mirror of
https://github.com/Doctorado-ML/benchmark.git
synced 2025-08-16 16:05:54 +00:00
Add new models and repair tests
This commit is contained in:
@@ -229,7 +229,7 @@ class Datasets:
|
||||
-------
|
||||
tuple (X, y) of numpy.ndarray
|
||||
"""
|
||||
discretiz = FImdlp(algorithm=0)
|
||||
discretiz = FImdlp()
|
||||
return discretiz.fit_transform(X, y)
|
||||
|
||||
def __iter__(self) -> Diterator:
|
||||
|
@@ -240,7 +240,7 @@ class Experiment:
|
||||
cv=kfold,
|
||||
fit_params=fit_params,
|
||||
return_estimator=True,
|
||||
scoring=self.score_name,
|
||||
scoring=self.score_name.replace("-", "_"),
|
||||
)
|
||||
if np.isnan(res["test_score"]).any():
|
||||
if not self.ignore_nan:
|
||||
|
@@ -8,7 +8,7 @@ from sklearn.ensemble import (
|
||||
)
|
||||
from sklearn.svm import SVC
|
||||
from stree import Stree
|
||||
from bayesclass.clfs import TAN, KDB, AODE, KDBNew, TANNew
|
||||
from bayesclass.clfs import TAN, KDB, AODE, KDBNew, TANNew, AODENew
|
||||
from wodt import Wodt
|
||||
from odte import Odte
|
||||
from xgboost import XGBClassifier
|
||||
|
@@ -9,4 +9,5 @@ seeds=[57, 31, 1714, 17, 23, 79, 83, 97, 7, 1]
|
||||
discretize=0
|
||||
nodes=Nodes
|
||||
leaves=Leaves
|
||||
depth=Depth
|
||||
depth=Depth
|
||||
fit_features=0
|
@@ -8,4 +8,5 @@ seeds=[271, 314, 171]
|
||||
discretize=1
|
||||
nodes=Nodes
|
||||
leaves=Leaves
|
||||
depth=Depth
|
||||
depth=Depth
|
||||
fit_features=1
|
@@ -9,4 +9,5 @@ seeds=[57, 31, 1714, 17, 23, 79, 83, 97, 7, 1]
|
||||
discretize=0
|
||||
nodes=Nodes
|
||||
leaves=Leaves
|
||||
depth=Depth
|
||||
depth=Depth
|
||||
fit_features=0
|
@@ -9,4 +9,5 @@ seeds=[57, 31, 1714, 17, 23, 79, 83, 97, 7, 1]
|
||||
discretize=0
|
||||
nodes=Nodes
|
||||
leaves=Leaves
|
||||
depth=Depth
|
||||
depth=Depth
|
||||
fit_features=0
|
@@ -143,9 +143,9 @@ class ExperimentTest(TestBase):
|
||||
expected = {
|
||||
"state_names": {
|
||||
"sepallength": [0, 1, 2],
|
||||
"sepalwidth": [0, 1, 3, 4],
|
||||
"sepalwidth": [0, 1, 2, 3, 4, 5],
|
||||
"petallength": [0, 1, 2, 3],
|
||||
"petalwidth": [0, 1, 2, 3],
|
||||
"petalwidth": [0, 1, 2],
|
||||
},
|
||||
"features": [
|
||||
"sepallength",
|
||||
@@ -161,6 +161,9 @@ class ExperimentTest(TestBase):
|
||||
self.assertEqual(computed["state_names"][key], value)
|
||||
for feature in expected["features"]:
|
||||
self.assertIn(feature, computed["features"])
|
||||
# Ask for states of a dataset that does not exist
|
||||
computed = exp._build_fit_params("not_existing")
|
||||
self.assertTrue("states" not in computed)
|
||||
|
||||
@patch("sys.stdout", new_callable=StringIO)
|
||||
def test_experiment_with_nan_not_ignored(self, mock_output):
|
||||
|
@@ -183,6 +183,7 @@ class UtilTest(TestBase):
|
||||
"nodes": "Nodes",
|
||||
"leaves": "Leaves",
|
||||
"depth": "Depth",
|
||||
"fit_features": "0",
|
||||
}
|
||||
computed = EnvData().load()
|
||||
self.assertDictEqual(computed, expected)
|
||||
|
@@ -1,59 +1 @@
|
||||
{
|
||||
"score_name": "accuracy",
|
||||
"title": "Gridsearched hyperparams v022.1b random_init",
|
||||
"model": "ODTE",
|
||||
"version": "0.3.2",
|
||||
"language_version": "3.11x",
|
||||
"language": "Python",
|
||||
"stratified": false,
|
||||
"folds": 5,
|
||||
"date": "2022-04-20",
|
||||
"time": "10:52:20",
|
||||
"duration": 22591.471411943436,
|
||||
