mirror of
https://github.com/Doctorado-ML/benchmark.git
synced 2025-08-16 07:55:54 +00:00
82 lines
2.1 KiB
Python
Executable File
82 lines
2.1 KiB
Python
Executable File
#!/usr/bin/env python
|
|
import os
|
|
import argparse
|
|
import datetime
|
|
|
|
|
|
def parse_arguments():
|
|
ap = argparse.ArgumentParser()
|
|
ap.add_argument(
|
|
"-s",
|
|
"--score",
|
|
type=str,
|
|
required=False,
|
|
default="accuracy",
|
|
help="score used in gridsearch experiment",
|
|
)
|
|
ap.add_argument(
|
|
"-p",
|
|
"--platform",
|
|
type=str,
|
|
required=True,
|
|
choices=["pbs", "slurm"],
|
|
help="Platform used to run the gridsearch experiments {pbs, slurm}",
|
|
)
|
|
ap.add_argument(
|
|
"-m",
|
|
"--model",
|
|
type=str,
|
|
required=True,
|
|
help="model to use",
|
|
)
|
|
args = ap.parse_args()
|
|
|
|
return (args.score, args.platform, args.model)
|
|
|
|
|
|
def content(file_name):
|
|
with open(file_name) as f:
|
|
return f.read().splitlines()
|
|
|
|
|
|
def generate_experiment(dataset, model, score, platform):
|
|
path = content("path.txt")[0]
|
|
file_name = "experiment.pbs" if platform == "pbs" else "experiment.slurm"
|
|
lines = content(file_name)
|
|
lines.extend(content("script_grid.txt"))
|
|
day = (
|
|
f"{datetime.datetime.now().month:02d}{datetime.datetime.now().day:02d}"
|
|
)
|
|
file_name = f"grid_{model}_{platform}_{day}_{dataset}"
|
|
output_file_name = os.path.join("grid", f"{file_name}.sh")
|
|
strings = [
|
|
("<date>", day),
|
|
("<folder>", path),
|
|
("<score>", score),
|
|
("<model>", model),
|
|
("<file_name>", file_name),
|
|
("<dataset>", dataset),
|
|
]
|
|
data = lines.copy()
|
|
for item, value in strings:
|
|
data = [line.replace(item, value) for line in data]
|
|
with open(output_file_name, "w") as f:
|
|
f.write("\n".join(data))
|
|
return output_file_name
|
|
|
|
|
|
(
|
|
score,
|
|
platform,
|
|
model,
|
|
) = parse_arguments()
|
|
|
|
with open(os.path.join("..", "data", "all.txt")) as f:
|
|
lines = f.read().splitlines()
|
|
for dataset in lines:
|
|
if dataset.startswith("#") or dataset.strip() == "":
|
|
continue
|
|
else:
|
|
file_name = generate_experiment(dataset, model, score, platform)
|
|
print(f"Generated {file_name}")
|