diff --git a/results/results_accuracy_Bagging_iMac27_2022-01-14_14:00:32_0.json b/results/results_accuracy_Bagging_iMac27_2022-01-14_14:00:32_0.json new file mode 100644 index 0000000..52bfd1a --- /dev/null +++ b/results/results_accuracy_Bagging_iMac27_2022-01-14_14:00:32_0.json @@ -0,0 +1 @@ +{"score_name": "accuracy", "title": "Test BaggingClassifier with STree", "model": "Bagging", "version": "-", "stratified": false, "folds": 5, "date": "2022-01-14", "time": "14:00:32", "duration": 2.4914512634277344, "seeds": [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1], "platform": "iMac27", "results": [{"dataset": "balance-scale", "samples": 625, "features": 4, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005263137817382812, "time_std": 7.377665193163519e-05}, {"dataset": "balloons", "samples": 16, "features": 4, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004933309555053711, "time_std": 2.092596432523415e-05}, {"dataset": "breast-cancer-wisc-diag", "samples": 569, "features": 30, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005257034301757813, "time_std": 3.4794574471198685e-05}, {"dataset": "breast-cancer-wisc-prog", "samples": 198, "features": 33, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005057001113891601, "time_std": 5.7292682248176166e-05}, {"dataset": "breast-cancer-wisc", "samples": 699, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005154132843017579, "time_std": 2.0927665269655704e-05}, {"dataset": "breast-cancer", "samples": 286, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004943180084228516, "time_std": 1.8228932626018702e-05}, {"dataset": "cardiotocography-10clases", "samples": 2126, "features": 21, "classes": 10, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005937576293945313, "time_std": 2.4039261891669122e-05}, {"dataset": "cardiotocography-3clases", "samples": 2126, "features": 21, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005949640274047852, "time_std": 3.824109773449134e-05}, {"dataset": "conn-bench-sonar-mines-rocks", "samples": 208, "features": 60, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005132055282592773, "time_std": 3.7698922143605884e-05}, {"dataset": "cylinder-bands", "samples": 512, "features": 35, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.000525522232055664, "time_std": 2.7082881417522173e-05}, {"dataset": "dermatology", "samples": 366, "features": 34, "classes": 6, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00051849365234375, "time_std": 2.7908380661143334e-05}, {"dataset": "echocardiogram", "samples": 131, "features": 10, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048015117645263674, "time_std": 1.560629451082849e-05}, {"dataset": "fertility", "samples": 100, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048199653625488284, "time_std": 2.1472701001829803e-05}, {"dataset": "haberman-survival", "samples": 306, "features": 3, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004975318908691407, "time_std": 3.940504494312087e-05}, {"dataset": "heart-hungarian", "samples": 294, "features": 12, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004956722259521484, "time_std": 1.977011941854855e-05}, {"dataset": "hepatitis", "samples": 155, "features": 19, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004927206039428711, "time_std": 1.830327428495406e-05}, {"dataset": "ilpd-indian-liver", "samples": 583, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005066823959350586, "time_std": 2.2940163893953717e-05}, {"dataset": "ionosphere", "samples": 351, "features": 33, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005111169815063477, "time_std": 2.2130910480793766e-05}, {"dataset": "iris", "samples": 150, "features": 4, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048386096954345704, "time_std": 1.5965445894293067e-05}, {"dataset": "led-display", "samples": 1000, "features": 7, "classes": 10, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005240583419799805, "time_std": 1.875979496378102e-05}, {"dataset": "libras", "samples": 360, "features": 90, "classes": 15, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005061721801757812, "time_std": 1.5156069358636807e-05}, {"dataset": "low-res-spect", "samples": 531, "features": 100, "classes": 9, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005510330200195312, "time_std": 3.36098494221528e-05}, {"dataset": "lymphography", "samples": 148, "features": 18, "classes": 4, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048254966735839845, "time_std": 9.87812339804443e-06}, {"dataset": "mammographic", "samples": 961, "features": 5, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.000506591796875, "time_std": 1.61811582471682e-05}, {"dataset": "molec-biol-promoter", "samples": 106, "features": 57, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004808998107910156, "time_std": 1.3302129557103326e-05}, {"dataset": "musk-1", "samples": 476, "features": 166, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005530166625976562, "time_std": 3.8085418152783326e-05}, {"dataset": "oocytes_merluccius_nucleus_4d", "samples": 1022, "features": 41, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005411386489868164, "time_std": 2.665815055535568e-05}, {"dataset": "oocytes_merluccius_states_2f", "samples": 1022, "features": 25, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005327844619750976, "time_std": 3.317222863959748e-05}, {"dataset": "oocytes_trisopterus_nucleus_2f", "samples": 912, "features": 25, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005249929428100586, "time_std": 2.764313018461084e-05}, {"dataset": "oocytes_trisopterus_states_5b", "samples": 912, "features": 32, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005200910568237305, "time_std": 1.4084230421520817e-05}, {"dataset": "parkinsons", "samples": 195, "features": 22, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048376083374023437, "time_std": 1.336769068755409e-05}, {"dataset": "pima", "samples": 768, "features": 8, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005081129074096679, "time_std": 2.3524977097410286e-05}, {"dataset": "pittsburg-bridges-MATERIAL", "samples": 106, "features": 7, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00047702789306640624, "time_std": 1.3968480441510278e-05}, {"dataset": "pittsburg-bridges-REL-L", "samples": 103, "features": 7, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048142433166503906, "time_std": 2.232293485171629e-05}, {"dataset": "pittsburg-bridges-SPAN", "samples": 92, "features": 7, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004941844940185547, "time_std": 3.362248288395386e-05}, {"dataset": "pittsburg-bridges-T-OR-D", "samples": 102, "features": 7, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00047479629516601564, "time_std": 1.8614256910559533e-05}, {"dataset": "planning", "samples": 182, "features": 12, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004884529113769531, "time_std": 2.8415975736854637e-05}, {"dataset": "post-operative", "samples": 90, "features": 8, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.000482640266418457, "time_std": 1.8524347875744278e-05}, {"dataset": "seeds", "samples": 210, "features": 7, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004790115356445312, "time_std": 2.0465295327247667e-05}, {"dataset": "statlog-australian-credit", "samples": 690, "features": 14, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.000498199462890625, "time_std": 1.3767387899897084e-05}, {"dataset": "statlog-german-credit", "samples": 1000, "features": 24, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005217790603637695, "time_std": 2.0114065827110867e-05}, {"dataset": "statlog-heart", "samples": 270, "features": 13, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004888153076171874, "time_std": 2.6317461380872597e-05}, {"dataset": "statlog-image", "samples": 2310, "features": 18, "classes": 7, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005964088439941406, "time_std": 1.9880063402281647e-05}, {"dataset": "statlog-vehicle", "samples": 846, "features": 18, "classes": 4, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005185222625732422, "time_std": 2.3849217232720542e-05}, {"dataset": "synthetic-control", "samples": 600, "features": 60, "classes": 6, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005260419845581055, "time_std": 2.117317479296291e-05}, {"dataset": "tic-tac-toe", "samples": 958, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005119562149047852, "time_std": 3.5585288801415974e-05}, {"dataset": "vertebral-column-2clases", "samples": 310, "features": 6, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004802560806274414, "time_std": 1.737962596399799e-05}, {"dataset": "wine", "samples": 178, "features": 13, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048253536224365237, "time_std": 9.563795107316843e-06}, {"dataset": "zoo", "samples": 101, "features": 16, "classes": 7, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004904699325561523, "time_std": 2.078909882487918e-05}]} \ No newline at end of file diff --git a/results/results_accuracy_Bagging_iMac27_2022-01-14_14:01:48_0.json b/results/results_accuracy_Bagging_iMac27_2022-01-14_14:01:48_0.json new file mode 100644 index 0000000..d889a68 --- /dev/null +++ b/results/results_accuracy_Bagging_iMac27_2022-01-14_14:01:48_0.json @@ -0,0 +1 @@ +{"score_name": "accuracy", "title": "Test BaggingClassifier with Wodt", "model": "Bagging", "version": "-", "stratified": false, "folds": 5, "date": "2022-01-14", "time": "14:01:48", "duration": 2.4366021156311035, "seeds": [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1], "platform": "iMac27", "results": [{"dataset": "balance-scale", "samples": 625, "features": 4, "classes": 3, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005184221267700195, "time_std": 6.00996461159075e-05}, {"dataset": "balloons", "samples": 16, "features": 4, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004758596420288086, "time_std": 1.020445444778532e-05}, {"dataset": "breast-cancer-wisc-diag", "samples": 569, "features": 30, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005176591873168945, "time_std": 4.926658558136666e-05}, {"dataset": "breast-cancer-wisc-prog", "samples": 198, "features": 33, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004887628555297852, "time_std": 6.8435709645239e-05}, {"dataset": "breast-cancer-wisc", "samples": 699, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005065584182739257, "time_std": 2.8444589905408735e-05}, {"dataset": "breast-cancer", "samples": 286, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048090934753417967, "time_std": 1.5327169264742485e-05}, {"dataset": "cardiotocography-10clases", "samples": 2126, "features": 21, "classes": 10, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005686187744140625, "time_std": 2.1311578384106014e-05}, {"dataset": "cardiotocography-3clases", "samples": 2126, "features": 21, "classes": 3, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005528450012207032, "time_std": 3.053284799498396e-05}, {"dataset": "conn-bench-sonar-mines-rocks", "samples": 208, "features": 60, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048259735107421877, "time_std": 3.01099298345252e-05}, {"dataset": "cylinder-bands", "samples": 512, "features": 35, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004953813552856446, "time_std": 1.4375931768211606e-05}, {"dataset": "dermatology", "samples": 366, "features": 34, "classes": 6, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004842662811279297, "time_std": 1.5796151944061566e-05}, {"dataset": "echocardiogram", "samples": 131, "features": 10, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00046276092529296876, "time_std": 1.5049177127421802e-05}, {"dataset": "fertility", "samples": 100, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00046802520751953124, "time_std": 2.0680002604404965e-05}, {"dataset": "haberman-survival", "samples": 306, "features": 3, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00047430038452148435, "time_std": 2.8681259991312237e-05}, {"dataset": "heart-hungarian", "samples": 294, "features": 12, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048160552978515625, "time_std": 1.5314343766855652e-05}, {"dataset": "hepatitis", "samples": 155, "features": 19, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00047114372253417966, "time_std": 1.0327971427896761e-05}, {"dataset": "ilpd-indian-liver", "samples": 583, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004889917373657227, "time_std": 1.5636005201180538e-05}, {"dataset": "ionosphere", "samples": 351, "features": 33, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048388004302978515, "time_std": 1.566823414185599e-05}, {"dataset": "iris", "samples": 150, "features": 4, "classes": 3, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00047137260437011717, "time_std": 1.237324343445609e-05}, {"dataset": "led-display", "samples": 1000, "features": 7, "classes": 10, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005100822448730469, "time_std": 1.4402073652228514e-05}, {"dataset": "libras", "samples": 360, "features": 90, "classes": 15, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004958915710449219, "time_std": 2.0672243177444742e-05}, {"dataset": "low-res-spect", "samples": 531, "features": 100, "classes": 9, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005170536041259765, "time_std": 1.807542685246507e-05}, {"dataset": "lymphography", "samples": 148, "features": 18, "classes": 4, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00046901702880859376, "time_std": 1.0502331643854704e-05}, {"dataset": "mammographic", "samples": 961, "features": 5, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005019092559814453, "time_std": 1.6725933197794237e-05}, {"dataset": "molec-biol-promoter", "samples": 106, "features": 57, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004737091064453125, "time_std": 2.0518277984079168e-05}, {"dataset": "musk-1", "samples": 476, "features": 166, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005449199676513672, "time_std": 3.890868961059318e-05}, {"dataset": "oocytes_merluccius_nucleus_4d", "samples": 1022, "features": 41, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005295991897583008, "time_std": 2.2648121121631365e-05}, {"dataset": "oocytes_merluccius_states_2f", "samples": 1022, "features": 25, "classes": 3, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005144119262695312, "time_std": 3.538562254917059e-05}, {"dataset": "oocytes_trisopterus_nucleus_2f", "samples": 912, "features": 25, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005102968215942383, "time_std": 4.063504900873391e-05}, {"dataset": "oocytes_trisopterus_states_5b", "samples": 912, "features": 32, "classes": 3, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005081510543823243, "time_std": 3.35175690124355e-05}, {"dataset": "parkinsons", "samples": 195, "features": 22, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00046638965606689455, "time_std": 2.1653379066784226e-05}, {"dataset": "pima", "samples": 768, "features": 8, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004924392700195313, "time_std": 1.8795198180659287e-05}, {"dataset": "pittsburg-bridges-MATERIAL", "samples": 106, "features": 7, "classes": 3, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004640769958496094, "time_std": 1.0593754972722917e-05}, {"dataset": "pittsburg-bridges-REL-L", "samples": 103, "features": 7, "classes": 3, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00047127246856689455, "time_std": 1.4395082010694131e-05}, {"dataset": "pittsburg-bridges-SPAN", "samples": 92, "features": 7, "classes": 3, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00046958446502685545, "time_std": 3.976021630110925e-05}, {"dataset": "pittsburg-bridges-T-OR-D", "samples": 102, "features": 7, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00045123100280761717, "time_std": 1.8973266038613075e-05}, {"dataset": "planning", "samples": 182, "features": 12, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004732275009155273, "time_std": 6.663628270611118e-05}, {"dataset": "post-operative", "samples": 90, "features": 8, "classes": 3, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00047130584716796874, "time_std": 1.6255811633485727e-05}, {"dataset": "seeds", "samples": 210, "features": 7, "classes": 3, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004734373092651367, "time_std": 1.6197436745884962e-05}, {"dataset": "statlog-australian-credit", "samples": 690, "features": 14, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048480987548828126, "time_std": 1.634996392288785e-05}, {"dataset": "statlog-german-credit", "samples": 1000, "features": 24, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005000972747802734, "time_std": 8.42156521331597e-06}, {"dataset": "statlog-heart", "samples": 270, "features": 13, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00046761512756347655, "time_std": 1.5125019100190142e-05}, {"dataset": "statlog-image", "samples": 2310, "features": 18, "classes": 7, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005717992782592774, "time_std": 1.2513614384948422e-05}, {"dataset": "statlog-vehicle", "samples": 846, "features": 18, "classes": 4, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005012655258178711, "time_std": 1.95943644542162e-05}, {"dataset": "synthetic-control", "samples": 600, "features": 60, "classes": 6, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005134725570678711, "time_std": 2.431895732738225e-05}, {"dataset": "tic-tac-toe", "samples": 958, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005024957656860351, "time_std": 3.155274712997172e-05}, {"dataset": "vertebral-column-2clases", "samples": 310, "features": 6, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00046251296997070314, "time_std": 1.4064500928373617e-05}, {"dataset": "wine", "samples": 178, "features": 13, "classes": 3, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00046843528747558594, "time_std": 4.986008156370416e-05}, {"dataset": "zoo", "samples": 101, "features": 16, "classes": 7, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00047016143798828125, "time_std": 1.6675807402958984e-05}]} \ No newline at end of file diff --git a/results/results_accuracy_Bagging_iMac27_2022-01-14_14:03:24_0.json b/results/results_accuracy_Bagging_iMac27_2022-01-14_14:03:24_0.json new file mode 100644 index 0000000..8bc0463 --- /dev/null +++ b/results/results_accuracy_Bagging_iMac27_2022-01-14_14:03:24_0.json @@ -0,0 +1 @@ +{"score_name": "accuracy", "title": "Test BaggingClassifier with STree", "model": "Bagging", "version": "-", "stratified": false, "folds": 5, "date": "2022-01-14", "time": "14:03:24", "duration": 2.4223663806915283, "seeds": [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1], "platform": "iMac27", "results": [{"dataset": "balance-scale", "samples": 625, "features": 4, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005065011978149414, "time_std": 5.136525834450233e-05}, {"dataset": "balloons", "samples": 16, "features": 4, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00047276496887207033, "time_std": 3.214515006867536e-05}, {"dataset": "breast-cancer-wisc-diag", "samples": 569, "features": 30, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005041408538818359, "time_std": 2.939882798777666e-05}, {"dataset": "breast-cancer-wisc-prog", "samples": 198, "features": 33, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004915332794189453, "time_std": 5.43326755374195e-05}, {"dataset": "breast-cancer-wisc", "samples": 699, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005038118362426758, "time_std": 3.0452652128564754e-05}, {"dataset": "breast-cancer", "samples": 286, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004764461517333984, "time_std": 1.2282769859981593e-05}, {"dataset": "cardiotocography-10clases", "samples": 2126, "features": 21, "classes": 10, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005846071243286133, "time_std": 5.9845143354218884e-05}, {"dataset": "cardiotocography-3clases", "samples": 2126, "features": 21, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005539178848266602, "time_std": 3.6433299991961104e-05}, {"dataset": "conn-bench-sonar-mines-rocks", "samples": 208, "features": 60, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048577308654785157, "time_std": 3.531532868803577e-05}, {"dataset": "cylinder-bands", "samples": 512, "features": 35, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005120658874511719, "time_std": 3.067910985637586e-05}, {"dataset": "dermatology", "samples": 366, "features": 34, "classes": 6, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004952478408813476, "time_std": 1.8872470778403913e-05}, {"dataset": "echocardiogram", "samples": 131, "features": 10, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00046515464782714844, "time_std": 2.257646444930716e-05}, {"dataset": "fertility", "samples": 100, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00047152042388916017, "time_std": 4.175850196554792e-05}, {"dataset": "haberman-survival", "samples": 306, "features": 3, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00047604560852050783, "time_std": 4.585766626134085e-05}, {"dataset": "heart-hungarian", "samples": 294, "features": 12, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004653739929199219, "time_std": 2.5768221792272443e-05}, {"dataset": "hepatitis", "samples": 155, "features": 19, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.000456695556640625, "time_std": 1.5456751322061266e-05}, {"dataset": "ilpd-indian-liver", "samples": 583, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004938745498657227, "time_std": 4.624976828681922e-05}, {"dataset": "ionosphere", "samples": 351, "features": 33, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004864740371704102, "time_std": 3.962732216249829e-05}, {"dataset": "iris", "samples": 150, "features": 4, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00046871185302734377, "time_std": 1.7467791502166625e-05}, {"dataset": "led-display", "samples": 1000, "features": 7, "classes": 10, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005125284194946289, "time_std": 1.5215159417065443e-05}, {"dataset": "libras", "samples": 360, "features": 90, "classes": 15, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004972410202026367, "time_std": 1.532525918047196e-05}, {"dataset": "low-res-spect", "samples": 531, "features": 100, "classes": 9, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005268669128417969, "time_std": 2.4557222903110458e-05}, {"dataset": "lymphography", "samples": 148, "features": 18, "classes": 4, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004548025131225586, "time_std": 2.1251059386884713e-05}, {"dataset": "mammographic", "samples": 961, "features": 5, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004792642593383789, "time_std": 2.0241537418883156e-05}, {"dataset": "molec-biol-promoter", "samples": 106, "features": 57, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004647064208984375, "time_std": 3.2586949521051496e-05}, {"dataset": "musk-1", "samples": 476, "features": 166, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005329132080078125, "time_std": 5.203737693040587e-05}, {"dataset": "oocytes_merluccius_nucleus_4d", "samples": 1022, "features": 41, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005167484283447266, "time_std": 2.206251896721242e-05}, {"dataset": "oocytes_merluccius_states_2f", "samples": 1022, "features": 25, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004944372177124024, "time_std": 1.0119591139195468e-05}, {"dataset": "oocytes_trisopterus_nucleus_2f", "samples": 912, "features": 25, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005001926422119141, "time_std": 2.629876717669011e-05}, {"dataset": "oocytes_trisopterus_states_5b", "samples": 912, "features": 32, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005071067810058594, "time_std": 2.375878930927778e-05}, {"dataset": "parkinsons", "samples": 195, "features": 22, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004682302474975586, "time_std": 2.0452103815092726e-05}, {"dataset": "pima", "samples": 768, "features": 8, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048449993133544924, "time_std": 3.1457558817208884e-05}, {"dataset": "pittsburg-bridges-MATERIAL", "samples": 106, "features": 7, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004621696472167969, "time_std": 4.2713411813732965e-05}, {"dataset": "pittsburg-bridges-REL-L", "samples": 103, "features": 7, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004499673843383789, "time_std": 1.7820269701718283e-05}, {"dataset": "pittsburg-bridges-SPAN", "samples": 92, "features": 7, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004723834991455078, "time_std": 