 -idx: 107 entropy_left: 1.0 entropy_right : 0.8203636429576732 -> 101 150 -idx: 109 entropy_left: 0.9544340029249649 entropy_right : 0.8390040613676977 -> 101 150 -idx: 110 entropy_left: 0.9910760598382222 entropy_right : 0.8112781244591328 -> 101 150 -idx: 113 entropy_left: 0.9182958340544896 entropy_right : 0.8418521897563207 -> 101 150 -idx: 114 entropy_left: 0.961236604722876 entropy_right : 0.8112781244591328 -> 101 150 -idx: 117 entropy_left: 0.8960382325345575 entropy_right : 0.8453509366224365 -> 101 150 -idx: 118 entropy_left: 0.9366673818775626 entropy_right : 0.8112781244591328 -> 101 150 -idx: 120 entropy_left: 0.8997437586982626 entropy_right : 0.8366407419411673 -> 101 150 -idx: 122 entropy_left: 0.9587118829771318 entropy_right : 0.74959525725948 -> 101 150 -idx: 127 entropy_left: 0.8904916402194913 entropy_right : 0.828055725379504 -> 101 150 -idx: 130 entropy_left: 0.9575534837147482 entropy_right : 0.6098403047164004 -> 101 150 -idx: 132 entropy_left: 0.9383153522334069 entropy_right : 0.6500224216483541 -> 101 150 -idx: 133 entropy_left: 0.9544340029249649 entropy_right : 0.5225593745369408 -> 101 150 -idx: 134 entropy_left: 0.9456603046006402 entropy_right : 0.5435644431995964 -> 101 150 -idx: 135 entropy_left: 0.9596868937742169 entropy_right : 0.35335933502142136 -> 101 150 -idx: 137 entropy_left: 0.943601631299382 entropy_right : 0.39124356362925566 -> 101 150 -idx: 138 entropy_left: 0.9568886656798212 entropy_right : 0 -> 101 150 -cut: 6.3 index: 102 -start: 101 cut: 102 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.863120568566631 ent1= 0 ent2= 0.8426578772022391 -ig= 0.03765979089913152 delta= 2.7664295393288203 N 49 term 0.17043657224591788 -idx: 104 entropy_left: 0 entropy_right : 0.8589810370425963 -> 102 150 -idx: 105 entropy_left: 0.9182958340544896 entropy_right : 0.8366407419411673 -> 102 150 -idx: 106 entropy_left: 0.8112781244591328 entropy_right : 0.8453509366224365 -> 102 150 -idx: 107 entropy_left: 0.9709505944546686 entropy_right : 0.8203636429576732 -> 102 150 -idx: 109 entropy_left: 0.863120568566631 entropy_right : 0.8390040613676977 -> 102 150 -idx: 110 entropy_left: 0.9544340029249649 entropy_right : 0.8112781244591328 -> 102 150 -idx: 113 entropy_left: 0.8453509366224365 entropy_right : 0.8418521897563207 -> 102 150 -idx: 114 entropy_left: 0.9182958340544896 entropy_right : 0.8112781244591328 -> 102 150 -idx: 117 entropy_left: 0.8366407419411673 entropy_right : 0.8453509366224365 -> 102 150 -idx: 118 entropy_left: 0.8960382325345575 entropy_right : 0.8112781244591328 -> 102 150 -idx: 120 entropy_left: 0.8524051786494786 entropy_right : 0.8366407419411673 -> 102 150 -idx: 122 entropy_left: 0.934068055375491 entropy_right : 0.74959525725948 -> 102 150 -idx: 127 entropy_left: 0.8554508105601307 entropy_right : 0.828055725379504 -> 102 150 -idx: 130 entropy_left: 0.9402859586706309 entropy_right : 0.6098403047164004 -> 102 150 -idx: 132 entropy_left: 0.9182958340544896 entropy_right : 0.6500224216483541 -> 102 150 -idx: 133 entropy_left: 0.9383153522334069 entropy_right : 0.5225593745369408 -> 102 150 -idx: 134 entropy_left: 0.9283620723948678 entropy_right : 0.5435644431995964 -> 102 150 -idx: 135 entropy_left: 0.9456603046006402 entropy_right : 0.35335933502142136 -> 102 150 -idx: 137 entropy_left: 0.9275265884316759 entropy_right : 0.39124356362925566 -> 102 150 -idx: 138 entropy_left: 0.943601631299382 entropy_right : 0 -> 102 150 -cut: 6.3 index: 104 -start: 102 cut: 104 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8426578772022391 ent1= 0 ent2= 0.8589810370425963 -ig= 0.019467716703084226 delta= 2.8400012417383187 N 48 term 0.17488729361283242 -idx: 105 entropy_left: 0 entropy_right : 0.8366407419411673 -> 104 150 -idx: 106 entropy_left: 1.0 entropy_right : 0.8453509366224365 -> 104 150 -idx: 107 entropy_left: 0.9182958340544896 entropy_right : 0.8203636429576732 -> 104 150 -idx: 109 entropy_left: 0.9709505944546686 entropy_right : 0.8390040613676977 -> 104 150 -idx: 110 entropy_left: 1.0 entropy_right : 0.8112781244591328 -> 104 150 -idx: 113 entropy_left: 0.9182958340544896 entropy_right : 0.8418521897563207 -> 104 150 -idx: 114 entropy_left: 0.9709505944546686 entropy_right : 0.8112781244591328 -> 104 150 -idx: 117 entropy_left: 0.8904916402194913 entropy_right : 0.8453509366224365 -> 104 150 -idx: 118 entropy_left: 0.9402859586706309 entropy_right : 0.8112781244591328 -> 104 150 -idx: 120 entropy_left: 0.8960382325345575 entropy_right : 0.8366407419411673 -> 104 150 -idx: 122 entropy_left: 0.9640787648082292 entropy_right : 0.74959525725948 -> 104 150 -idx: 127 entropy_left: 0.8865408928220899 entropy_right : 0.828055725379504 -> 104 150 -idx: 130 entropy_left: 0.961236604722876 entropy_right : 0.6098403047164004 -> 104 150 -idx: 132 entropy_left: 0.9402859586706309 entropy_right : 0.6500224216483541 -> 104 150 -idx: 133 entropy_left: 0.9575534837147482 entropy_right : 0.5225593745369408 -> 104 150 -idx: 134 entropy_left: 0.9480782435939054 entropy_right : 0.5435644431995964 -> 104 150 -idx: 135 entropy_left: 0.9629004147713269 entropy_right : 0.35335933502142136 -> 104 150 -idx: 137 entropy_left: 0.9456603046006402 entropy_right : 0.39124356362925566 -> 104 150 -idx: 138 entropy_left: 0.9596868937742169 entropy_right : 0 -> 104 150 -cut: 6.3 index: 105 -start: 104 cut: 105 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8589810370425963 ent1= 0 ent2= 0.8366407419411673 -ig= 0.040528137317541346 delta= 2.762674331854746 N 46 term 0.17944624843879176 -idx: 106 entropy_left: 0 entropy_right : 0.8453509366224365 -> 105 150 -idx: 107 entropy_left: 1.0 entropy_right : 0.8203636429576732 -> 105 150 -idx: 109 entropy_left: 0.8112781244591328 entropy_right : 0.8390040613676977 -> 105 150 -idx: 110 entropy_left: 0.9709505944546686 entropy_right : 0.8112781244591328 -> 105 150 -idx: 113 entropy_left: 0.8112781244591328 entropy_right : 0.8418521897563207 -> 105 150 -idx: 114 entropy_left: 0.9182958340544896 entropy_right : 0.8112781244591328 -> 105 150 -idx: 117 entropy_left: 0.8112781244591328 entropy_right : 0.8453509366224365 -> 105 150 -idx: 118 entropy_left: 0.8904916402194913 entropy_right : 0.8112781244591328 -> 105 150 -idx: 120 entropy_left: 0.8366407419411673 entropy_right : 0.8366407419411673 -> 105 150 -idx: 122 entropy_left: 0.9366673818775626 entropy_right : 0.74959525725948 -> 105 150 -idx: 127 entropy_left: 0.8453509366224365 entropy_right : 0.828055725379504 -> 105 150 -idx: 130 entropy_left: 0.9426831892554922 entropy_right : 0.6098403047164004 -> 105 150 -idx: 132 entropy_left: 0.9182958340544896 entropy_right : 0.6500224216483541 -> 105 150 -idx: 133 entropy_left: 0.9402859586706309 entropy_right : 0.5225593745369408 -> 105 150 -idx: 134 entropy_left: 0.9293636260137187 entropy_right : 0.5435644431995964 -> 105 150 -idx: 135 entropy_left: 0.9480782435939054 entropy_right : 0.35335933502142136 -> 105 150 -idx: 137 entropy_left: 0.9283620723948678 entropy_right : 0.39124356362925566 -> 105 150 -idx: 138 entropy_left: 0.9456603046006402 entropy_right : 0 -> 105 150 -cut: 6.3 index: 106 -start: 105 cut: 106 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8366407419411673 ent1= 0 ent2= 0.8453509366224365 -ig= 0.010075381688118279 delta= 2.824775311420143 N 45 term 0.18409348733460978 -idx: 107 entropy_left: 0 entropy_right : 0.8203636429576732 -> 106 150 -idx: 109 entropy_left: 0.9182958340544896 entropy_right : 0.8390040613676977 -> 106 150 -idx: 110 entropy_left: 1.0 entropy_right : 0.8112781244591328 -> 106 150 -idx: 113 entropy_left: 0.863120568566631 entropy_right : 0.8418521897563207 -> 106 150 -idx: 114 entropy_left: 0.9544340029249649 entropy_right : 0.8112781244591328 -> 106 150 -idx: 117 entropy_left: 0.8453509366224365 entropy_right : 0.8453509366224365 -> 106 150 -idx: 118 entropy_left: 0.9182958340544896 entropy_right : 0.8112781244591328 -> 106 150 -idx: 120 entropy_left: 0.863120568566631 entropy_right : 0.8366407419411673 -> 106 150 -idx: 122 entropy_left: 0.9544340029249649 entropy_right : 0.74959525725948 -> 106 150 -idx: 127 entropy_left: 0.863120568566631 entropy_right : 0.828055725379504 -> 106 150 -idx: 130 entropy_left: 0.9544340029249649 entropy_right : 0.6098403047164004 -> 106 150 -idx: 132 entropy_left: 0.930586129131993 entropy_right : 0.6500224216483541 -> 106 150 -idx: 133 entropy_left: 0.9509560484549725 entropy_right : 0.5225593745369408 -> 106 150 -idx: 134 entropy_left: 0.9402859586706309 entropy_right : 0.5435644431995964 -> 106 150 -idx: 135 entropy_left: 0.9575534837147482 entropy_right : 0.35335933502142136 -> 106 150 -idx: 137 entropy_left: 0.9383153522334069 entropy_right : 0.39124356362925566 -> 106 150 -idx: 138 entropy_left: 0.9544340029249649 entropy_right : 0 -> 106 150 -cut: 6.3 index: 107 -start: 106 cut: 107 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8453509366224365 ent1= 0 ent2= 0.8203636429576732 -ig= 0.043631921913801386 delta= 2.7573803347280776 N 44 term 0.18599193385068583 -idx: 109 entropy_left: 0 entropy_right : 0.8390040613676977 -> 107 150 -idx: 110 entropy_left: 0.9182958340544896 entropy_right : 0.8112781244591328 -> 107 150 -idx: 113 entropy_left: 0.6500224216483541 entropy_right : 0.8418521897563207 -> 107 150 -idx: 114 entropy_left: 0.863120568566631 entropy_right : 0.8112781244591328 -> 107 150 -idx: 117 entropy_left: 0.7219280948873623 entropy_right : 0.8453509366224365 -> 107 150 -idx: 118 entropy_left: 0.8453509366224365 entropy_right : 0.8112781244591328 -> 107 150 -idx: 120 entropy_left: 0.7793498372920852 entropy_right : 0.8366407419411673 -> 107 150 -idx: 122 entropy_left: 0.9182958340544896 entropy_right : 0.74959525725948 -> 107 150 -idx: 127 entropy_left: 0.8112781244591328 entropy_right : 0.828055725379504 -> 107 150 -idx: 130 entropy_left: 0.9321115676166747 entropy_right : 0.6098403047164004 -> 107 150 -idx: 132 entropy_left: 0.904381457724494 entropy_right : 0.6500224216483541 -> 107 150 -idx: 133 entropy_left: 0.930586129131993 entropy_right : 0.5225593745369408 -> 107 150 -idx: 134 entropy_left: 0.9182958340544896 entropy_right : 0.5435644431995964 -> 107 150 -idx: 135 entropy_left: 0.9402859586706309 entropy_right : 0.35335933502142136 -> 107 150 -idx: 137 entropy_left: 0.9182958340544896 entropy_right : 0.39124356362925566 -> 107 150 -idx: 138 entropy_left: 0.9383153522334069 entropy_right : 0 -> 107 150 -cut: 6.4 index: 109 -start: 107 cut: 109 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8203636429576732 ent1= 0 ent2= 0.8390040613676977 -ig= 0.020383026304752083 delta= 2.8446357588776534 N 43 term 0.19155705073619567 -idx: 110 entropy_left: 0 entropy_right : 0.8112781244591328 -> 109 150 -idx: 113 entropy_left: 0.8112781244591328 entropy_right : 0.8418521897563207 -> 109 150 -idx: 114 entropy_left: 0.9709505944546686 entropy_right : 0.8112781244591328 -> 109 150 -idx: 117 entropy_left: 0.8112781244591328 entropy_right : 0.8453509366224365 -> 109 150 -idx: 118 entropy_left: 0.9182958340544896 entropy_right : 0.8112781244591328 -> 109 150 -idx: 120 entropy_left: 0.8453509366224365 entropy_right : 0.8366407419411673 -> 109 150 -idx: 122 entropy_left: 0.961236604722876 entropy_right : 0.74959525725948 -> 109 150 -idx: 127 entropy_left: 0.8524051786494786 entropy_right : 0.828055725379504 -> 109 150 -idx: 130 entropy_left: 0.9587118829771318 entropy_right : 0.6098403047164004 -> 109 150 -idx: 132 entropy_left: 0.9321115676166747 entropy_right : 0.6500224216483541 -> 109 150 -idx: 133 entropy_left: 0.9544340029249649 entropy_right : 0.5225593745369408 -> 109 150 -idx: 134 entropy_left: 0.9426831892554922 entropy_right : 0.5435644431995964 -> 109 150 -idx: 135 entropy_left: 0.961236604722876 entropy_right : 0.35335933502142136 -> 109 150 -idx: 137 entropy_left: 0.9402859586706309 entropy_right : 0.39124356362925566 -> 109 150 -idx: 138 entropy_left: 0.9575534837147482 entropy_right : 0 -> 109 150 -cut: 6.4 index: 110 -start: 109 cut: 110 