diff --git a/benchmark/tests/Benchmark_test.py b/benchmark/tests/Benchmark_test.py index 538b1a5..21c7aa9 100644 --- a/benchmark/tests/Benchmark_test.py +++ b/benchmark/tests/Benchmark_test.py @@ -35,19 +35,19 @@ class BenchmarkTest(TestBase): benchmark = Benchmark("accuracy", visualize=False) benchmark.compile_results() benchmark.save_results() - with patch(self.output, new=StringIO()) as fake_out: + with patch(self.output, new=StringIO()) as stdout: benchmark.report(tex_output=False) - self.check_output_file(fake_out, "exreport_report") + self.check_output_file(stdout, "exreport_report") def test_exreport(self): benchmark = Benchmark("accuracy", visualize=False) benchmark.compile_results() benchmark.save_results() - with patch(self.output, new=StringIO()) as fake_out: + with patch(self.output, new=StringIO()) as stdout: benchmark.exreport() with open(os.path.join(self.test_files, "exreport.test")) as f: expected_t = f.read() - computed_t = fake_out.getvalue() + computed_t = stdout.getvalue() computed_t = computed_t.split("\n") computed_t.pop(0) for computed, expected in zip(computed_t, expected_t.split("\n")): @@ -71,17 +71,17 @@ class BenchmarkTest(TestBase): benchmark = Benchmark("unknown", visualize=False) benchmark.compile_results() benchmark.save_results() - with patch(self.output, new=StringIO()) as fake_out: + with patch(self.output, new=StringIO()) as stdout: benchmark.exreport() - self.check_output_file(fake_out, "exreport_error") + self.check_output_file(stdout, "exreport_error") def test_tex_output(self): benchmark = Benchmark("accuracy", visualize=False) benchmark.compile_results() benchmark.save_results() - with patch(self.output, new=StringIO()) as fake_out: + with patch(self.output, new=StringIO()) as stdout: benchmark.report(tex_output=True) - self.check_output_file(fake_out, "exreport_report") + self.check_output_file(stdout, "exreport_report") self.assertTrue(os.path.exists(benchmark.get_tex_file())) self.check_file_file(benchmark.get_tex_file(), "exreport_tex") diff --git a/benchmark/tests/PairCheck_test.py b/benchmark/tests/PairCheck_test.py index 10f1ecf..78924f3 100644 --- a/benchmark/tests/PairCheck_test.py +++ b/benchmark/tests/PairCheck_test.py @@ -18,32 +18,32 @@ class PairCheckTest(TestBase): def test_pair_check(self): report = self.build_model(model1="ODTE", model2="STree") report.compute() - with patch(self.output, new=StringIO()) as fake_out: + with patch(self.output, new=StringIO()) as stdout: report.report() - self.check_output_file(fake_out, "paircheck") + self.check_output_file(stdout, "paircheck") def test_pair_check_win(self): report = self.build_model(win=True) report.compute() - with patch(self.output, new=StringIO()) as fake_out: + with patch(self.output, new=StringIO()) as stdout: report.report() - self.check_output_file(fake_out, "paircheck_win") + self.check_output_file(stdout, "paircheck_win") def test_pair_check_lose(self): report = self.build_model( model1="RandomForest", model2="STree", lose=True ) report.compute() - with patch(self.output, new=StringIO()) as fake_out: + with patch(self.output, new=StringIO()) as stdout: report.report() - self.check_output_file(fake_out, "paircheck_lose") + self.check_output_file(stdout, "paircheck_lose") def test_pair_check_win_lose(self): report = self.build_model(win=True, lose=True) report.compute() - with patch(self.output, new=StringIO()) as fake_out: + with patch(self.output, new=StringIO()) as stdout: report.report() - self.check_output_file(fake_out, "paircheck_win_lose") + self.check_output_file(stdout, "paircheck_win_lose") def test_pair_check_store_result(self): report = self.build_model(win=True, lose=True) diff --git a/benchmark/tests/Report_test.py b/benchmark/tests/Report_test.py index 1f8af0c..24961bd 100644 --- a/benchmark/tests/Report_test.py +++ b/benchmark/tests/Report_test.py @@ -25,18 +25,18 @@ class ReportTest(TestBase): "results_accuracy_STree_iMac27_2021-09-30_11:42:07_0.json", ) ) - with patch(self.output, new=StringIO()) as fake_out: + with patch(self.output, new=StringIO()) as stdout: report.report() - self.check_output_file(fake_out, "report") + self.check_output_file(stdout, "report") def test_report_without_folder(self): report = Report( file_name="results_accuracy_STree_iMac27_2021-09-30_11:42:07_0" ".json" ) - with patch(self.output, new=StringIO()) as fake_out: + with patch(self.output, new=StringIO()) as stdout: report.report() - self.check_output_file(fake_out, "report") + self.check_output_file(stdout, "report") def test_report_compared(self): report = Report( @@ -44,9 +44,9 @@ class ReportTest(TestBase): ".json", compare=True, ) - with