2.8633721561502912e-05}, {"dataset": "pittsburg-bridges-T-OR-D", "samples": 102, "features": 7, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004677248001098633, "time_std": 1.3531953856155116e-05}, {"dataset": "planning", "samples": 182, "features": 12, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00046132087707519533, "time_std": 3.063766277858698e-05}, {"dataset": "post-operative", "samples": 90, "features": 8, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004643440246582031, "time_std": 2.3795798634213833e-05}, {"dataset": "seeds", "samples": 210, "features": 7, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004665231704711914, "time_std": 1.9856005986478553e-05}, {"dataset": "statlog-australian-credit", "samples": 690, "features": 14, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004915523529052734, "time_std": 2.3400272323963106e-05}, {"dataset": "statlog-german-credit", "samples": 1000, "features": 24, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005113029479980469, "time_std": 2.0134228653772e-05}, {"dataset": "statlog-heart", "samples": 270, "features": 13, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004742431640625, "time_std": 2.0857831882474873e-05}, {"dataset": "statlog-image", "samples": 2310, "features": 18, "classes": 7, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.000569906234741211, "time_std": 2.4697345955738982e-05}, {"dataset": "statlog-vehicle", "samples": 846, "features": 18, "classes": 4, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004927825927734375, "time_std": 1.563114389126116e-05}, {"dataset": "synthetic-control", "samples": 600, "features": 60, "classes": 6, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005029439926147461, "time_std": 2.310920582115409e-05}, {"dataset": "tic-tac-toe", "samples": 958, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.000490875244140625, "time_std": 3.752674020224061e-05}, {"dataset": "vertebral-column-2clases", "samples": 310, "features": 6, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004799652099609375, "time_std": 2.8855490070195133e-05}, {"dataset": "wine", "samples": 178, "features": 13, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00047484397888183596, "time_std": 2.4478924911636095e-05}, {"dataset": "zoo", "samples": 101, "features": 16, "classes": 7, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004682588577270508, "time_std": 1.727319092653043e-05}]} \ No newline at end of file diff --git a/results/results_accuracy_RandomForest_iMac27_2022-01-14_12:39:30_0.json b/results/results_accuracy_RandomForest_iMac27_2022-01-14_12:39:30_0.json new file mode 100644 index 0000000..714e65a --- /dev/null +++ b/results/results_accuracy_RandomForest_iMac27_2022-01-14_12:39:30_0.json @@ -0,0 +1 @@ +{"score_name": "accuracy", "title": "Test default paramters with RandomForest", "model": "RandomForest", "version": "-", "stratified": false, "folds": 5, "date": "2022-01-14", "time": "12:39:30", "duration": 272.7363500595093, "seeds": [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1], "platform": "iMac27", "results": [{"dataset": "balance-scale", "samples": 625, "features": 4, "classes": 3, "hyperparameters": {}, "nodes": 196.91440000000003, "leaves": 98.42, "depth": 10.681399999999998, "score": 0.83616, "score_std": 0.02649630917694009, "time": 0.08222018241882324, "time_std": 0.0013026326815120633}, {"dataset": "balloons", "samples": 16, "features": 4, "classes": 2, "hyperparameters": {}, "nodes": 9.110800000000001, "leaves": 4.58, "depth": 3.0982, "score": 0.625, "score_std": 0.24958298553119898, "time": 0.07016648769378662, "time_std": 0.002460508923990468}, {"dataset": "breast-cancer-wisc-diag", "samples": 569, "features": 30, "classes": 2, "hyperparameters": {}, "nodes": 35.2244, "leaves": 17.6, "depth": 7.0416, "score": 0.9602856699270299, "score_std": 0.01304850246785924, "time": 0.10632176399230957, "time_std": 0.0012814330008163895}, {"dataset": "breast-cancer-wisc-prog", "samples": 198, "features": 33, "classes": 2, "hyperparameters": {}, "nodes": 42.83520000000001, "leaves": 21.44, "depth": 8.2894, "score": 0.7889487179487179, "score_std": 0.062095973522275645, "time": 0.08400990009307861, "time_std": 0.0007689436603050339}, {"dataset": "breast-cancer-wisc", "samples": 699, "features": 9, "classes": 2, "hyperparameters": {}, "nodes": 50.012, "leaves": 25.0, "depth": 8.6722, "score": 0.9678078108941419, "score_std": 0.013450156204218109, "time": 0.08035204410552979, "time_std": 0.000777050324972476}, {"dataset": "breast-cancer", "samples": 286, "features": 9, "classes": 2, "hyperparameters": {}, "nodes": 131.1628, "leaves": 65.58, "depth": 13.444600000000003, "score": 0.7173260738052026, "score_std": 0.05543339031060783, "time": 0.07757283687591553, "time_std": 0.0008393328488688051}, {"dataset": "cardiotocography-10clases", "samples": 2126, "features": 21, "classes": 10, "hyperparameters": {}, "nodes": 528.6271999999999, "leaves": 264.3, "depth": 17.3662, "score": 0.8729086992543498, "score_std": 0.01716119423915263, "time": 0.19765180587768555, "time_std": 0.0019626764893557083}, {"dataset": "cardiotocography-3clases", "samples": 2126, "features": 21, "classes": 3, "hyperparameters": {}, "nodes": 231.13080000000002, "leaves": 115.6, "depth": 15.2172, "score": 0.9415357083678542, "score_std": 0.011745284632829643, "time": 0.16629162788391114, "time_std": 0.002738344194473768}, {"dataset": "conn-bench-sonar-mines-rocks", "samples": 208, "features": 60, "classes": 2, "hyperparameters": {}, "nodes": 37.938, "leaves": 18.92, "depth": 7.2586, "score": 0.833437862950058, "score_std": 0.05787314265134896, "time": 0.08882544040679932, "time_std": 0.0008867671725084443}, {"dataset": "cylinder-bands", "samples": 512, "features": 35, "classes": 2, "hyperparameters": {}, "nodes": 148.9892, "leaves": 74.48, "depth": 14.892999999999999, "score": 0.792147344374643, "score_std": 0.03975693903506292, "time": 0.09310067653656005, "time_std": 0.0009014587901862299}, {"dataset": "dermatology", "samples": 366, "features": 34, "classes": 6, "hyperparameters": {}, "nodes": 57.653999999999996, "leaves": 28.9, "depth": 11.8402, "score": 0.9778563495001852, "score_std": 0.015194540700548658, "time": 0.07798855304718018, "time_std": 0.000924304222703719}, {"dataset": "echocardiogram", "samples": 131, "features": 10, "classes": 2, "hyperparameters": {}, "nodes": 32.632, "leaves": 16.34, "depth": 8.1354, "score": 0.8139316239316239, "score_std": 0.07230626105687148, "time": 0.07404004573822022, "time_std": 0.0007612039155938908}, {"dataset": "fertility", "samples": 100, "features": 9, "classes": 2, "hyperparameters": {}, "nodes": 24.777599999999996, "leaves": 12.48, "depth": 6.916399999999999, "score": 0.8740000000000001, "score_std": 0.0626418390534633, "time": 0.07163160324096679, "time_std": 0.0007049027375421473}, {"dataset": "haberman-survival", "samples": 306, "features": 3, "classes": 2, "hyperparameters": {}, "nodes": 125.876, "leaves": 63.02, "depth": 12.832199999999998, "score": 0.7029666842940243, "score_std": 0.046522788130533295, "time": 0.07671720504760743, "time_std": 0.0007076729373552084}, {"dataset": "heart-hungarian", "samples": 294, "features": 12, "classes": 2, "hyperparameters": {}, "nodes": 82.21520000000001, "leaves": 41.1, "depth": 11.3134, "score": 0.813249561659848, "score_std": 0.04539952943524693, "time": 0.07836719989776611, "time_std": 0.002204943837056254}, {"dataset": "hepatitis", "samples": 155, "features": 19, "classes": 2, "hyperparameters": {}, "nodes": 35.7332, "leaves": 17.86, "depth": 7.616399999999999, "score": 0.8225806451612903, "score_std": 0.07162452681024038, "time": 0.07399999618530273, "time_std": 0.0008886554820363426}, {"dataset": "ilpd-indian-liver", "samples": 583, "features": 9, "classes": 2, "hyperparameters": {}, "nodes": 153.5448, "leaves": 76.82, "depth": 15.3654, "score": 0.7048010610079575, "score_std": 0.03367965359465586, "time": 0.09889856338500977, "time_std": 0.0008307269029874779}, {"dataset": "ionosphere", "samples": 351, "features": 33, "classes": 2, "hyperparameters": {}, "nodes": 40.494, "leaves": 20.26, "depth": 9.7698, "score": 0.9321851106639838, "score_std": 0.031025947121713787, "time": 0.09868142604827881, "time_std": 0.005891375749718151}, {"dataset": "iris", "samples": 