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8390040613676977 ent1= 0 ent2= 0.8112781244591328 -ig= 0.04751320823683636 delta= 2.7519030482404743 N 41 term 0.19692271080799603 -idx: 113 entropy_left: 0 entropy_right : 0.8418521897563207 -> 110 150 -idx: 114 entropy_left: 0.8112781244591328 entropy_right : 0.8112781244591328 -> 110 150 -idx: 117 entropy_left: 0.5916727785823275 entropy_right : 0.8453509366224365 -> 110 150 -idx: 118 entropy_left: 0.8112781244591328 entropy_right : 0.8112781244591328 -> 110 150 -idx: 120 entropy_left: 0.7219280948873623 entropy_right : 0.8366407419411673 -> 110 150 -idx: 122 entropy_left: 0.9182958340544896 entropy_right : 0.74959525725948 -> 110 150 -idx: 127 entropy_left: 0.7871265862012691 entropy_right : 0.828055725379504 -> 110 150 -idx: 130 entropy_left: 0.934068055375491 entropy_right : 0.6098403047164004 -> 110 150 -idx: 132 entropy_left: 0.9023932827949789 entropy_right : 0.6500224216483541 -> 110 150 -idx: 133 entropy_left: 0.9321115676166747 entropy_right : 0.5225593745369408 -> 110 150 -idx: 134 entropy_left: 0.9182958340544896 entropy_right : 0.5435644431995964 -> 110 150 -idx: 135 entropy_left: 0.9426831892554922 entropy_right : 0.35335933502142136 -> 110 150 -idx: 137 entropy_left: 0.9182958340544896 entropy_right : 0.39124356362925566 -> 110 150 -idx: 138 entropy_left: 0.9402859586706309 entropy_right : 0 -> 110 150 -cut: 6.4 index: 113 -start: 110 cut: 113 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8112781244591328 ent1= 0 ent2= 0.8418521897563207 -ig= 0.03256484893453615 delta= 2.86850305265198 N 40 term 0.20384763178785575 -idx: 114 entropy_left: 0 entropy_right : 0.8112781244591328 -> 113 150 -idx: 117 entropy_left: 0.8112781244591328 entropy_right : 0.8453509366224365 -> 113 150 -idx: 118 entropy_left: 0.9709505944546686 entropy_right : 0.8112781244591328 -> 113 150 -idx: 120 entropy_left: 0.863120568566631 entropy_right : 0.8366407419411673 -> 113 150 -idx: 122 entropy_left: 0.9910760598382222 entropy_right : 0.74959525725948 -> 113 150 -idx: 127 entropy_left: 0.863120568566631 entropy_right : 0.828055725379504 -> 113 150 -idx: 130 entropy_left: 0.9774178175281716 entropy_right : 0.6098403047164004 -> 113 150 -idx: 132 entropy_left: 0.9494520153879484 entropy_right : 0.6500224216483541 -> 113 150 -idx: 133 entropy_left: 0.9709505944546686 entropy_right : 0.5225593745369408 -> 113 150 -idx: 134 entropy_left: 0.9587118829771318 entropy_right : 0.5435644431995964 -> 113 150 -idx: 135 entropy_left: 0.976020648236615 entropy_right : 0.35335933502142136 -> 113 150 -idx: 137 entropy_left: 0.9544340029249649 entropy_right : 0.39124356362925566 -> 113 150 -idx: 138 entropy_left: 0.9709505944546686 entropy_right : 0 -> 113 150 -cut: 6.4 index: 114 -start: 113 cut: 114 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8418521897563207 ent1= 0 ent2= 0.8112781244591328 -ig= 0.05250050109338056 delta= 2.746206791463228 N 37 term 0.21394950791636597 -idx: 117 entropy_left: 0 entropy_right : 0.8453509366224365 -> 114 150 -idx: 118 entropy_left: 0.8112781244591328 entropy_right : 0.8112781244591328 -> 114 150 -idx: 120 entropy_left: 0.6500224216483541 entropy_right : 0.8366407419411673 -> 114 150 -idx: 122 entropy_left: 0.9544340029249649 entropy_right : 0.74959525725948 -> 114 150 -idx: 127 entropy_left: 0.7793498372920852 entropy_right : 0.828055725379504 -> 114 150 -idx: 130 entropy_left: 0.9544340029249649 entropy_right : 0.6098403047164004 -> 114 150 -idx: 132 entropy_left: 0.9182958340544896 entropy_right : 0.6500224216483541 -> 114 150 -idx: 133 entropy_left: 0.9494520153879484 entropy_right : 0.5225593745369408 -> 114 150 -idx: 134 entropy_left: 0.934068055375491 entropy_right : 0.5435644431995964 -> 114 150 -idx: 135 entropy_left: 0.9587118829771318 entropy_right : 0.35335933502142136 -> 114 150 -idx: 137 entropy_left: 0.9321115676166747 entropy_right : 0.39124356362925566 -> 114 150 -idx: 138 entropy_left: 0.9544340029249649 entropy_right : 0 -> 114 150 -cut: 6.5 index: 117 -start: 114 cut: 117 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8112781244591328 ent1= 0 ent2= 0.8453509366224365 -ig= 0.03637309922189935 delta= 2.8755005463842114 N 36 term 0.22235509898136602 -idx: 118 entropy_left: 0 entropy_right : 0.8112781244591328 -> 117 150 -idx: 120 entropy_left: 0.9182958340544896 entropy_right : 0.8366407419411673 -> 117 150 -idx: 122 entropy_left: 0.9709505944546686 entropy_right : 0.74959525725948 -> 117 150 -idx: 127 entropy_left: 0.8812908992306927 entropy_right : 0.828055725379504 -> 117 150 -idx: 130 entropy_left: 0.9957274520849256 entropy_right : 0.6098403047164004 -> 117 150 -idx: 132 entropy_left: 0.9709505944546686 entropy_right : 0.6500224216483541 -> 117 150 -idx: 133 entropy_left: 0.9886994082884974 entropy_right : 0.5225593745369408 -> 117 150 -idx: 134 entropy_left: 0.9774178175281716 entropy_right : 0.5435644431995964 -> 117 150 -idx: 135 entropy_left: 0.9910760598382222 entropy_right : 0.35335933502142136 -> 117 150 -idx: 137 entropy_left: 0.9709505944546686 entropy_right : 0.39124356362925566 -> 117 150 -idx: 138 entropy_left: 0.9852281360342516 entropy_right : 0 -> 117 150 -cut: 6.5 index: 118 -start: 117 cut: 118 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8453509366224365 ent1= 0 ent2= 0.8112781244591328 -ig= 0.058656997752974394 delta= 2.739209297730997 N 33 term 0.23452149387063628 -idx: 120 entropy_left: 0 entropy_right : 0.8366407419411673 -> 118 150 -idx: 122 entropy_left: 1.0 entropy_right : 0.74959525725948 -> 118 150 -idx: 127 entropy_left: 0.7642045065086203 entropy_right : 0.828055725379504 -> 118 150 -idx: 130 entropy_left: 0.9798687566511527 entropy_right : 0.6098403047164004 -> 118 150 -idx: 132 entropy_left: 0.9402859586706309 entropy_right : 0.6500224216483541 -> 118 150 -idx: 133 entropy_left: 0.9709505944546686 entropy_right : 0.5225593745369408 -> 118 150 -idx: 134 entropy_left: 0.9544340029249649 entropy_right : 0.5435644431995964 -> 118 150 -idx: 135 entropy_left: 0.9774178175281716 entropy_right : 0.35335933502142136 -> 118 150 -idx: 137 entropy_left: 0.9494520153879484 entropy_right : 0.39124356362925566 -> 118 150 -idx: 138 entropy_left: 0.9709505944546686 entropy_right : 0 -> 118 150 -cut: 6.55 index: 120 -start: 118 cut: 120 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8112781244591328 ent1= 0 ent2= 0.8366407419411673 -ig= 0.02692742888928845 delta= 2.858080157021673 N 32 term 0.24413363960651716 -idx: 122 entropy_left: 0 entropy_right : 0.74959525725948 -> 120 150 -idx: 127 entropy_left: 0.863120568566631 entropy_right : 0.828055725379504 -> 120 150 -idx: 130 entropy_left: 1.0 entropy_right : 0.6098403047164004 -> 120 150 -idx: 132 entropy_left: 0.9798687566511527 entropy_right : 0.6500224216483541 -> 120 150 -idx: 133 entropy_left: 0.9957274520849256 entropy_right : 0.5225593745369408 -> 120 150 -idx: 134 entropy_left: 0.9852281360342516 entropy_right : 0.5435644431995964 -> 120 150 -idx: 135 entropy_left: 0.9967916319816366 entropy_right : 0.35335933502142136 -> 120 150 -idx: 137 entropy_left: 0.9774178175281716 entropy_right : 0.39124356362925566 -> 120 150 -idx: 138 entropy_left: 0.9910760598382222 entropy_right : 0 -> 120 150 -cut: 6.65 index: 122 -start: 120 cut: 122 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.8366407419411673 ent1= 0 ent2= 0.74959525725948 -ig= 0.13701850183231934 delta= 2.6332639526942296 N 30 term 0.24970816492739342 -idx: 127 entropy_left: 0 entropy_right : 0.828055725379504 -> 122 150 -idx: 130 entropy_left: 0.9544340029249649 entropy_right : 0.6098403047164004 -> 122 150 -idx: 132 entropy_left: 0.8812908992306927 entropy_right : 0.6500224216483541 -> 122 150 -idx: 133 entropy_left: 0.9456603046006402 entropy_right : 0.5225593745369408 -> 122 150 -idx: 134 entropy_left: 0.9182958340544896 entropy_right : 0.5435644431995964 -> 122 150 -idx: 135 entropy_left: 0.961236604722876 entropy_right : 0.35335933502142136 -> 122 150 -idx: 137 entropy_left: 