mirror of
https://github.com/Doctorado-ML/benchmark.git
synced 2025-08-16 07:55:54 +00:00
Fix tests
This commit is contained in:
120
benchmark/Manager.py
Normal file
120
benchmark/Manager.py
Normal file
@@ -0,0 +1,120 @@
|
||||
import os
|
||||
from types import SimpleNamespace
|
||||
|
||||
import xlsxwriter
|
||||
|
||||
from benchmark.Results import Report
|
||||
from benchmark.ResultsFiles import Excel
|
||||
from benchmark.Utils import Files, Folders, TextColor
|
||||
|
||||
|
||||
def get_input(message="", is_test=False):
|
||||
return "test" if is_test else input(message)
|
||||
|
||||
|
||||
class Manage:
|
||||
def __init__(self, summary):
|
||||
self.summary = summary
|
||||
|
||||
def manage_results(self):
|
||||
"""Manage results showed in the summary
|
||||
return True if excel file is created False otherwise
|
||||
"""
|
||||
|
||||
def process_file(num, command, path):
|
||||
num = int(num)
|
||||
name = self.summary.data_filtered[num]["file"]
|
||||
file_name_result = os.path.join(path, name)
|
||||
verb1, verb2 = (
|
||||
("delete", "Deleting")
|
||||
if command == cmd.delete
|
||||
else (
|
||||
"hide",
|
||||
"Hiding",
|
||||
)
|
||||
)
|
||||
conf_message = (
|
||||
TextColor.RED
|
||||
+ f"Are you sure to {verb1} {file_name_result} (y/n)? "
|
||||
)
|
||||
confirm = get_input(message=conf_message)
|
||||
if confirm == "y":
|
||||
print(TextColor.YELLOW + f"{verb2} {file_name_result}")
|
||||
if command == cmd.delete:
|
||||
os.unlink(file_name_result)
|
||||
else:
|
||||
os.rename(
|
||||
os.path.join(Folders.results, name),
|
||||
os.path.join(Folders.hidden_results, name),
|
||||
)
|
||||
self.summary.data_filtered.pop(num)
|
||||
get_input(message="Press enter to continue")
|
||||
self.summary.list_results()
|
||||
|
||||
cmd = SimpleNamespace(
|
||||
quit="q", relist="r", delete="d", hide="h", excel="e"
|
||||
)
|
||||
message = (
|
||||
TextColor.ENDC
|
||||
+ f"Choose option {str(cmd).replace('namespace', '')}: "
|
||||
)
|
||||
path = (
|
||||
Folders.hidden_results if self.summary.hidden else Folders.results
|
||||
)
|
||||
book = None
|
||||
max_value = len(self.summary.data_filtered)
|
||||
while True:
|
||||
match get_input(message=message).split():
|
||||
case [cmd.relist]:
|
||||
self.summary.list_results()
|
||||
case [cmd.quit]:
|
||||
if book is not None:
|
||||
book.close()
|
||||
return True
|
||||
return False
|
||||
case [cmd.hide, num] if num.isdigit() and int(num) < max_value:
|
||||
if self.summary.hidden:
|
||||
print("Already hidden")
|
||||
else:
|
||||
process_file(num, path=path, command=cmd.hide)
|
||||
case [cmd.delete, num] if num.isdigit() and int(
|
||||
num
|
||||
) < max_value:
|
||||
process_file(num=num, path=path, command=cmd.delete)
|
||||
case [cmd.excel, num] if num.isdigit() and int(
|
||||
num
|
||||
) < max_value:
|
||||
# Add to excel file result #num
|
||||
num = int(num)
|
||||
file_name_result = os.path.join(
|
||||
path, self.summary.data_filtered[num]["file"]
|
||||
)
|
||||
if book is None:
|
||||
file_name = os.path.join(
|
||||
Folders.excel, Files.be_list_excel
|
||||
)
|
||||
book = xlsxwriter.Workbook(
|
||||
file_name, {"nan_inf_to_errors": True}
|
||||
)
|
||||
excel = Excel(
|
||||
file_name=file_name_result,
|
||||
book=book,
|
||||
compare=self.summary.compare,
|
||||
)
|
||||
excel.report()
|
||||
print(f"Added {file_name_result} to {Files.be_list_excel}")
|
||||
case [num] if num.isdigit() and int(num) < max_value:
|
||||
# Report the result #num
|
||||
num = int(num)
|
||||
file_name_result = os.path.join(
|
||||
path, self.summary.data_filtered[num]["file"]
|
||||
)
|
||||
try:
|
||||
rep = Report(
|
||||
file_name_result, compare=self.summary.compare
|
||||
)
|
||||
rep.report()
|
||||
except ValueError as e:
|
||||
print(e)
|
||||
case _:
|
||||
print("Invalid option. Try again!")
