Refactor project structure and add Arff load and test

This commit is contained in:
2022-12-09 16:35:58 +01:00
parent e4cf72d0fe
commit 65de064fa9
20 changed files with 783 additions and 253 deletions

View File

@@ -4,7 +4,6 @@ from fimdlp.cppfimdlp import CFImdlp
from sklearn.ensemble import RandomForestClassifier
import numpy as np
import time
from math import log2
from scipy.io import arff
import pandas as pd
@@ -44,65 +43,3 @@ print(test.get_cut_points())
clf = RandomForestClassifier(random_state=0)
print(clf.fit(Xt, y).score(Xt, y))
print(Xt)
# for proposal in [True, False]:
# X = data.data
# y = data.target
# print("*** Proposal: ", proposal)
# test = CFImdlp(debug=True, proposal=proposal)
# test.fit(X[:, 0], y)
# result = test.get_cut_points()
# for item in result:
# print(
# f"Class={item['classNumber']} - ({item['start']:3d}, "
# f"{item['end']:3d}) -> ({item['fromValue']:3.1f}, "
# f"{item['toValue']:3.1f}]"
# )
# print(test.get_discretized_values())
# print("+" * 40)
# X = np.array(
# [
# [5.1, 3.5, 1.4, 0.2],
# [5.2, 3.0, 1.4, 0.2],
# [5.3, 3.2, 1.3, 0.2],
# [5.4, 3.1, 1.5, 0.2],
# ]
# )
# y = np.array([0, 0, 0, 1])
# print(test.fit(X[:, 0], y).transform(X[:, 0]))
# result = test.get_cut_points()
# for item in result:
# print(
# f"Class={item['classNumber']} - ({item['start']:3d}, {item['end']:3d})"
# f" -> ({item['fromValue']:3.1f}, {item['toValue']:3.1f}]"
# )
# print("*" * 40)
# # print(Xs, ys)
# # print("**********************")
# # test = [(0, 3), (4, 4), (5, 5), (6, 8), (9, 9)]
# # print(ys)
# # for start, end in test:
# # print("Testing ", start, end, ys[:end], ys[end:])
# # print("Information gain: ", information_gain(ys, ys[:end], ys[end:]))
# # print(test.transform(X))
# # print(X)
# # print(indices)
# # print(np.array(X)[indices])
# # # k = test.cut_points(X[:, 0], y)
# # # print(k)
# # # k = test.cut_points_ant(X[:, 0], y)
# # # print(k)
# # # test.debug_points(X[:, 0], y)
# # X = [5.7, 5.3, 5.2, 5.1, 5.0, 5.6, 5.1, 6.0, 5.1, 5.9]
# # y = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2]
# # indices = [4, 3, 6, 8, 2, 1, 5, 0, 9, 7]
# # clf = CFImdlp(debug=True, proposal=False)
# # clf.fit(X, y)
# # print(clf.get_cut_points())
# # y = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2]
# # # To check
# # indices2 = np.argsort(X)
# # Xs = np.array(X)[indices2]
# # ys = np.array(y)[indices2]
# kdd_JapaneseVowels