150, "features": 4, "classes": 3, "hyperparameters": {}, "nodes": 14.213199999999999, "leaves": 7.1, "depth": 4.912800000000001, "score": 0.9473333333333332, "score_std": 0.03061590000854675, "time": 0.07207293033599854, "time_std": 0.0007848032886655678}, {"dataset": "led-display", "samples": 1000, "features": 7, "classes": 10, "hyperparameters": {}, "nodes": 139.2276, "leaves": 69.58, "depth": 7.0, "score": 0.7097, "score_std": 0.028747347703744767, "time": 0.08361569881439208, "time_std": 0.000758675523818551}, {"dataset": "libras", "samples": 360, "features": 90, "classes": 15, "hyperparameters": {}, "nodes": 125.12200000000001, "leaves": 62.52, "depth": 11.937999999999999, "score": 0.8008333333333334, "score_std": 0.051039351799359346, "time": 0.13692616939544677, "time_std": 0.0028023267861638384}, {"dataset": "low-res-spect", "samples": 531, "features": 100, "classes": 9, "hyperparameters": {}, "nodes": 69.4616, "leaves": 34.76, "depth": 8.647, "score": 0.8941421266090636, "score_std": 0.033512494391602414, "time": 0.1578676414489746, "time_std": 0.0028264039382762673}, {"dataset": "lymphography", "samples": 148, "features": 18, "classes": 4, "hyperparameters": {}, "nodes": 52.0336, "leaves": 26.02, "depth": 8.9982, "score": 0.8472873563218392, "score_std": 0.07011193134668385, "time": 0.07332200050354004, "time_std": 0.0008039638883577374}, {"dataset": "mammographic", "samples": 961, "features": 5, "classes": 2, "hyperparameters": {}, "nodes": 295.106, "leaves": 147.58, "depth": 17.322, "score": 0.7956336355785838, "score_std": 0.021570639366604298, "time": 0.09185078620910644, "time_std": 0.0008003349322131495}, {"dataset": "molec-biol-promoter", "samples": 106, "features": 57, "classes": 2, "hyperparameters": {}, "nodes": 27.0456, "leaves": 13.5, "depth": 5.844600000000001, "score": 0.8914718614718615, "score_std": 0.06923296108787423, "time": 0.07348795413970947, "time_std": 0.0007225524577363418}, {"dataset": "musk-1", "samples": 476, "features": 166, "classes": 2, "hyperparameters": {}, "nodes": 76.46119999999999, "leaves": 38.24, "depth": 11.6538, "score": 0.8892916666666667, "score_std": 0.032218163597528444, "time": 0.15192378997802736, "time_std": 0.001412761943763049}, {"dataset": "oocytes_merluccius_nucleus_4d", "samples": 1022, "features": 41, "classes": 2, "hyperparameters": {}, "nodes": 200.00439999999998, "leaves": 100.0, "depth": 14.2556, "score": 0.8008857006217122, "score_std": 0.026005202449345177, "time": 0.1942720127105713, "time_std": 0.0017638853452882457}, {"dataset": "oocytes_merluccius_states_2f", "samples": 1022, "features": 25, "classes": 3, "hyperparameters": {}, "nodes": 94.2128, "leaves": 47.1, "depth": 10.5852, "score": 0.9224098517455765, "score_std": 0.014089731590980637, "time": 0.15928788661956786, "time_std": 0.002982301136466057}, {"dataset": "oocytes_trisopterus_nucleus_2f", "samples": 912, "features": 25, "classes": 2, "hyperparameters": {}, "nodes": 179.76919999999998, "leaves": 89.92, "depth": 15.281999999999998, "score": 0.8086627034168018, "score_std": 0.02785857804335842, "time": 0.17193849086761476, "time_std": 0.001671492597862293}, {"dataset": "oocytes_trisopterus_states_5b", "samples": 912, "features": 32, "classes": 3, "hyperparameters": {}, "nodes": 115.91799999999999, "leaves": 57.94, "depth": 13.022600000000002, "score": 0.9135879421125322, "score_std": 0.018448127398280962, "time": 0.1584096097946167, "time_std": 0.001921356319199889}, {"dataset": "parkinsons", "samples": 195, "features": 22, "classes": 2, "hyperparameters": {}, "nodes": 26.709600000000002, "leaves": 13.36, "depth": 6.414200000000001, "score": 0.906153846153846, "score_std": 0.043092182889324544, "time": 0.07863953590393066, "time_std": 0.0006702244273276947}, {"dataset": "pima", "samples": 768, "features": 8, "classes": 2, "hyperparameters": {}, "nodes": 211.11360000000002, "leaves": 105.5, "depth": 14.825800000000001, "score": 0.7619658772599949, "score_std": 0.029215416907967737, "time": 0.09865476608276368, "time_std": 0.000686692616780535}, {"dataset": "pittsburg-bridges-MATERIAL", "samples": 106, "features": 7, "classes": 3, "hyperparameters": {}, "nodes": 32.632400000000004, "leaves": 16.3, "depth": 7.355600000000002, "score": 0.8291341991341992, "score_std": 0.07027590215086539, "time": 0.07148086547851562, "time_std": 0.0007172648033081135}, {"dataset": "pittsburg-bridges-REL-L", "samples": 103, "features": 7, "classes": 3, "hyperparameters": {}, "nodes": 53.4732, "leaves": 26.7, "depth": 9.7262, "score": 0.6680952380952381, "score_std": 0.07481193351882705, "time": 0.07244928359985352, "time_std": 0.0007746175391909467}, {"dataset": "pittsburg-bridges-SPAN", "samples": 92, "features": 7, "classes": 3, "hyperparameters": {}, "nodes": 49.32, "leaves": 24.64, "depth": 9.2854, "score": 0.6433333333333333, "score_std": 0.1000367396003129, "time": 0.07263156414031982, "time_std": 0.0023644146919121144}, {"dataset": "pittsburg-bridges-T-OR-D", "samples": 102, "features": 7, "classes": 2, "hyperparameters": {}, "nodes": 27.225999999999996, "leaves": 13.52, "depth": 6.604400000000001, "score": 0.8541428571428571, "score_std": 0.0780557536653904, "time": 0.07089141845703124, "time_std": 0.0006617267136577687}, {"dataset": "planning", "samples": 182, "features": 12, "classes": 2, "hyperparameters": {}, "nodes": 52.5672, "leaves": 26.22, "depth": 10.0252, "score": 0.6983483483483484, "score_std": 0.0654856086595986, "time": 0.08015573978424072, "time_std": 0.0008454259481289649}, {"dataset": "post-operative", "samples": 90, "features": 8, "classes": 3, "hyperparameters": {}, "nodes": 54.356399999999994, "leaves": 27.22, "depth": 9.5208, "score": 0.6188888888888889, "score_std": 0.09687079341723154, "time": 0.07183295726776123, "time_std": 0.0007470973142339665}, {"dataset": "seeds", "samples": 210, "features": 7, "classes": 3, "hyperparameters": {}, "nodes": 26.598399999999998, "leaves": 13.26, "depth": 6.244199999999999, "score": 0.9333333333333332, "score_std": 0.041785544701867246, "time": 0.07561173915863037, "time_std": 0.0011410677616181082}, {"dataset": "statlog-australian-credit", "samples": 690, "features": 14, "classes": 2, "hyperparameters": {}, "nodes": 267.02959999999996, "leaves": 133.48, "depth": 17.686, "score": 0.6607246376811594, "score_std": 0.04062342366030316, "time": 0.0992289924621582, "time_std": 0.0008892331022545037}, {"dataset": "statlog-german-credit", "samples": 1000, "features": 24, "classes": 2, "hyperparameters": {}, "nodes": 367.9852, "leaves": 184.04, "depth": 18.088800000000003, "score": 0.76, "score_std": 0.023748684174075843, "time": 0.10281170845031738, "time_std": 0.002085050257557104}, {"dataset": "statlog-heart", "samples": 270, "features": 13, "classes": 2, "hyperparameters": {}, "nodes": 75.52199999999999, "leaves": 37.78, "depth": 9.351400000000002, "score": 0.822962962962963, "score_std": 0.04257809737244419, "time": 0.07781225204467773, "time_std": 0.0008103454276160087}, {"dataset": "statlog-image", "samples": 2310, "features": 18, "classes": 7, "hyperparameters": {}, "nodes": 160.3236, "leaves": 80.12, "depth": 14.5614, "score": 0.9785714285714286, "score_std": 0.007182103906076649, "time": 0.21194809436798095, "time_std": 0.0017131368245994617}, {"dataset": "statlog-vehicle", "samples": 846, "features": 18, "classes": 4, "hyperparameters": {}, "nodes": 221.9508, "leaves": 111.06, "depth": 15.6686, "score": 0.7494166376609818, "score_std": 0.02747614895571888, "time": 0.11989004135131837, "time_std": 0.0008593089427196857}, {"dataset": "synthetic-control", "samples": 600, "features": 60, "classes": 6, "hyperparameters": {}, "nodes": 63.3716, "leaves": 31.66, "depth": 9.0642, "score": 0.9860000000000001, "score_std": 0.010598742063723111, "time": 0.1407129192352295, "time_std": 0.0011753999104161573}, {"dataset": "tic-tac-toe", "samples": 958, "features": 9, "classes": 2, "hyperparameters": {}, "nodes": 245.6668, "leaves": 122.84, "depth": 11.434000000000001, "score": 0.9884075043630017, "score_std": 0.0071140588943835546, "time": 0.08807210922241211, "time_std": 0.0007963618777545674}, {"dataset": "vertebral-column-2clases", "samples": 310, "features": 6, "classes": 2, "hyperparameters": {}, "nodes": 56.6588, "leaves": 28.3, "depth": 9.5954, "score": 0.8322580645161289, "score_std": 0.04539112025635577, "time": 0.07975882053375244, "time_std": 