"seeds": [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1],
|
||||
"platform": "Galgo",
|
||||
"results": [
|
||||
{
|
||||
"dataset": "balance-scale",
|
||||
"samples": 625,
|
||||
"features": 4,
|
||||
"classes": 3,
|
||||
"hyperparameters": {
|
||||
"base_estimator__C": 57,
|
||||
"base_estimator__gamma": 0.1,
|
||||
"base_estimator__kernel": "rbf",
|
||||
"base_estimator__multiclass_strategy": "ovr",
|
||||
"n_estimators": 100,
|
||||
"n_jobs": -1
|
||||
},
|
||||
"nodes": 7.361199999999999,
|
||||
"leaves": 4.180599999999999,
|
||||
"depth": 3.536,
|
||||
"score": 0.96352,
|
||||
"score_std": 0.024949741481626608,
|
||||
"time": 0.31663217544555666,
|
||||
"time_std": 0.19918813895255585
|
||||
},
|
||||
{
|
||||
"dataset": "balloons",
|
||||
"samples": 16,
|
||||
"features": 4,
|
||||
"classes": 2,
|
||||
"hyperparameters": {
|
||||
"base_estimator__C": 5,
|
||||
"base_estimator__gamma": 0.14,
|
||||
"base_estimator__kernel": "rbf",
|
||||
"base_estimator__multiclass_strategy": "ovr",
|
||||
"n_estimators": 100,
|
||||
"n_jobs": -1
|
||||
},
|
||||
"nodes": 2.9951999999999996,
|
||||
"leaves": 1.9975999999999998,
|
||||
"depth": 1.9975999999999998,
|
||||
"score": 0.785,
|
||||
"score_std": 0.2461311755051675,
|
||||
"time": 0.11560620784759522,
|
||||
"time_std": 0.012784241828599895
|
||||
}
|
||||
]
|
||||
}
|
||||
{"score_name": "accuracy", "title": "Gridsearched hyperparams v022.1b random_init", "model": "ODTE", "version": "0.3.2", "language_version": "3.11x", "language": "Python", "stratified": false, "folds": 5, "date": "2022-04-20", "time": "10:52:20", "duration": 22591.471411943436, "seeds": [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1], "platform": "Galgo", "results": [{"dataset": "balance-scale", "samples": 625, "features": 4, "classes": 3, "hyperparameters": {"base_estimator__C": 57, "base_estimator__gamma": 0.1, "base_estimator__kernel": "rbf", "base_estimator__multiclass_strategy": "ovr", "n_estimators": 100, "n_jobs": -1}, "nodes": 7.361199999999999, "leaves": 4.180599999999999, "depth": 3.536, "score": 0.96352, "score_std": 0.024949741481626608, "time": 0.31663217544555666, "time_std": 0.19918813895255585}, {"dataset": "balloons", "samples": 16, "features": 4, "classes": 2, "hyperparameters": {"base_estimator__C": 5, "base_estimator__gamma": 0.14, "base_estimator__kernel": "rbf", "base_estimator__multiclass_strategy": "ovr", "n_estimators": 100, "n_jobs": -1}, "nodes": 2.9951999999999996, "leaves": 1.9975999999999998, "depth": 1.9975999999999998, "score": 0.785, "score_std": 0.2461311755051675, "time": 0.11560620784759522, "time_std": 0.012784241828599895}], "discretized": false}
|
@@ -1,45 +1 @@
|
||||
{
|
||||
"score_name": "accuracy",
|
||||
"title": "Test default paramters with RandomForest",
|
||||
"model": "RandomForest",
|
||||
"version": "-",
|
||||
"language_version": "3.11x",
|
||||
"language": "Python",
|
||||
"stratified": false,
|
||||
"folds": 5,
|
||||
"date": "2022-01-14",
|
||||
"time": "12:39:30",
|
||||
"duration": 272.7363500595093,
|
||||
"seeds": [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1],
|
||||
"platform": "iMac27",
|
||||
"results": [
|
||||
{
|
||||
"dataset": "balance-scale",
|
||||
"samples": 625,
|
||||
"features": 4,
|
||||
"classes": 3,
|
||||
"hyperparameters": {},