0.9182958340544896 entropy_right : 0.39124356362925566 -> 122 150 -idx: 138 entropy_left: 0.9544340029249649 entropy_right : 0 -> 122 150 -cut: 6.7 index: 127 -start: 122 cut: 127 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.74959525725948 ent1= 0 ent2= 0.828055725379504 -ig= 0.06940662569774458 delta= 2.9642758582976523 N 28 term 0.2756844057307543 -idx: 130 entropy_left: 0 entropy_right : 0.6098403047164004 -> 127 150 -idx: 132 entropy_left: 0.9709505944546686 entropy_right : 0.6500224216483541 -> 127 150 -idx: 133 entropy_left: 0.9182958340544896 entropy_right : 0.5225593745369408 -> 127 150 -idx: 134 entropy_left: 0.9852281360342516 entropy_right : 0.5435644431995964 -> 127 150 -idx: 135 entropy_left: 0.9544340029249649 entropy_right : 0.35335933502142136 -> 127 150 -idx: 137 entropy_left: 1.0 entropy_right : 0.39124356362925566 -> 127 150 -idx: 138 entropy_left: 0.9940302114769565 entropy_right : 0 -> 127 150 -cut: 6.75 index: 130 -start: 127 cut: 130 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.828055725379504 ent1= 0 ent2= 0.6098403047164004 -ig= 0.2977598082348081 delta= 2.370924080731397 N 23 term 0.2969719869290737 -¡Ding! 6.75 130 -idx: 132 entropy_left: 0 entropy_right : 0.6500224216483541 -> 130 150 -idx: 133 entropy_left: 0.9182958340544896 entropy_right : 0.5225593745369408 -> 130 150 -idx: 134 entropy_left: 0.8112781244591328 entropy_right : 0.5435644431995964 -> 130 150 -idx: 135 entropy_left: 0.9709505944546686 entropy_right : 0.35335933502142136 -> 130 150 -idx: 137 entropy_left: 0.863120568566631 entropy_right : 0.39124356362925566 -> 130 150 -idx: 138 entropy_left: 0.9544340029249649 entropy_right : 0 -> 130 150 -cut: 6.8 index: 132 -start: 130 cut: 132 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.6098403047164004 ent1= 0 ent2= 0.6500224216483541 -ig= 0.024820125232881685 delta= 2.887719155921512 N 20 term 0.3567823334682549 -idx: 133 entropy_left: 0 entropy_right : 0.5225593745369408 -> 132 150 -idx: 134 entropy_left: 1.0 entropy_right : 0.5435644431995964 -> 132 150 -idx: 135 entropy_left: 0.9182958340544896 entropy_right : 0.35335933502142136 -> 132 150 -idx: 137 entropy_left: 0.9709505944546686 entropy_right : 0.39124356362925566 -> 132 150 -idx: 138 entropy_left: 1.0 entropy_right : 0 -> 132 150 -cut: 6.85 index: 133 -start: 132 cut: 133 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.6500224216483541 ent1= 0 ent2= 0.5225593745369408 -ig= 0.1564941234745767 delta= 2.5524288278347775 N 18 term 0.36888287050472873 -idx: 134 entropy_left: 0 entropy_right : 0.5435644431995964 -> 133 150 -idx: 135 entropy_left: 1.0 entropy_right : 0.35335933502142136 -> 133 150 -idx: 137 entropy_left: 0.8112781244591328 entropy_right : 0.39124356362925566 -> 133 150 -idx: 138 entropy_left: 0.9709505944546686 entropy_right : 0 -> 133 150 -cut: 6.9 index: 134 -start: 133 cut: 134 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.5225593745369408 ent1= 0 ent2= 0.5435644431995964 -ig= 0.010969310349085326 delta= 2.849365059382915 N 17 term 0.4029038270225244 -idx: 135 entropy_left: 0 entropy_right : 0.35335933502142136 -> 134 150 -idx: 137 entropy_left: 0.9182958340544896 entropy_right : 0.39124356362925566 -> 134 150 -idx: 138 entropy_left: 1.0 entropy_right : 0 -> 134 150 -cut: 6.9 index: 135 -start: 134 cut: 135 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.5435644431995964 ent1= 0 ent2= 0.35335933502142136 -ig= 0.21229006661701388 delta= 2.426944705701254 N 16 term 0.39586470633186077 -idx: 137 entropy_left: 0 entropy_right : 0.39124356362925566 -> 135 150 -idx: 138 entropy_left: 0.9182958340544896 entropy_right : 0 -> 135 150 -cut: 6.95 index: 137 -start: 135 cut: 137 end: 150 -k= 2 k1= 1 k2= 2 ent= 0.35335933502142136 ent1= 0 ent2= 0.39124356362925566 -ig= 0.01428157987606643 delta= 2.8831233792732727 N 15 term 0.44603188675539174 -idx: 138 entropy_left: 0 entropy_right : 0 -> 137 150 -cut: 7.05 index: 138 -start: 137 cut: 138 end: 150 -k= 2 k1= 1 k2= 1 ent= 