0.0008094507796623972}, {"dataset": "wine", "samples": 178, "features": 13, "classes": 3, "hyperparameters": {}, "nodes": 18.9, "leaves": 9.44, "depth": 4.9538, "score": 0.9825873015873016, "score_std": 0.02303907423919074, "time": 0.07565171241760255, "time_std": 0.0021413726581400415}, {"dataset": "zoo", "samples": 101, "features": 16, "classes": 7, "hyperparameters": {}, "nodes": 22.5216, "leaves": 11.26, "depth": 6.458999999999999, "score": 0.9594761904761906, "score_std": 0.04292716501935155, "time": 0.07117993354797364, "time_std": 0.0006485455107504484}]} \ No newline at end of file diff --git a/results/results_accuracy_Wodt_iMac27_2022-01-14_12:03:47_0.json b/results/results_accuracy_Wodt_iMac27_2022-01-14_12:03:47_0.json new file mode 100644 index 0000000..ff3e17a --- /dev/null +++ b/results/results_accuracy_Wodt_iMac27_2022-01-14_12:03:47_0.json @@ -0,0 +1 @@ +{"score_name": "accuracy", "title": "Test default paramters with Wodt", "model": "Wodt", "version": "0.1.0", "stratified": false, "folds": 5, "date": "2022-01-14", "time": "12:03:47", "duration": 688.4572532176971, "seeds": [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1], "platform": "iMac27", "results": [{"dataset": "balance-scale", "samples": 625, "features": 4, "classes": 3, "hyperparameters": {}, "nodes": 77.24, "leaves": 39.12, "depth": 9.88, "score": 0.9134399999999999, "score_std": 0.027744664351907367, "time": 0.1974334955215454, "time_std": 0.02009598027101101}, {"dataset": "balloons", "samples": 16, "features": 4, "classes": 2, "hyperparameters": {}, "nodes": 4.64, "leaves": 2.82, "depth": 2.82, "score": 0.6849999999999998, "score_std": 0.23879907872519107, "time": 0.004867210388183594, "time_std": 0.0018208657260166134}, {"dataset": "breast-cancer-wisc-diag", "samples": 569, "features": 30, "classes": 2, "hyperparameters": {}, "nodes": 13.64, "leaves": 7.32, "depth": 6.06, "score": 0.9662598975314391, "score_std": 0.012701511719760309, "time": 0.060870490074157714, "time_std": 0.01220122447330397}, {"dataset": "breast-cancer-wisc-prog", "samples": 198, "features": 33, "classes": 2, "hyperparameters": {}, "nodes": 35.48, "leaves": 18.24, "depth": 7.68, "score": 0.7116025641025641, "score_std": 0.054983897290113326, "time": 0.06544770240783691, "time_std": 0.00997598213501073}, {"dataset": "breast-cancer-wisc", "samples": 699, "features": 9, "classes": 2, "hyperparameters": {}, "nodes": 33.32, "leaves": 17.16, "depth": 8.28, "score": 0.9440647482014388, "score_std": 0.01756316459913997, "time": 0.12012916564941406, "time_std": 0.018590030828747578}, {"dataset": "breast-cancer", "samples": 286, "features": 9, "classes": 2, "hyperparameters": {}, "nodes": 418.0, "leaves": 209.5, "depth": 50.0, "score": 0.6520205686630369, "score_std": 0.05385142652030793, "time": 0.21415101051330565, "time_std": 0.022766879136027415}, {"dataset": "cardiotocography-10clases", "samples": 2126, "features": 21, "classes": 10, "hyperparameters": {}, "nodes": 643.32, "leaves": 322.16, "depth": 50.0, "score": 0.7750687655343828, "score_std": 0.019644810657827725, "time": 1.470942325592041, "time_std": 0.05784030114095078}, {"dataset": "cardiotocography-3clases", "samples": 2126, "features": 21, "classes": 3, "hyperparameters": {}, "nodes": 328.2, "leaves": 164.6, "depth": 45.8, "score": 0.8986356255178126, "score_std": 0.013823897052286494, "time": 0.7619886922836304, "time_std": 0.05972486782618954}, {"dataset": "conn-bench-sonar-mines-rocks", "samples": 208, "features": 60, "classes": 2, "hyperparameters": {}, "nodes": 21.96, "leaves": 11.48, "depth": 5.84, "score": 0.8081997677119628, "score_std": 0.0498734154479995, "time": 0.05239728450775147, "time_std": 0.00787639023605458}, {"dataset": "cylinder-bands", "samples": 512, "features": 35, "classes": 2, "hyperparameters": {}, "nodes": 74.4, "leaves": 37.7, "depth": 9.52, "score": 0.6977898343803539, "score_std": 0.04429211252094093, "time": 0.1781570816040039, "time_std": 0.013401243582599233}, {"dataset": "dermatology", "samples": 366, "features": 34, "classes": 6, "hyperparameters": {}, "nodes": 14.48, "leaves": 7.74, "depth": 5.92, "score": 0.9592558311736394, "score_std": 0.024133961686610368, "time": 0.059300856590271, "time_std": 0.005538250922910079}, {"dataset": "echocardiogram", "samples": 131, "features": 10, "classes": 2, "hyperparameters": {}, "nodes": 28.6, "leaves": 14.8, "depth": 7.8, "score": 0.746980056980057, "score_std": 0.08724923657104314, "time": 0.04630577564239502, "time_std": 0.00750563270266542}, {"dataset": "fertility", "samples": 100, "features": 9, "classes": 2, "hyperparameters": {}, "nodes": 78.24, "leaves": 39.62, "depth": 35.16, "score": 0.795, "score_std": 0.07697402159170326, "time": 0.03936605453491211, "time_std": 0.00815922205390602}, {"dataset": "haberman-survival", "samples": 306, "features": 3, "classes": 2, "hyperparameters": {}, "nodes": 424.6, "leaves": 212.8, "depth": 50.0, "score": 0.6702379693283977, "score_std": 0.05088784373091166, "time": 0.3186718511581421, "time_std": 0.027290879497068047}, {"dataset": "heart-hungarian", "samples": 294, "features": 12, "classes": 2, "hyperparameters": {}, "nodes": 58.24, "leaves": 29.62, "depth": 9.68, "score": 0.7533722969023963, "score_std": 0.05339145268628328, "time": 0.10717829704284668, "time_std": 0.010609505600479508}, {"dataset": "hepatitis", "samples": 155, "features": 19, "classes": 2, "hyperparameters": {}, "nodes": 20.36, "leaves": 10.68, "depth": 6.2, "score": 0.7748387096774192, "score_std": 0.09558190259697842, "time": 0.03764162063598633, "time_std": 0.0064768788795763225}, {"dataset": "ilpd-indian-liver", "samples": 583, "features": 9, "classes": 2, "hyperparameters": {}, "nodes": 209.56, "leaves": 105.28, "depth": 16.02, "score": 0.6773710580607131, "score_std": 0.03584294141283469, "time": 0.423434944152832, "time_std": 0.021128728522278813}, {"dataset": "ionosphere", "samples": 351, "features": 33, "classes": 2, "hyperparameters": {}, "nodes": 24.84, "leaves": 12.92, "depth": 6.92, "score": 0.8788893360160965, "score_std": 0.030960554046557214, "time": 0.07952766895294189, "time_std": 0.01330600628046465}, {"dataset": "iris", "samples": 150, "features": 4, "classes": 3, "hyperparameters": {}, "nodes": 13.0, "leaves": 7.0, "depth": 5.92, "score": 0.9440000000000001, "score_std": 0.03617242657666809, "time": 0.029955339431762696, "time_std": 0.0064412223307978664}, {"dataset": "led-display", "samples": 1000, "features": 7, "classes": 10, "hyperparameters": {}, "nodes": 4139.64, "leaves": 2070.32, "depth": 50.0, "score": 0.7038, "score_std": 0.028399999999999984, "time": 1.7609633827209472, "time_std": 0.04520911692472444}, {"dataset": "libras", "samples": 360, "features": 90, "classes": 15, "hyperparameters": {}, "nodes": 119.44, "leaves": 60.22, "depth": 11.26, "score": 0.7855555555555556, "score_std": 0.05031996388544112, "time": 0.2919479513168335, "time_std": 0.017065321359632117}, {"dataset": "low-res-spect", "samples": 531, "features": 100, "classes": 9, "hyperparameters": {}, "nodes": 75.08, "leaves": 38.04, "depth": 9.42, "score": 0.8538353024157997, "score_std": 0.030225180924683265, "time": 0.23713892936706543, "time_std": 0.026847420457208965}, {"dataset": "lymphography", "samples": 148, "features": 18, "classes": 4, "hyperparameters": {}, "nodes": 22.88, "leaves": 11.94, "depth": 6.42, "score": 0.7757241379310345, "score_std": 0.06725567781956764, "time": 0.04250402450561523, "time_std": 0.00703877290727569}, {"dataset": "mammographic", "samples": 961, "features": 5, "classes": 2, "hyperparameters": {}, "nodes": 2975.2, "leaves": 1488.1, "depth": 50.0, "score": 0.7567066062176165, "score_std": 0.026136813218176673, "time": 1.2622583723068237, "time_std": 0.051759447495820295}, {"dataset": "molec-biol-promoter", "samples": 106, "features": 57, "classes": 2, "hyperparameters": {}, "nodes": 9.12, "leaves": 5.06, "depth": 3.98, "score": 0.7912987012987013, "score_std": 0.08633959022510546, "time": 0.01750911235809326, "time_std": 0.0036889385653729634}, {"dataset": "musk-1", "samples": 476, "features": 166, "classes": 2, "hyperparameters": {}, "nodes": 45.92, "leaves": 23.46, "depth": 7.86, "score": 0.839282894736842, "score_std": 0.030090802502375974, "time": 0.1498002815246582, "time_std": 0.013965300918253874}, {"dataset": "oocytes_merluccius_nucleus_4d", "samples": 