patch(self.output, new=StringIO()) as fake_out: + with patch(self.output, new=StringIO()) as stdout: report.report() - self.check_output_file(fake_out, "report_compared") + self.check_output_file(stdout, "report_compared") def test_compute_status(self): file_name = "results_accuracy_STree_iMac27_2021-10-27_09:40:40_0.json" @@ -67,21 +67,21 @@ class ReportTest(TestBase): def test_report_best(self): report = ReportBest("accuracy", "STree", best=True, grid=False) - with patch(self.output, new=StringIO()) as fake_out: + with patch(self.output, new=StringIO()) as stdout: report.report() - self.check_output_file(fake_out, "report_best") + self.check_output_file(stdout, "report_best") def test_report_grid(self): report = ReportBest("accuracy", "STree", best=False, grid=True) - with patch(self.output, new=StringIO()) as fake_out: + with patch(self.output, new=StringIO()) as stdout: report.report() - self.check_output_file(fake_out, "report_grid") + self.check_output_file(stdout, "report_grid") def test_report_best_both(self): report = ReportBest("accuracy", "STree", best=True, grid=True) - with patch(self.output, new=StringIO()) as fake_out: + with patch(self.output, new=StringIO()) as stdout: report.report() - self.check_output_file(fake_out, "report_best") + self.check_output_file(stdout, "report_best") @patch("sys.stdout", new_callable=StringIO) def test_report_datasets(self, mock_output): diff --git a/benchmark/tests/Summary_test.py b/benchmark/tests/Summary_test.py index 16a56e4..6b43344 100644 --- a/benchmark/tests/Summary_test.py +++ b/benchmark/tests/Summary_test.py @@ -130,60 +130,60 @@ class SummaryTest(TestBase): def test_summary_list_results_model(self): report = Summary() report.acquire() - with patch(self.output, new=StringIO()) as fake_out: + with patch(self.output, new=StringIO()) as stdout: report.list_results(model="STree") - self.check_output_file(fake_out, "summary_list_model") + self.check_output_file(stdout, "summary_list_model") def test_summary_list_results_score(self): report = Summary() report.acquire() - with patch(self.output, new=StringIO()) as fake_out: + with patch(self.output, new=StringIO()) as stdout: report.list_results(score="accuracy") - self.check_output_file(fake_out, "summary_list_score") + self.check_output_file(stdout, "summary_list_score") def test_summary_list_results_n(self): report = Summary() report.acquire() - with patch(self.output, new=StringIO()) as fake_out: + with patch(self.output, new=StringIO()) as stdout: report.list_results(score="accuracy", number=3) - self.check_output_file(fake_out, "summary_list_n") + self.check_output_file(stdout, "summary_list_n") def test_summary_list_hidden(self): report = Summary(hidden=True) report.acquire() - with patch(self.output, new=StringIO()) as fake_out: + with patch(self.output, new=StringIO()) as stdout: report.list_results(score="accuracy") - self.check_output_file(fake_out, "summary_list_hidden") + self.check_output_file(stdout, "summary_list_hidden") def test_show_result_no_title(self): report = Summary() report.acquire() - with patch(self.output, new=StringIO()) as fake_out: + with patch(self.output, new=StringIO()) as stdout: title = "" best = report.best_result( criterion="model", value="STree", score="accuracy" ) report.show_result(data=best, title=title) - self.check_output_file(fake_out, "summary_show_results") + self.check_output_file(stdout, "summary_show_results") def test_show_result_title(self): report = Summary() report.acquire() - with patch(self.output, new=StringIO()) as fake_out: + with patch(self.output, new=StringIO()) as stdout: title = "**Title**" best = report.best_result( criterion="model", value="STree", score="accuracy" ) report.show_result(data=best, title=title) - self.check_output_file(fake_out, "summary_show_results_title") + self.check_output_file(stdout, "summary_show_results_title") def test_show_result_no_data(self): report = Summary() report.acquire() - with patch(self.output, new=StringIO()) as fake_out: + with patch(self.output, new=StringIO()) as stdout: title = "**Test**" report.show_result(data={}, title=title) - computed = fake_out.getvalue() + computed = stdout.getvalue() expected = "** **Test** has No data **\n" self.assertEqual(computed, expected) @@ -212,16 +212,16 @@ class SummaryTest(TestBase): def test_show_top(self): report = Summary() report.acquire() - with patch(self.output, new=StringIO()) as fake_out: + with patch(self.output, new=StringIO()) as stdout: report.show_top() - self.check_output_file(fake_out, "summary_show_top") + self.check_output_file(stdout, "summary_show_top") @patch("sys.stdout", new_callable=StringIO) - def