|
||||
"nodes": 196.91440000000003,
|
||||
"leaves": 98.42,
|
||||
"depth": 10.681399999999998,
|
||||
"score": 0.83616,
|
||||
"score_std": 0.02649630917694009,
|
||||
"time": 0.08222018241882324,
|
||||
"time_std": 0.0013026326815120633
|
||||
},
|
||||
{
|
||||
"dataset": "balloons",
|
||||
"samples": 16,
|
||||
"features": 4,
|
||||
"classes": 2,
|
||||
"hyperparameters": {},
|
||||
"nodes": 9.110800000000001,
|
||||
"leaves": 4.58,
|
||||
"depth": 3.0982,
|
||||
"score": 0.625,
|
||||
"score_std": 0.24958298553119898,
|
||||
"time": 0.07016648769378662,
|
||||
"time_std": 0.002460508923990468
|
||||
}
|
||||
]
|
||||
}
|
||||
{"score_name": "accuracy", "title": "Test default paramters with RandomForest", "model": "RandomForest", "version": "-", "language_version": "3.11x", "language": "Python", "stratified": false, "folds": 5, "date": "2022-01-14", "time": "12:39:30", "duration": 272.7363500595093, "seeds": [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1], "platform": "iMac27", "results": [{"dataset": "balance-scale", "samples": 625, "features": 4, "classes": 3, "hyperparameters": {}, "nodes": 196.91440000000003, "leaves": 98.42, "depth": 10.681399999999998, "score": 0.83616, "score_std": 0.02649630917694009, "time": 0.08222018241882324, "time_std": 0.0013026326815120633}, {"dataset": "balloons", "samples": 16, "features": 4, "classes": 2, "hyperparameters": {}, "nodes": 9.110800000000001, "leaves": 4.58, "depth": 3.0982, "score": 0.625, "score_std": 0.24958298553119898, "time": 0.07016648769378662, "time_std": 0.002460508923990468}], "discretized": false}
|
@@ -1,57 +1 @@
|
||||
{
|
||||
"score_name": "accuracy",
|
||||
"model": "STree",
|
||||
"stratified": false,
|
||||
"folds": 5,
|
||||
"language_version": "3.11x",
|
||||
"language": "Python",
|
||||
"date": "2021-09-30",
|
||||
"time": "11:42:07",
|
||||
"duration": 624.2505249977112,
|
||||
"seeds": [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1],
|
||||
"platform": "iMac27",
|
||||
"results": [
|
||||
{
|
||||
"dataset": "balance-scale",
|
||||
"samples": 625,
|
||||
"features": 4,
|
||||
"classes": 3,
|
||||
"hyperparameters": {
|
||||
"C": 10000,
|
||||
"gamma": 0.1,
|
||||
"kernel": "rbf",
|
||||
"max_iter": 10000,
|
||||
"multiclass_strategy": "ovr"
|
||||
},
|
||||
"nodes": 7.0,
|
||||
"leaves": 4.0,
|
||||
"depth": 3.0,
|
||||
"score": 0.97056,
|
||||
"score_std": 0.015046806970251203,
|
||||
"time": 0.01404867172241211,
|
||||
"time_std": 0.002026269126958884
|
||||
},
|
||||
{
|
||||
"dataset": "balloons",
|
||||
"samples": 16,
|
||||
"features": 4,
|
||||
"classes": 2,
|
||||
"hyperparameters": {
|
||||
"C": 7,
|
||||
"gamma": 0.1,
|
||||
"kernel": "rbf",
|
||||
"max_iter": 10000,
|
||||
"multiclass_strategy": "ovr"
|
||||
},
|
||||
"nodes": 3.0,
|
||||
"leaves": 2.0,
|
||||
"depth": 2.0,
|
||||
"score": 0.86,
|
||||
"score_std": 0.28501461950807594,
|
||||
"time": 0.0008541679382324218,
|
||||
"time_std": 3.629469326417878e-5
|
||||
}
|
||||
],
|
||||
"title": "With gridsearched hyperparameters",
|
||||
"version": "1.2.3"
|
||||
}
|
||||