1022, "features": 41, "classes": 2, "hyperparameters": {}, "nodes": 266.88, "leaves": 133.94, "depth": 16.96, "score": 0.74041893830703, "score_std": 0.028693112692103676, "time": 0.6865090465545655, "time_std": 0.036496310515547956}, {"dataset": "oocytes_merluccius_states_2f", "samples": 1022, "features": 25, "classes": 3, "hyperparameters": {}, "nodes": 95.92, "leaves": 48.46, "depth": 11.74, "score": 0.8978421807747491, "score_std": 0.020267256164914475, "time": 0.3044532585144043, "time_std": 0.02397420977193974}, {"dataset": "oocytes_trisopterus_nucleus_2f", "samples": 912, "features": 25, "classes": 2, "hyperparameters": {}, "nodes": 207.0, "leaves": 104.0, "depth": 14.48, "score": 0.7444166216297364, "score_std": 0.03161095033750277, "time": 0.5112469387054444, "time_std": 0.038286965650450824}, {"dataset": "oocytes_trisopterus_states_5b", "samples": 912, "features": 32, "classes": 3, "hyperparameters": {}, "nodes": 100.44, "leaves": 50.72, "depth": 12.36, "score": 0.8916705698672911, "score_std": 0.020702811014803944, "time": 0.3484308385848999, "time_std": 0.027491063443182442}, {"dataset": "parkinsons", "samples": 195, "features": 22, "classes": 2, "hyperparameters": {}, "nodes": 17.28, "leaves": 9.14, "depth": 6.7, "score": 0.8912820512820513, "score_std": 0.04338109945139815, "time": 0.036522345542907717, "time_std": 0.0056772072448939455}, {"dataset": "pima", "samples": 768, "features": 8, "classes": 2, "hyperparameters": {}, "nodes": 217.08, "leaves": 109.04, "depth": 13.6, "score": 0.6842585519056107, "score_std": 0.036954118157522385, "time": 0.43705992221832274, "time_std": 0.025317975798158386}, {"dataset": "pittsburg-bridges-MATERIAL", "samples": 106, "features": 7, "classes": 3, "hyperparameters": {}, "nodes": 76.16, "leaves": 38.58, "depth": 32.76, "score": 0.8118614718614716, "score_std": 0.08062163607707493, "time": 0.04656053066253662, "time_std": 0.01137320258996127}, {"dataset": "pittsburg-bridges-REL-L", "samples": 103, "features": 7, "classes": 3, "hyperparameters": {}, "nodes": 102.92, "leaves": 51.96, "depth": 33.64, "score": 0.6259047619047619, "score_std": 0.10926121729800642, "time": 0.08309615135192872, "time_std": 0.010972621858717564}, {"dataset": "pittsburg-bridges-SPAN", "samples": 92, "features": 7, "classes": 3, "hyperparameters": {}, "nodes": 156.64, "leaves": 78.82, "depth": 47.52, "score": 0.5863157894736841, "score_std": 0.11290675850938181, "time": 0.0840159273147583, "time_std": 0.01233962046954066}, {"dataset": "pittsburg-bridges-T-OR-D", "samples": 102, "features": 7, "classes": 2, "hyperparameters": {}, "nodes": 76.64, "leaves": 38.82, "depth": 33.48, "score": 0.8275238095238096, "score_std": 0.08201979739997459, "time": 0.04265620708465576, "time_std": 0.009771605258376878}, {"dataset": "planning", "samples": 182, "features": 12, "classes": 2, "hyperparameters": {}, "nodes": 66.92, "leaves": 33.96, "depth": 9.56, "score": 0.5784384384384385, "score_std": 0.08440752357130758, "time": 0.10495961666107177, "time_std": 0.007736608520939453}, {"dataset": "post-operative", "samples": 90, "features": 8, "classes": 3, "hyperparameters": {}, "nodes": 396.8, "leaves": 198.9, "depth": 50.0, "score": 0.5477777777777778, "score_std": 0.10830341467206668, "time": 0.11787487030029296, "time_std": 0.018635790491794233}, {"dataset": "seeds", "samples": 210, "features": 7, "classes": 3, "hyperparameters": {}, "nodes": 21.8, "leaves": 11.4, "depth": 6.76, "score": 0.9323809523809523, "score_std": 0.04161152814276852, "time": 0.05017918586730957, "time_std": 0.009351695826926952}, {"dataset": "statlog-australian-credit", "samples": 690, "features": 14, "classes": 2, "hyperparameters": {}, "nodes": 246.72, "leaves": 123.86, "depth": 15.16, "score": 0.5594202898550724, "score_std": 0.03782025608898519, "time": 0.4586418437957764, "time_std": 0.02155917520383023}, {"dataset": "statlog-german-credit", "samples": 1000, "features": 24, "classes": 2, "hyperparameters": {}, "nodes": 166.36, "leaves": 83.68, "depth": 11.76, "score": 0.6850999999999999, "score_std": 0.02579709285946769, "time": 0.4101365089416504, "time_std": 0.023238809047782215}, {"dataset": "statlog-heart", "samples": 270, "features": 13, "classes": 2, "hyperparameters": {}, "nodes": 42.8, "leaves": 21.9, "depth": 7.96, "score": 0.78, "score_std": 0.061154866490519384, "time": 0.08491960525512696, "time_std": 0.009679400932225267}, {"dataset": "statlog-image", "samples": 2310, "features": 18, "classes": 7, "hyperparameters": {}, "nodes": 152.0, "leaves": 76.5, "depth": 15.38, "score": 0.9548917748917749, "score_std": 0.011022906583856079, "time": 0.7529555130004882, "time_std": 0.044649975200733265}, {"dataset": "statlog-vehicle", "samples": 846, "features": 18, "classes": 4, "hyperparameters": {}, "nodes": 210.44, "leaves": 105.72, "depth": 15.82, "score": 0.7293205708318831, "score_std": 0.027854914761975855, "time": 0.5109863376617432, "time_std": 0.028175106084290594}, {"dataset": "synthetic-control", "samples": 600, "features": 60, "classes": 6, "hyperparameters": {}, "nodes": 15.04, "leaves": 8.02, "depth": 5.1, "score": 0.978, "score_std": 0.013412266359153806, "time": 0.09257647514343262, "time_std": 0.008068106679125579}, {"dataset": "tic-tac-toe", "samples": 958, "features": 9, "classes": 2, "hyperparameters": {}, "nodes": 51.48, "leaves": 26.24, "depth": 8.5, "score": 0.9449798211169285, "score_std": 0.029347280139619656, "time": 0.21451024055480958, "time_std": 0.0503618935567868}, {"dataset": "vertebral-column-2clases", "samples": 310, "features": 6, "classes": 2, "hyperparameters": {}, "nodes": 67.08, "leaves": 34.04, "depth": 12.54, "score": 0.8138709677419353, "score_std": 0.04530047675895885, "time": 0.136687536239624, "time_std": 0.013236819997014766}, {"dataset": "wine", "samples": 178, "features": 13, "classes": 3, "hyperparameters": {}, "nodes": 6.6, "leaves": 3.8, "depth": 3.5, "score": 0.964015873015873, "score_std": 0.02991152233765965, "time": 0.020083084106445312, "time_std": 0.0052261067012803935}, {"dataset": "zoo", "samples": 101, "features": 16, "classes": 7, "hyperparameters": {}, "nodes": 13.64, "leaves": 7.32, "depth": 5.22, "score": 0.9484285714285714, "score_std": 0.05254867088510787, "time": 0.02431861400604248, "time_std": 0.0021310197520596217}]} \ No newline at end of file diff --git a/src/Experiments.py b/src/Experiments.py index b8d2d5c..4f5b565 100644 --- a/src/Experiments.py +++ b/src/Experiments.py @@ -10,6 +10,9 @@ import pandas as pd from sklearn.model_selection import StratifiedKFold, KFold, cross_validate from Utils import Folders, Files from Models import Models +from stree import Stree +from wodt import Wodt +from sklearn.tree import DecisionTreeClassifier class Randomized: diff --git a/src/Models.py b/src/Models.py index 1d091eb..edb962b 100644 --- a/src/Models.py +++ b/src/Models.py @@ -1,7 +1,9 @@ +from statistics import mean from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier +from sklearn.ensemble import RandomForestClassifier, BaggingClassifier from sklearn.svm import SVC from stree import Stree -from wodt import TreeClassifier +from wodt import Wodt from odte import Odte @@ -15,11 +17,15 @@ class Models: if name == "ExtraTree": return ExtraTreeClassifier if name == "Wodt": - return TreeClassifier + return Wodt if name == "SVC": return SVC if name == "ODTE": return Odte + if name == "Bagging": + return BaggingClassifier + if name == "RandomForest": + return RandomForestClassifier msg = f"No model recognized {name}" if name in ("Stree", "stree"): msg += ", did you mean STree?" @@ -37,6 +43,21 @@ class Models: nodes = 0 leaves = result.get_n_leaves() depth = 0 + elif name=="Bagging": + if hasattr(result.base_estimator_, "nodes_leaves"): + nodes, leaves = list(zip(*[x.nodes_leaves() for x in result.estimators_])) + nodes, leaves = mean(nodes), mean(leaves) + depth = mean([x.depth_ for x in result.estimators_]) + elif hasattr(result.base_estimator_, "tree_"): + nodes = mean([x.tree_.node_count for x in result.estimators_]) + leaves = mean([x.get_n_leaves() for x in result.estimators_]) + depth = mean([x.get_depth() for x in result.estimators_]) + else: + nodes = leaves=depth=0 + elif name == "RandomForest": + leaves = mean([x.get_n_leaves() for x in result.estimators_]) + depth = mean([x.get_depth() for x in result.estimators_]) + nodes = mean([x.tree_.node_count for x in result.estimators_]) elif name == "SVC": nodes = leaves = depth = 0 else: diff --git a/src/wodt/WODT.py b/src/wodt/WODT.py deleted file mode 100644 index f20a9fa..0000000 --- a/src/wodt/WODT.py +++ /dev/null @@ -1,318 +0,0 @@ -######################## -"""import""" -import numpy as np -import random -from scipy.optimize import minimize -from sklearn.base import BaseEstimator, ClassifierMixin - - -"""global var""" -epsilonepsilon = 1e-220 -epsilon = 1e-50 - -"""class""" - - -class SplitQuestion(object): - """docstring for SplitQuestion""" - - def __init__(self, attrIDs=[0], paras=[0], threshold=0): - super(SplitQuestion, self).