|
@@ -1,14 +1,6 @@
|
||||
import math
|
||||
import os
|
||||
from operator import itemgetter
|
||||
from types import SimpleNamespace
|
||||
|
||||
import xlsxwriter
|
||||
|
||||
from .Datasets import Datasets
|
||||
from .ResultsBase import BaseReport, StubReport, get_input
|
||||
from .ResultsFiles import Excel
|
||||
from .Utils import NO_RESULTS, Files, Folders, TextColor
|
||||
from .ResultsBase import BaseReport, StubReport, Summary
|
||||
from .Utils import Files, Folders, TextColor
|
||||
|
||||
|
||||
class Report(BaseReport):
|
||||
@@ -189,375 +181,6 @@ class ReportBest(BaseReport):
|
||||
self.header_line("*")
|
||||
|
||||
|
||||
class Summary:
|
||||
def __init__(self, hidden=False, compare=False) -> None:
|
||||
self.results = Files().get_all_results(hidden=hidden)
|
||||
self.data = []
|
||||
self.data_filtered = []
|
||||
self.datasets = {}
|
||||
self.models = set()
|
||||
self.hidden = hidden
|
||||
self.compare = compare
|
||||
|
||||
def get_models(self):
|
||||
return sorted(self.models)
|
||||
|
||||
def acquire(self, given_score="any") -> None:
|
||||
"""Get all results"""
|
||||
for result in self.results:
|
||||
(
|
||||
score,
|
||||
model,
|
||||
platform,
|
||||
date,
|
||||
time,
|
||||
stratified,
|
||||
) = Files().split_file_name(result)
|
||||
if given_score in ("any", score):
|
||||
self.models.add(model)
|
||||
report = StubReport(
|
||||
os.path.join(
|
||||
Folders.hidden_results
|
||||
if self.hidden
|
||||
else Folders.results,
|
||||
result,
|
||||
)
|
||||
)
|
||||
report.report()
|
||||
entry = dict(
|
||||
score=score,
|
||||
model=model,
|
||||
title=report.title,
|
||||
platform=platform,
|
||||
date=date,
|
||||
time=time,
|
||||
stratified=stratified,
|
||||
file=result,
|
||||
metric=report.score,
|
||||
duration=report.duration,
|
||||
)
|
||||
self.datasets[result] = report.lines
|
||||
self.data.append(entry)
|
||||
|
||||
def get_results_criteria(
|
||||
self, score, model, input_data, sort_key, number, nan=False
|
||||
):
|
||||
data = self.data.copy() if input_data is None else input_data
|
||||
if score:
|
||||
data = [x for x in data if x["score"] == score]
|
||||
if model:
|
||||
data = [x for x in data if x["model"] == model]
|
||||
if nan:
|
||||
data = [x for x in data if x["metric"] != x["metric"]]
|
||||
keys = (
|
||||
itemgetter(sort_key, "time")
|
||||
if sort_key == "date"
|
||||
else itemgetter(sort_key, "date", "time")
|
||||
)
|
||||
data = sorted(data, key=keys, reverse=True)
|
||||
if number > 0:
|
||||
data = data[:number]
|
||||
return data
|
||||
|
||||
def list_results(
|
||||
self,
|
||||
score=None,
|
||||
model=None,
|
||||
input_data=None,
|
||||
sort_key="date",
|
||||
number=0,
|
||||
nan=False,
|
||||
) -> None:
|
||||
"""Print the list of results"""
|
||||
if self.data_filtered == []:
|
||||