test_show_top_no_data(self, fake_out): + def test_show_top_no_data(self, stdout): report = Summary() report.acquire() report.show_top(score="f1-macro") - self.assertEqual(fake_out.getvalue(), "** No results found **\n") + self.assertEqual(stdout.getvalue(), "** No results found **\n") def test_no_data(self): report = Summary() diff --git a/benchmark/tests/Util_test.py b/benchmark/tests/Util_test.py index 7f34f10..6084f52 100644 --- a/benchmark/tests/Util_test.py +++ b/benchmark/tests/Util_test.py @@ -129,7 +129,11 @@ class UtilTest(TestBase): ) self.assertCountEqual( Files().get_all_results(hidden=True), - ["results_accuracy_STree_iMac27_2021-11-01_23:55:16_0.json"], + [ + "results_accuracy_STree_iMac27_2021-11-01_23:55:16_0.json", + "results_accuracy_XGBoost_MacBookpro16_2022-05-04_11:00:35_" + "0.json", + ], ) def test_Files_get_results_Error(self): diff --git a/benchmark/tests/hidden_results/results_accuracy_XGBoost_MacBookpro16_2022-05-04_11:00:35_0.json b/benchmark/tests/hidden_results/results_accuracy_XGBoost_MacBookpro16_2022-05-04_11:00:35_0.json new file mode 100644 index 0000000..0d30a69 --- /dev/null +++ b/benchmark/tests/hidden_results/results_accuracy_XGBoost_MacBookpro16_2022-05-04_11:00:35_0.json @@ -0,0 +1 @@ +{"score_name": "accuracy", "title": "Default hyperparameters", "model": "XGBoost", "version": "-", "stratified": false, "folds": 5, "date": "2022-05-04", "time": "11:00:35", "duration": 11126.805266141891, "seeds": [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1], "platform": "MacBookpro16", "results": [{"dataset": "balance-scale", "samples": 625, "features": 4, "classes": 3, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.8704000000000001, "score_std": 0.030818176454813172, "time": 0.5269177007675171, "time_std": 0.12094690237682763}, {"dataset": "balloons", "samples": 16, "features": 4, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.6583333333333333, "score_std": 0.26679684322636865, "time": 0.04879833698272705, "time_std": 0.01122697679290869}, {"dataset": "breast-cancer-wisc-diag", "samples": 569, "features": 30, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.9650318273560007, "score_std": 0.015442903899681306, "time": 0.12322223663330079, "time_std": 0.017851623923106914}, {"dataset": "breast-cancer-wisc-prog", "samples": 198, "features": 33, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.7914615384615383, "score_std": 0.05351031409608251, "time": 0.11856995105743408, "time_std": 0.020864085751255326}, {"dataset": "breast-cancer-wisc", "samples": 699, "features": 9, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.9565097636176774, "score_std": 0.01370672446651492, "time": 0.12205827236175537, "time_std": 0.02398258389931347}, {"dataset": "breast-cancer", "samples": 286, "features": 9, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.6712522686025407, "score_std": 0.051730129171204904, "time": 0.1717798328399658, "time_std": 0.027900436190514667}, {"dataset": "cardiotocography-10clases", "samples": 2126, "features": 21, "classes": 10, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.8847163766915217, "score_std": 0.015838408718754967, "time": 1.9697540283203125, "time_std": 0.14317461017884348}, {"dataset": "cardiotocography-3clases", "samples": 2126, "features": 21, "classes": 3, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.9543305164319249, "score_std": 0.011612715833661837, "time": 17.218200120925903, "time_std": 92.14303191700638}, {"dataset": "conn-bench-sonar-mines-rocks", "samples": 208, "features": 60, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.8464692218350756, "score_std": 0.05022754000641559, "time": 0.12132864475250243, "time_std": 0.02232273072393923}, {"dataset": "cylinder-bands", "samples": 512, "features": 35, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.7993965353131542, "score_std": 0.035964218837231124, "time": 0.6333502006530761, "time_std": 2.606392374417108}, {"dataset": "dermatology", "samples": 366, "features": 34, "classes": 6, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.9649981488337653, "score_std": 0.01958683783575797, "time": 2.446985487937927, "time_std": 10.624121831006738}, {"dataset": "echocardiogram", "samples": 131, "features": 10, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.7895726495726494, "score_std": 0.06531555110805211, "time": 1.7264449977874756, "time_std": 11.08816704469246}, {"dataset": "fertility", "samples": 100, "features": 9, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.8480000000000001, "score_std": 0.06399999999999999, "time": 