__init__() - self.attrIDs = attrIDs - self.paras = paras - self.threshold = threshold - - # we only consider continuous attributes for simplicity - def test_forOneInstance(self, x): - return np.dot(x[self.attrIDs], self.paras) <= self.threshold - - def test(self, X): - return np.dot(X[:, self.attrIDs], self.paras) <= self.threshold - - -class Node(object): - """docstring for RBNode""" - - def __init__(self, depth, split, sample_ids, X, Y, class_num): - super(Node, self).__init__() - self.sample_ids = sample_ids - self.split = split - self.depth = depth - self.X = X - self.Y = Y - self.class_num = class_num - self.is_leaf = False - # after grow_stump, set the node as an internal node - - def find_best_split(self, max_features="sqrt"): - feature_num = self.X.shape[1] - subset_feature_num = feature_num - if max_features == "sqrt": - subset_feature_num = int(np.sqrt(feature_num)) - if max_features == "all": - subset_feature_num = feature_num - if max_features == "log": - subset_feature_num = int(np.log2(feature_num)) - if isinstance(max_features, int): - subset_feature_num = max_features - if isinstance(max_features, float): - subset_feature_num = int(feature_num * max_features) - - # ### get random subset of features - # ### feature 0 is threshold - feature_ids = range(feature_num) - subset_feature_ids = random.sample(feature_ids, subset_feature_num) - self.split.attrIDs = subset_feature_ids - subset_feature_ids = np.array(subset_feature_ids) - - X = self.X - subFeatures_X = X[ - self.sample_ids[:, None], subset_feature_ids[None, :] - ] - Y = self.Y[self.sample_ids] - class_num = self.class_num - - # ############################## - # define func and func_gradient for optimization - def func(a): - paras = a[1:] - threshold = a[0] - p = sigmoid(np.dot(subFeatures_X, paras) - threshold) - w_R = p - w_L = 1 - w_R - w_R_sum = w_R.sum() - w_L_sum = w_L.sum() - w_R_eachClass = np.array( - [sum(w_R[Y == k]) for k in range(class_num)] - ) - w_L_eachClass = np.array( - [sum(w_L[Y == k]) for k in range(class_num)] - ) - fun = ( - w_L_sum * np.log2(w_L_sum + epsilonepsilon) - + w_R_sum * np.log2(w_R_sum + epsilonepsilon) - - np.sum( - w_R_eachClass * np.log2(w_R_eachClass + epsilonepsilon) - ) - - np.sum( - w_L_eachClass * np.log2(w_L_eachClass + epsilonepsilon) - ) - ) - # fun = w_L.sum() * compute_entropy(Y, w_L) + w_R.sum() - # * compute_entropy(Y, w_R) - return fun - - def func_gradient(a): - paras = a[1:] - threshold = a[0] - - p = sigmoid(np.dot(subFeatures_X, paras) - threshold) - w_R = p - w_L = 1 - w_R - w_R_eachClass = np.array( - [sum(w_R[Y == k]) for k in range(class_num)] - ) - w_L_eachClass = np.array( - [sum(w_L[Y == k]) for k in range(class_num)] - ) - la = np.log2( - w_L_eachClass[Y] * w_R.sum() + epsilonepsilon - ) - np.log2(w_R_eachClass[Y] * w_L.sum() + epsilonepsilon) - beta = la * p * (1 - p) - - jac = np.zeros(a.shape) - jac[0] = -np.sum(beta) - jac[1:] = np.dot(subFeatures_X.T, beta) - - return jac - - ################################################ - initial_a = np.random.rand(subset_feature_num + 1) - 0.5 - result = minimize( - func, - initial_a, - method="L-BFGS-B", - jac=func_gradient, - options={"maxiter": 10, "disp": False}, - ) - - ########################################## - self.split.paras = result.x[1:] - self.split.threshold = result.x[0] - - return 1 - - def grow_stump(self): - L_bool = self.split.test(self.X[self.sample_ids]) - L_sample_ids = self.sample_ids[L_bool] - R_sample_ids = self.sample_ids[~L_bool] - # if len(R_sample_ids) * len(L_sample_ids) == 0 : - # print('some branch is 0 sample') - LChild = Node( - self.depth + 1, - SplitQuestion(), - L_sample_ids, - self.X, - self.Y, - self.class_num, - ) - RChild = Node( - self.depth + 1, - SplitQuestion(), - R_sample_ids, - self.X, - self.Y, - self.class_num, - ) - - if len(L_sample_ids) == 0: - LChild.is_leaf = True - LChild.class_distribution = compute_class_distribution( - self.Y[self.sample_ids], self.class_num - ) - if len(R_sample_ids) == 0: - RChild.is_leaf = True - RChild.class_distribution = compute_class_distribution( - self.Y[self.sample_ids], self.class_num - ) - - self.LChild = LChild - self.RChild = RChild - - -class TreeClassifier(BaseEstimator, ClassifierMixin): - """docstring for TreeClassifier""" - - def __init__( - self, - max_depth=50, - min_samples_split=2, - max_features="all", - random_state=None, - ): - # super(TreeClassifier, self).__init__() - self.max_depth = max_depth - self.min_samples_split = min_samples_split - self.max_features = max_features - self.random_state = random_state - - def fit(self, X, Y): - self.X = X - self.Y = Y - self.classNum = self.Y.max() + 1 - self.sampleNum = self.X.shape[0] - if self.random_state is not None: - random.seed(self.random_state) - ########### - self.root_node = Node( - 1, - SplitQuestion(), - np.arange(self.sampleNum, dtype=np.uint32), - self.X, - self.Y, - self.classNum, - ) - self.leaf_num = 1 - self.tree_depth = self.bulid_subtree(self.root_node) - - def nodes_leaves(self): - def num_leaves(node): - leaves = 0 - nodes = 0 - nodes_left = 0 - nodes_right = 0 - leaves_left = 0 - leaves_right = 0 - if node.is_leaf: - leaves += 1 - else: - nodes_left, leaves_left = num_leaves(node.LChild) - nodes_right, leaves_right = num_leaves(node.RChild) - nodes = nodes_left + nodes_right + 1 - leaves += leaves_left + leaves_right - return nodes, leaves - - def compute_depth(node): - if node.is_leaf: - return node.depth - return max( - node.depth, - compute_depth(node.LChild), - compute_depth(node.RChild), - ) - - self.depth_ = compute_depth(self.root_node) - return num_leaves(self.root_node) - - def bulid_subtree(self, node): - if node.is_leaf: - return node.depth - - # stopping conditions - is_leaf = ( - node.depth >= self.max_depth - or len(node.sample_ids) < self.min_samples_split - or is_all_equal(self.Y[node.sample_ids]) - ) - - if is_leaf or node.find_best_split(self.max_features) < 0: - node.is_leaf = True - node.class_distribution = compute_class_distribution( - self.Y[node.sample_ids], self.classNum - ) - return node.depth - - node.grow_stump() - node.is_leaf = False - self.leaf_num += 1 - L_subtree_depth = self.bulid_subtree(node.LChild) - R_subtree_depth = self.bulid_subtree(node.RChild) - return max(L_subtree_depth, R_subtree_depth) - - def predict_forOneInstance(self, x): - present_node = self.root_node - while not (present_node.is_leaf): - if present_node.split.test_forOneInstance(x): - present_node = present_node.LChild - else: - present_node = present_node.RChild - return np.argmax(present_node.class_distribution) - - def predict(self, X): - m = X.shape[0] - Y_predicted = np.zeros((m,), dtype=int) - for i in range(m): - x = X[i] - Y_predicted[i] = self.predict_forOneInstance(x) - return Y_predicted - - def score( - self, X: np.array, y: np.array, sample_weight: np.array = None - ) -> float: - y_pred = self.predict(X) - return np.mean(y_pred == y) - - -#################### -"""function""" - - -def sigmoid(z): - # because that -z is too big will arise runtimeWarning in np.exp() - if isinstance(z, float) and (z < -500): - z = -500 - elif not (isinstance(z, float)): - z[z < -500] = (-500) * np.ones(sum(z < -500)) - - return 1 / (np.exp(-z) + 1) - - -def is_all_equal(x): - x_min, x_max = x.min(), x.max() - return x_min == x_max - - -def compute_class_distribution(Y, class_num): - sample_num = len(Y) - ratio_each_class = [sum(Y == k) / sample_num for k in range(class_num)] - return np.array(ratio_each_class) diff --git a/src/wodt/__init__.py b/src/wodt/__init__.py deleted file mode 100644 index 6a86cb0..0000000 --- a/src/wodt/__init__.py +++ /dev/null @@ -1,5 +0,0 @@ -from .WODT import TreeClassifier - -__all__ = [ - "TreeClassifier", -]