0.39124356362925566 ent1= 0 ent2= 0 -ig= 0.39124356362925566 delta= 2.0248677947990927 N 13 term 0.4315254073477115 -[[4.9, 5.2, 5.4, 6.75]] diff --git a/prueba/FImdlp.cpp b/prueba/FImdlp.cpp deleted file mode 100644 index 0e18c7a..0000000 --- a/prueba/FImdlp.cpp +++ /dev/null @@ -1,22 +0,0 @@ -#include "FImdlp.h" -namespace FImdlp { - FImdlp::FImdlp() - { - } - FImdlp::~FImdlp() - { - } - samples FImdlp::cutPoints(labels& X, labels& y) - { - samples cutPts; - int i, ant = X.at(0); - int n = X.size(); - for (i = 1; i < n; i++) { - if (X.at(i) != ant) { - cutPts.push_back(precision_t(X.at(i) + ant) / 2); - ant = X.at(i); - } - } - return cutPts; - } -} \ No newline at end of file diff --git a/prueba/FImdlp.h b/prueba/FImdlp.h deleted file mode 100644 index 90c90ca..0000000 --- a/prueba/FImdlp.h +++ /dev/null @@ -1,13 +0,0 @@ -#ifndef FIMDLP_H -#define FIMDLP_H -#include -#include -namespace FImdlp { - class FImdlp { - public: - FImdlp(); - ~FImdlp(); - samples cutPoints(labels&, labels&); - }; -} -#endif \ No newline at end of file diff --git a/prueba/LICENSE b/prueba/LICENSE deleted file mode 100644 index 9508008..0000000 --- a/prueba/LICENSE +++ /dev/null @@ -1,21 +0,0 @@ -MIT License - -Copyright (c) 2022 Doctorado-ML - -Permission is hereby granted, free of charge, to any person obtaining a copy -of this software and associated documentation files (the "Software"), to deal -in the Software without restriction, including without limitation the rights -to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -copies of the Software, and to permit persons to whom the Software is -furnished to do so, subject to the following conditions: - -The above copyright notice and this permission notice shall be included in all -copies or substantial portions of the Software. - -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -SOFTWARE. diff --git a/prueba/Makefile b/prueba/Makefile deleted file mode 100644 index 2c47f19..0000000 --- a/prueba/Makefile +++ /dev/null @@ -1,42 +0,0 @@ -SHELL := /bin/bash -.DEFAULT_GOAL := help -.PHONY: coverage deps help lint push test doc build - -clean: ## Clean up - rm -rf build dist *.egg-info - for name in fimdlp/cfimdlp.cpp fimdlp/fimdlp.cpython-310-darwin.so - do - if [ -f $name ]; then rm $name; fi - done - -lint: ## Lint and static-check - black fimdlp - flake8 fimdlp - -push: ## Push code with tags - git push && git push --tags - -build: ## Build package - rm -fr dist/* - rm -fr build/* - python setup.py build_ext - -audit: ## Audit pip - pip-audit - -help: ## Show help message - @IFS=$$'\n' ; \ - help_lines=(`fgrep -h "##" $(MAKEFILE_LIST) | fgrep -v fgrep | sed -e 's/\\$$//' | sed -e 's/##/:/'`); \ - printf "%s\n\n" "Usage: make [task]"; \ - printf "%-20s %s\n" "task" "help" ; \ - printf "%-20s %s\n" "------" "----" ; \ - for help_line in $${help_lines[@]}; do \ - IFS=$$':' ; \ - help_split=($$help_line) ; \ - help_command=`echo $${help_split[0]} | sed -e 's/^ *//' -e 's/ *$$//'` ; \ - help_info=`echo $${help_split[2]} | sed -e 's/^ *//' -e 's/ *$$//'` ; \ - printf '\033[36m'; \ - printf "%-20s %s" $$help_command ; \ - printf '\033[0m'; \ - printf "%s\n" $$help_info; \ - done diff --git a/prueba/README.md b/prueba/README.md deleted file mode 100644 index e249e1c..0000000 --- a/prueba/README.md +++ /dev/null @@ -1,10 +0,0 @@ -# FImdlp - -Fayyad - Irani MDLP discretization algorithm - -## Build and usage sample - -```bash -python setup.py build_ext --inplace -python sample.py -``` diff --git a/prueba/__init__.py b/prueba/__init__.py deleted file mode 100644 index 7df9f7a..0000000 --- a/prueba/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from ._version import __version__ \ No newline at end of file diff --git a/prueba/_version.py b/prueba/_version.py deleted file mode 100644 index c12f34c..0000000 --- a/prueba/_version.py +++ /dev/null @@ -1 +0,0 @@ -__version__ = '0.1.1' \ No newline at end of file diff --git a/prueba/cfimdlp.pyx b/prueba/cfimdlp.pyx deleted file mode 100644 