0.11225980281829834, "time_std": 0.045889494484125}, {"dataset": "haberman-survival", "samples": 306, "features": 3, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.6774457958751983, "score_std": 0.04424628382853036, "time": 2.2337632179260254, "time_std": 13.97690953858382}, {"dataset": "heart-hungarian", "samples": 294, "features": 12, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.7894389246054939, "score_std": 0.050070656998227485, "time": 0.9463905382156372, "time_std": 5.2042112769060624}, {"dataset": "hepatitis", "samples": 155, "features": 19, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.7729032258064515, "score_std": 0.086787983075098, "time": 0.5283317279815674, "time_std": 2.7843131064857025}, {"dataset": "ilpd-indian-liver", "samples": 583, "features": 9, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.6873342175066313, "score_std": 0.03718851953805024, "time": 0.43153202533721924, "time_std": 1.4292502732218546}, {"dataset": "ionosphere", "samples": 351, "features": 33, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.9244708249496982, "score_std": 0.03087720064679893, "time": 0.15987534523010255, "time_std": 0.046449498321006366}, {"dataset": "iris", "samples": 150, "features": 4, "classes": 3, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.948, "score_std": 0.034097898273451784, "time": 0.3968534517288208, "time_std": 1.3177757399301702}, {"dataset": "led-display", "samples": 1000, "features": 7, "classes": 10, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.7108000000000001, "score_std": 0.026615033345836703, "time": 33.32725348472595, "time_std": 119.84645654513365}, {"dataset": "libras", "samples": 360, "features": 90, "classes": 15, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.7380555555555556, "score_std": 0.056520099123570824, "time": 36.13817030906677, "time_std": 143.61771085429214}, {"dataset": "low-res-spect", "samples": 531, "features": 100, "classes": 9, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 11.302806210517883, "time_std": 37.4236117876287}, {"dataset": "lymphography", "samples": 148, "features": 18, "classes": 4, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 16.893945870399474, "time_std": 115.61203278901002}, {"dataset": "mammographic", "samples": 961, "features": 5, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.7963530872193436, "score_std": 0.025299066696656755, "time": 0.5026335334777832, "time_std": 1.6758441307624976}, {"dataset": "molec-biol-promoter", "samples": 106, "features": 57, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.8535064935064934, "score_std": 0.07381992030472682, "time": 0.32639188289642335, "time_std": 1.5625220570532965}, {"dataset": "musk-1", "samples": 476, "features": 166, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.8874232456140352, "score_std": 0.03696880788482439, "time": 1.1580639171600342, "time_std": 5.789481201916743}, {"dataset": "oocytes_merluccius_nucleus_4d", "samples": 1022, "features": 41, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.813885700621712, "score_std": 0.019271266616470557, "time": 22.8041872215271, "time_std": 146.2502322344146}, {"dataset": "oocytes_merluccius_states_2f", "samples": 1022, "features": 25, "classes": 3, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.9260286944045911, "score_std": 0.0148904617338975, "time": 13.251337170600891, "time_std": 85.12608108240951}, {"dataset": "oocytes_trisopterus_nucleus_2f", "samples": 912, "features": 25, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.8211673572329308, "score_std": 0.021885460339506446, "time": 1.2204823637008666, "time_std": 4.769534422901625}, {"dataset": "oocytes_trisopterus_states_5b", "samples": 912, "features": 32, "classes": 3, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.9263081727016153, "score_std": 0.016119644404769533, "time": 3.6264414501190188, "time_std": 13.951005549310587}, {"dataset": "parkinsons", "samples": 195, "features": 22, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.9179487179487179, "score_std": 0.045580484191361986, "time": 0.11873337745666504, "time_std": 0.07873085472103374}, {"dataset": "pima", "samples": 768, "features": 8, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.7393158475511415, "score_std": 0.02927774879276534, "time": 2.088053946495056, "time_std": 12.933675711102964}, {"dataset": "pittsburg-bridges-MATERIAL", "samples": 106, "features": 7, "classes": 3, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.8109956709956709, "score_std": 0.07566282262419324, "time": 0.4820576238632202, "time_std": 