{"score_name": "accuracy", "model": "STree", "stratified": false, "folds": 5, "language_version": "3.11x", "language": "Python", "date": "2021-09-30", "time": "11:42:07", "duration": 624.2505249977112, "seeds": [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1], "platform": "iMac27", "results": [{"dataset": "balance-scale", "samples": 625, "features": 4, "classes": 3, "hyperparameters": {"C": 10000, "gamma": 0.1, "kernel": "rbf", "max_iter": 10000, "multiclass_strategy": "ovr"}, "nodes": 7.0, "leaves": 4.0, "depth": 3.0, "score": 0.97056, "score_std": 0.015046806970251203, "time": 0.01404867172241211, "time_std": 0.002026269126958884}, {"dataset": "balloons", "samples": 16, "features": 4, "classes": 2, "hyperparameters": {"C": 7, "gamma": 0.1, "kernel": "rbf", "max_iter": 10000, "multiclass_strategy": "ovr"}, "nodes": 3.0, "leaves": 2.0, "depth": 2.0, "score": 0.86, "score_std": 0.28501461950807594, "time": 0.0008541679382324218, "time_std": 3.629469326417878e-05}], "title": "With gridsearched hyperparameters", "version": "1.2.3", "discretized": false}
|
@@ -1,51 +1 @@
|
||||
{
|
||||
"score_name": "accuracy",
|
||||
"model": "STree",
|
||||
"language": "Python",
|
||||
"language_version": "3.11x",
|
||||
"stratified": false,
|
||||
"folds": 5,
|
||||
"date": "2021-10-27",
|
||||
"time": "09:40:40",
|
||||
"duration": 3395.009148836136,
|
||||
"seeds": [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1],
|
||||
"platform": "iMac27",
|
||||
"results": [
|
||||
{
|
||||
"dataset": "balance-scale",
|
||||
"samples": 625,
|
||||
"features": 4,
|
||||
"classes": 3,
|
||||
"hyperparameters": {
|
||||
"splitter": "best",
|
||||
"max_features": "auto"
|
||||
},
|
||||
"nodes": 11.08,
|
||||
"leaves": 5.9,
|
||||
"depth": 5.9,
|
||||
"score": 0.98,
|
||||
"score_std": 0.001,
|
||||
"time": 0.28520655155181884,
|
||||
"time_std": 0.06031593282605064
|
||||
},
|
||||
{
|
||||
"dataset": "balloons",
|
||||
"samples": 16,
|
||||
"features": 4,
|
||||
"classes": 2,
|
||||
"hyperparameters": {
|
||||
"splitter": "best",
|
||||
"max_features": "auto"
|
||||
},
|
||||
"nodes": 4.12,
|
||||
"leaves": 2.56,
|
||||
"depth": 2.56,
|
||||
"score": 0.695,
|
||||
"score_std": 0.2756860130252853,
|
||||
"time": 0.021201000213623047,
|
||||
"time_std": 0.003526023309468471
|
||||
}
|
||||
],
|
||||
"title": "default A",
|
||||
"version": "1.2.3"
|
||||
}
|
||||
{"score_name": "accuracy", "model": "STree", "language": "Python", "language_version": "3.11x", "stratified": false, "folds": 5, "date": "2021-10-27", "time": "09:40:40", "duration": 3395.009148836136, "seeds": [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1], "platform": "iMac27", "results": [{"dataset": "balance-scale", "samples": 625, "features": 4, "classes": 3, "hyperparameters": {"splitter": "best", "max_features": "auto"}, "nodes": 11.08, "leaves": 5.9, "depth": 5.9, "score": 0.98, "score_std": 0.001, "time": 0.28520655155181884, "time_std": 0.06031593282605064}, {"dataset": "balloons", "samples": 16, "features": 4, "classes": 2, "hyperparameters": {"splitter": "best", "max_features": "auto"}, "nodes": 4.12, "leaves": 2.56, "depth": 2.56, "score": 0.695, "score_std": 0.2756860130252853, "time": 0.021201000213623047, "time_std": 0.003526023309468471}], "title": "default A", "version": "1.2.3", "discretized": false}
|
@@ -1,51 +1 @@
|
||||
{
|
||||
"score_name": "accuracy",
|
||||
"model": "STree",
|
||||
"language_version": "3.11x",
|
||||
"language": "Python",
|
||||
"stratified": false,
|
||||