index f7ba7f0..0000000 --- a/prueba/cfimdlp.pyx +++ /dev/null @@ -1,17 +0,0 @@ -# distutils: language = c++ -# cython: language_level = 3 -from libcpp.vector cimport vector - -cdef extern from "FImdlp.h" namespace "FImdlp": - cdef cppclass FImdlp: - FImdlp() except + - vector[precision_t] cutPoints(vector[int]&, vector[int]&) - -cdef class CFImdlp: - cdef FImdlp *thisptr - def __cinit__(self): - self.thisptr = new FImdlp() - def __dealloc__(self): - del self.thisptr - def cut_points(self, X, y): - return self.thisptr.cutPoints(X, y) diff --git a/prueba/pyproject.toml b/prueba/pyproject.toml deleted file mode 100644 index 6c20890..0000000 --- a/prueba/pyproject.toml +++ /dev/null @@ -1,38 +0,0 @@ -# pyproject.toml -[build-system] -requires = ["setuptools", "cython", "wheel"] -build-backend = "setuptools.build_meta" - -[tool.setuptools] -license-files = ["LICENSE"] - -[tool.setuptools.dynamic] -version = { attr = "fimdlp.__version__" } - -[project] -name = "FImdlp" -readme = "README.md" -authors = [ - { name = "Ricardo Montañana", email = "ricardo.montanana@alu.uclm.es" }, -] -dynamic = ['version'] -dependencies = ["numpy"] -requires-python = ">=3.8" -classifiers = [ - "Development Status :: 3 - Alpha", - "Intended Audience :: Science/Research", - "Intended Audience :: Developers", - "Topic :: Software Development", - "Topic :: Scientific/Engineering", - "License :: OSI Approved :: MIT License", - "Natural Language :: English", - "Operating System :: OS Independent", - "Programming Language :: Python", - "Programming Language :: Python", - "Programming Language :: Python :: 3.8", - "Programming Language :: Python :: 3.9", - "Programming Language :: Python :: 3.10", -] - -[project.urls] -Home = "https://github.com/doctorado-ml/FImdlp" diff --git a/prueba/sample.py b/prueba/sample.py deleted file mode 100644 index 43df59e..0000000 --- a/prueba/sample.py +++ /dev/null @@ -1,14 +0,0 @@ -import numpy as np -from sklearn.datasets import load_iris -from fimdlp import CFImdlp - -data = load_iris() -X = data.data -y = data.target -features = data.feature_names -test = CFImdlp() -print("Cut points for each feature in Iris dataset:") -for i in range(0, X.shape[1]): - data = np.sort(X[:, i]) - Xcutpoints = test.cut_points(data, y) - print(f"{features[i]:20s}: {Xcutpoints}") diff --git a/prueba/setup.py b/prueba/setup.py deleted file mode 100644 index e5da331..0000000 --- a/prueba/setup.py +++ /dev/null @@ -1,32 +0,0 @@ -""" - Calling - $python setup.py build_ext --inplace - will build the extension library in the current file. -""" - -from setuptools import Extension, setup - -setup( - ext_modules=[ - Extension( - name="fimdlp", - sources=["cfimdlp.pyx", "FImdlp.cpp"], - language="c++", - include_dirs=["fimdlp"], - ), - ] -) - -# from Cython.Build import cythonize -# setup( -# ext_modules=cythonize( -# Extension( -# "fimdlp", -# sources=["fimdlp/cfimdlp.pyx", "fimdlp/FImdlp.cpp"], -# language="c++", -# include_dirs=["fimdlp"], -# ), -# include_path=["./fimdlp"], -# ) -# ) - diff --git a/sample.py b/sample.py index c216e3e..68f3706 100644 --- a/sample.py +++ b/sample.py @@ -1,19 +1,18 @@ -from sklearn.datasets import load_iris from fimdlp.mdlp import FImdlp from fimdlp.cppfimdlp import CFImdlp from sklearn.ensemble import RandomForestClassifier -import numpy as np import time from scipy.io import arff import pandas as pd +path = "fimdlp/testcpp/datasets/" # class_name = "speaker" # file_name = "kdd_JapaneseVowels.arff" class_name = "class" # file_name = "mfeat-factors.arff" file_name = "letter.arff" -data = arff.loadarff(file_name) +data = arff.loadarff(path + file_name) df = pd.DataFrame(data[0]) df.dropna(axis=0, how="any", inplace=True) dataset = df @@ -23,12 +22,6 @@ class_name = class_name y, _ = pd.factorize(df[class_name]) X = X.to_numpy() -# data = load_iris() -# X = data.data -# y = data.target -# features = data.feature_names - - test = FImdlp() now = time.time() # test.fit(X, y, features=[i for i in (range(3, 14))])