0.924550118719942}, {"dataset": "pittsburg-bridges-REL-L", "samples": 103, "features": 7, "classes": 3, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.6602380952380952, "score_std": 0.09881181867673562, "time": 1.9928147554397584, "time_std": 11.329170166554105}, {"dataset": "pittsburg-bridges-SPAN", "samples": 92, "features": 7, "classes": 3, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.6324561403508772, "score_std": 0.08073194197664012, "time": 3.6241525411605835, "time_std": 15.873493860572065}, {"dataset": "pittsburg-bridges-T-OR-D", "samples": 102, "features": 7, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.8548571428571428, "score_std": 0.07465713010041258, "time": 0.08799814224243165, "time_std": 0.038907638341222336}, {"dataset": "planning", "samples": 182, "features": 12, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.611876876876877, "score_std": 0.07817438764411386, "time": 2.5103750228881836, "time_std": 16.39575132309205}, {"dataset": "post-operative", "samples": 90, "features": 8, "classes": 3, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 16.72160933971405, "time_std": 106.8007303465928}, {"dataset": "seeds", "samples": 210, "features": 7, "classes": 3, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.9385714285714286, "score_std": 0.036293712404364235, "time": 0.2209903383255005, "time_std": 0.07855683351121098}, {"dataset": "statlog-australian-credit", "samples": 690, "features": 14, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.6326086956521738, "score_std": 0.039670190414988385, "time": 1.9880638647079467, "time_std": 11.805796559423113}, {"dataset": "statlog-german-credit", "samples": 1000, "features": 24, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.7570999999999999, "score_std": 0.025750533975046043, "time": 7.060936903953552, "time_std": 45.070670936422545}, {"dataset": "statlog-heart", "samples": 270, "features": 13, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.8011111111111111, "score_std": 0.039511766579295525, "time": 0.2252124786376953, "time_std": 0.2162920620233312}, {"dataset": "statlog-image", "samples": 2310, "features": 18, "classes": 7, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.9828138528138528, "score_std": 0.007465618676906069, "time": 5.276189665794373, "time_std": 27.76233505702192}, {"dataset": "statlog-vehicle", "samples": 846, "features": 18, "classes": 4, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.7664371736860426, "score_std": 0.02783163058192114, "time": 5.450960912704468, "time_std": 29.574937580676025}, {"dataset": "synthetic-control", "samples": 600, "features": 60, "classes": 6, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.972, "score_std": 0.016478942792411036, "time": 1.6202442836761475, "time_std": 3.658503519560621}, {"dataset": "tic-tac-toe", "samples": 958, "features": 9, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.9870538830715532, "score_std": 0.00831125987571862, "time": 0.7468043184280395, "time_std": 3.968487427281523}, {"dataset": "vertebral-column-2clases", "samples": 310, "features": 6, "classes": 2, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.826774193548387, "score_std": 0.04513939561425691, "time": 0.16442458152770997, "time_std": 0.05714842460575394}, {"dataset": "wine", "samples": 178, "features": 13, "classes": 3, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.9623015873015873, "score_std": 0.036235091546875264, "time": 0.3464542818069458, "time_std": 1.0326746833555314}, {"dataset": "zoo", "samples": 101, "features": 16, "classes": 7, "hyperparameters": {}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": 0.9566190476190478, "score_std": 0.03863395872079264, "time": 0.8843645334243775, "time_std": 2.600686147486738}]} \ No newline at end of file diff --git a/benchmark/tests/test_files/summary_list_hidden.test b/benchmark/tests/test_files/summary_list_hidden.test index c883589..d34b5bd 100644 --- a/benchmark/tests/test_files/summary_list_hidden.test +++ b/benchmark/tests/test_files/summary_list_hidden.test @@ -1,3 +1,4 @@ -Date File Score Time(h) Title -========== ======================================================== ======== ======= ======= -2021-11-01 results_accuracy_STree_iMac27_2021-11-01_23:55:16_0.json 0.97446 0.098 default +Date File Score Time(h) Title +========== ================================================================ ======== ======= ======================= +2022-05-04 results_accuracy_XGBoost_MacBookpro16_2022-05-04_11:00:35_0.json nan 3.091 Default hyperparameters +2021-11-01 results_accuracy_STree_iMac27_2021-11-01_23:55:16_0.json 0.97446 0.098 default