"folds": 5,
|
||||
"date": "2021-11-01",
|
||||
"time": "19:17:07",
|
||||
"duration": 4115.042420864105,
|
||||
"seeds": [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1],
|
||||
"platform": "macbook-pro",
|
||||
"results": [
|
||||
{
|
||||
"dataset": "balance-scale",
|
||||
"samples": 625,
|
||||
"features": 4,
|
||||
"classes": 3,
|
||||
"hyperparameters": {
|
||||
"max_features": "auto",
|
||||
"splitter": "mutual"
|
||||
},
|
||||
"nodes": 18.78,
|
||||
"leaves": 9.88,
|
||||
"depth": 5.9,
|
||||
"score": 0.97,
|
||||
"score_std": 0.002,
|
||||
"time": 0.23330417156219482,
|
||||
"time_std": 0.048087665954193885
|
||||
},
|
||||
{
|
||||
"dataset": "balloons",
|
||||
"samples": 16,
|
||||
"features": 4,
|
||||
"classes": 2,
|
||||
"hyperparameters": {
|
||||
"max_features": "auto",
|
||||
"splitter": "mutual"
|
||||
},
|
||||
"nodes": 4.72,
|
||||
"leaves": 2.86,
|
||||
"depth": 2.78,
|
||||
"score": 0.5566666666666668,
|
||||
"score_std": 0.2941277122460771,
|
||||
"time": 0.021352062225341795,
|
||||
"time_std": 0.005808742398555902
|
||||
}
|
||||
],
|
||||
"title": "default B",
|
||||
"version": "1.2.3"
|
||||
}
|
||||
{"score_name": "accuracy", "model": "STree", "language_version": "3.11x", "language": "Python", "stratified": false, "folds": 5, "date": "2021-11-01", "time": "19:17:07", "duration": 4115.042420864105, "seeds": [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1], "platform": "macbook-pro", "results": [{"dataset": "balance-scale", "samples": 625, "features": 4, "classes": 3, "hyperparameters": {"max_features": "auto", "splitter": "mutual"}, "nodes": 18.78, "leaves": 9.88, "depth": 5.9, "score": 0.97, "score_std": 0.002, "time": 0.23330417156219482, "time_std": 0.048087665954193885}, {"dataset": "balloons", "samples": 16, "features": 4, "classes": 2, "hyperparameters": {"max_features": "auto", "splitter": "mutual"}, "nodes": 4.72, "leaves": 2.86, "depth": 2.78, "score": 0.5566666666666668, "score_std": 0.2941277122460771, "time": 0.021352062225341795, "time_std": 0.005808742398555902}], "title": "default B", "version": "1.2.3", "discretized": false}
|
@@ -6,7 +6,7 @@
|
||||
[94m*************************************************************************************************************************
|
||||
[94m* STree ver. 1.2.3 Python ver. 3.11x with 5 Folds cross validation and 10 random seeds. 2021-11-01 19:17:07 *
|
||||
[94m* default B *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False Discretized: False *
|
||||
[94m* Execution took 4115.04 seconds, 1.14 hours, on macbook-pro *
|
||||
[94m* Score is accuracy *
|
||||
[94m*************************************************************************************************************************
|
||||
|
@@ -1,7 +1,7 @@
|
||||
[94m*************************************************************************************************************************
|
||||
[94m* STree ver. 1.2.4 Python ver. 3.11x with 5 Folds cross validation and 10 random seeds. 2022-05-09 00:15:25 *
|
||||
[94m* test *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False Discretized: False *
|
||||
[94m* Execution took 0.80 seconds, 0.00 hours, on iMac27 *
|
||||
[94m* Score is accuracy *
|
||||
[94m*************************************************************************************************************************
