mirror of
https://github.com/Doctorado-ML/benchmark.git
synced 2025-08-17 00:15:55 +00:00
Refactor be_report and fix error in datasets
This commit is contained in:
@@ -1,4 +1,5 @@
|
|||||||
import os
|
import os
|
||||||
|
from types import SimpleNamespace
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from scipy.io import arff
|
from scipy.io import arff
|
||||||
@@ -132,11 +133,10 @@ class Datasets:
|
|||||||
return [class_name], [dataset_name]
|
return [class_name], [dataset_name]
|
||||||
|
|
||||||
def get_attributes(self, name):
|
def get_attributes(self, name):
|
||||||
class Attributes:
|
tmp = self.discretize
|
||||||
pass
|
self.discretize = False
|
||||||
|
X, y = self.load(name)
|
||||||
X, y = self.load_continuous(name)
|
attr = SimpleNamespace()
|
||||||
attr = Attributes()
|
|
||||||
values, counts = np.unique(y, return_counts=True)
|
values, counts = np.unique(y, return_counts=True)
|
||||||
comp = ""
|
comp = ""
|
||||||
sep = ""
|
sep = ""
|
||||||
@@ -147,6 +147,7 @@ class Datasets:
|
|||||||
attr.classes = len(np.unique(y))
|
attr.classes = len(np.unique(y))
|
||||||
attr.samples = X.shape[0]
|
attr.samples = X.shape[0]
|
||||||
attr.features = X.shape[1]
|
attr.features = X.shape[1]
|
||||||
|
self.discretize = tmp
|
||||||
return attr
|
return attr
|
||||||
|
|
||||||
def get_features(self):
|
def get_features(self):
|
||||||
|
@@ -51,31 +51,34 @@ def main(args_test=None):
|
|||||||
],
|
],
|
||||||
)
|
)
|
||||||
args = arguments.parse(args_test)
|
args = arguments.parse(args_test)
|
||||||
if args.subcommand == "best" or args.subcommand == "grid":
|
match args.subcommand:
|
||||||
best = args.subcommand == "best"
|
case "best" | "grid":
|
||||||
report = ReportBest(args.score, args.model, best)
|
best = args.subcommand == "best"
|
||||||
report.report()
|
report = ReportBest(args.score, args.model, best)
|
||||||
elif args.subcommand == "file":
|
|
||||||
try:
|
|
||||||
report = Report(args.file_name, args.compare)
|
|
||||||
report.report()
|
report.report()
|
||||||
except FileNotFoundError as e:
|
case "file":
|
||||||
print(e)
|
try:
|
||||||
return
|
report = Report(args.file_name, args.compare)
|
||||||
if args.sql:
|
report.report()
|
||||||
sql = SQL(args.file_name)
|
except FileNotFoundError as e:
|
||||||
sql.report()
|
print(e)
|
||||||
if args.excel:
|
return
|
||||||
excel = Excel(
|
if args.sql:
|
||||||
file_name=args.file_name,
|
sql = SQL(args.file_name)
|
||||||
compare=args.compare,
|
sql.report()
|
||||||
)
|
if args.excel:
|
||||||
excel.report()
|
excel = Excel(
|
||||||
is_test = args_test is not None
|
file_name=args.file_name,
|
||||||
Files.open(excel.get_file_name(), is_test)
|
compare=args.compare,
|
||||||
else:
|
)
|
||||||
report = ReportDatasets(args.excel)
|
excel.report()
|
||||||
report.report()
|
is_test = args_test is not None
|
||||||
if args.excel:
|
Files.open(excel.get_file_name(), is_test)
|
||||||
is_test = args_test is not None
|
case "datasets":
|
||||||
Files.open(report.get_file_name(), is_test)
|
report = ReportDatasets(args.excel)
|
||||||
|
report.report()
|
||||||
|
if args.excel:
|
||||||
|
is_test = args_test is not None
|
||||||
|
Files.open(report.get_file_name(), is_test)
|
||||||
|
case _:
|
||||||
|
arguments.parse(["-h"])
|
||||||
|
Reference in New Issue
Block a user