|
||||
|
@@ -1,7 +1,7 @@
|
||||
[94m*************************************************************************************************************************
|
||||
[94m* STree ver. 1.2.4 Python ver. 3.11x with 5 Folds cross validation and 10 random seeds. 2022-05-08 20:14:43 *
|
||||
[94m* test *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False Discretized: False *
|
||||
[94m* Execution took 0.48 seconds, 0.00 hours, on iMac27 *
|
||||
[94m* Score is accuracy *
|
||||
[94m*************************************************************************************************************************
|
||||
|
@@ -1,7 +1,7 @@
|
||||
[94m*************************************************************************************************************************
|
||||
[94m* STree ver. 1.2.4 Python ver. 3.11x with 5 Folds cross validation and 10 random seeds. 2022-05-08 19:38:28 *
|
||||
[94m* Test with only one dataset *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False Discretized: False *
|
||||
[94m* Execution took 0.06 seconds, 0.00 hours, on iMac27 *
|
||||
[94m* Score is accuracy *
|
||||
[94m*************************************************************************************************************************
|
||||
|
@@ -1,7 +1,7 @@
|
||||
[94m*************************************************************************************************************************
|
||||
[94m* STree ver. 1.2.4 Python ver. 3.11x with 5 Folds cross validation and 10 random seeds. 2022-05-09 00:21:06 *
|
||||
[94m* test *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False Discretized: False *
|
||||
[94m* Execution took 0.89 seconds, 0.00 hours, on iMac27 *
|
||||
[94m* Score is accuracy *
|
||||
[94m*************************************************************************************************************************
|
||||
|
@@ -1,7 +1,7 @@
|
||||
[94m*************************************************************************************************************************
|
||||
[94m* STree ver. 1.2.3 Python ver. 3.11x with 5 Folds cross validation and 10 random seeds. 2021-09-30 11:42:07 *
|
||||
[94m* With gridsearched hyperparameters *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False Discretized: False *
|
||||
[94m* Execution took 624.25 seconds, 0.17 hours, on iMac27 *
|
||||
[94m* Score is accuracy *
|
||||
[94m*************************************************************************************************************************
|
||||
|
@@ -1,7 +1,7 @@
|
||||
[94m*************************************************************************************************************************
|
||||
[94m* STree ver. 1.2.3 Python ver. 3.11x with 5 Folds cross validation and 10 random seeds. 2021-09-30 11:42:07 *
|
||||
[94m* With gridsearched hyperparameters *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False *
|
||||
[94m* Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1] Stratified: False Discretized: False *
|
||||
[94m* Execution took 624.25 seconds, 0.17 hours, on iMac27 *
|
||||
[94m* Score is accuracy *
|
||||
[94m*************************************************************************************************************************
|
||||
|
Reference in New Issue
Block a user