self.data_filtered = self.get_results_criteria(
|
||||
score, model, input_data, sort_key, number, nan=nan
|
||||
)
|
||||
if self.data_filtered == []:
|
||||
raise ValueError(NO_RESULTS)
|
||||
max_file = max(len(x["file"]) for x in self.data_filtered)
|
||||
max_title = max(len(x["title"]) for x in self.data_filtered)
|
||||
if self.hidden:
|
||||
color1 = TextColor.GREEN
|
||||
color2 = TextColor.YELLOW
|
||||
else:
|
||||
color1 = TextColor.LINE1
|
||||
color2 = TextColor.LINE2
|
||||
print(color1, end="")
|
||||
print(
|
||||
f" # {'Date':10s} {'File':{max_file}s} {'Score':8s} "
|
||||
f"{'Time(h)':7s} {'Title':s}"
|
||||
)
|
||||
print(
|
||||
"===",
|
||||
"=" * 10
|
||||
+ " "
|
||||
+ "=" * max_file
|
||||
+ " "
|
||||
+ "=" * 8
|
||||
+ " "
|
||||
+ "=" * 7
|
||||
+ " "
|
||||
+ "=" * max_title,
|
||||
)
|
||||
print(
|
||||
"\n".join(
|
||||
[
|
||||
(color2 if n % 2 == 0 else color1) + f"{n:3d} "
|
||||
f"{x['date']} {x['file']:{max_file}s} "
|
||||
f"{x['metric']:8.5f} "
|
||||
f"{x['duration']/3600:7.3f} "
|
||||
f"{x['title']}"
|
||||
for n, x in enumerate(self.data_filtered)
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
def manage_results(self):
|
||||
"""Manage results showed in the summary
|
||||
return True if excel file is created False otherwise
|
||||
"""
|
||||
|
||||
def process_file(num, command, path):
|
||||
num = int(num)
|
||||
name = self.data_filtered[num]["file"]
|
||||
file_name_result = os.path.join(path, name)
|
||||
verb1, verb2 = (
|
||||
("delete", "Deleting")
|
||||
if command == cmd.delete
|
||||
else (
|
||||
"hide",
|
||||
"Hiding",
|
||||
)
|
||||
)
|
||||
conf_message = (
|
||||
TextColor.RED
|
||||
+ f"Are you sure to {verb1} {file_name_result} (y/n)? "
|
||||
)
|
||||
confirm = get_input(message=conf_message)
|
||||
if confirm == "y":
|
||||
print(TextColor.YELLOW + f"{verb2} {file_name_result}")
|
||||
if command == cmd.delete:
|
||||
os.unlink(file_name_result)
|
||||
else:
|
||||
os.rename(
|
||||
os.path.join(Folders.results, name),
|
||||
os.path.join(Folders.hidden_results, name),
|
||||
)
|
||||
self.data_filtered.pop(num)
|
||||
get_input(message="Press enter to continue")
|
||||
self.list_results()
|
||||
|
||||
cmd = SimpleNamespace(
|
||||
quit="q", relist="r", delete="d", hide="h", excel="e"
|
||||
)
|
||||
message = (
|
||||
TextColor.ENDC
|
||||
+ f"Choose option {str(cmd).replace('namespace', '')}: "
|
||||
)
|
||||
path = Folders.hidden_results if self.hidden else Folders.results
|
||||
book = None
|
||||
max_value = len(self.data_filtered)
|
||||
while True:
|
||||
match get_input(message=message).split():
|
||||
case [cmd.relist]:
|
||||
self.list_results()
|
||||
case [cmd.quit]:
|
||||
if book is not None:
|
||||
book.close()
|
||||
return True
|
||||
return False
|
||||
case [cmd.hide, num] if num.isdigit() and int(num) < max_value:
|
||||
if self.hidden:
|
||||
print("Already hidden")
|
||||
else:
|
||||
process_file(num, path=path, command=cmd.hide)
|
||||
case [cmd.delete, num] if num.isdigit() and int(
|
||||
num
|
||||
) < max_value:
|
||||
process_file(num=num, path=path, command=cmd.delete)
|
||||
case [cmd.excel, num] if num.isdigit() and int(
|
||||
num
|
||||
) < max_value:
|
||||
# Add to excel file result #num
|
||||
num = int(num)
|
||||
file_name_result = os.path.join(
|
||||
path, self.data_filtered[num]["file"]
|
||||
)
|
||||
if book is None:
|
||||
file_name = os.path.join(
|
||||
Folders.excel, Files.be_list_excel
|
||||
)
|
||||
book = xlsxwriter.Workbook(
|
||||
file_name, {"nan_inf_to_errors": True}
|
||||
)
|
||||
excel = Excel(
|
||||
file_name=file_name_result,
|
||||
book=book,
|
||||
compare=self.compare,
|
||||
)
|
||||
excel.report()
|
||||
print(f"Added {file_name_result} to {Files.be_list_excel}")
|
||||
case [num] if num.isdigit() and int(num) < max_value:
|
||||
# Report the result #num
|
||||
num = int(num)
|
||||
file_name_result = os.path.join(
|
||||
path, self.data_filtered[num]["file"]
|
||||
)
|
||||
try:
|
||||
rep = Report(file_name_result, compare=self.compare)
|
||||
rep.report()
|
||||
except ValueError as e:
|
||||
print(e)
|
||||
case _:
|
||||
print("Invalid option. Try again!")
|
||||
|
||||
def show_result(self, data: dict, title: str = "") -> None:
|
||||
def whites(n: int) -> str:
|
||||
return " " * n + color1 + "*"
|
||||
|
||||
if data == {}:
|
||||
print(f"** {title} has No data **")
|
||||
return
|
||||
color1 = TextColor.CYAN
|
||||
color2 = TextColor.YELLOW
|
||||
file_name = data["file"]
|
||||
metric = data["metric"]
|
||||
result = StubReport(os.path.join(Folders.results, file_name))
|
||||
length = 81
|
||||
print(color1 + "*" * length)
|
||||
if title != "":
|
||||
print(
|
||||
"*"
|
||||
+ color2
|
||||
+ TextColor.BOLD
|
||||
+ f"{title:^{length - 2}s}"
|
||||
+ TextColor.ENDC
|
||||
+ color1
|
||||
+ "*"
|
||||
)
|
||||
print("*" + "-" * (length - 2) + "*")
|
||||
print("*" + whites(length - 2))
|
||||
print(
|
||||
"* "
|
||||
+ color2
|
||||
+ f"{result.data['title']:^{length - 4}}"
|
||||
+ color1
|
||||
+ " *"
|
||||
)
|
||||
print("*" + whites(length - 2))
|
||||
print(
|
||||
"* Model: "
|
||||
+ color2
|
||||
+ f"{result.data['model']:15s} "
|
||||
+ color1
|
||||
+ "Ver. "
|
||||
+ color2
|
||||
+ f"{result.data['version']:10s} "
|
||||
+ color1
|
||||
+ "Score: "
|
||||
+ color2
|
||||
+ f"{result.data['score_name']:10s} "
|
||||
+ color1
|
||||
+ "Metric: "
|
||||
+ color2
|
||||
+ f"{metric:10.7f}"
|
||||
+ whites(length - 78)
|
||||
)
|
||||
print(color1 + "*" + whites(length - 2))
|
||||
print(
|
||||
"* Date : "
|
||||
+ color2
|
||||
+ f"{result.data['date']:15s}"
|
||||
+ color1
|
||||
+ " Time: "
|
||||
+ color2
|
||||
+ f"{result.data['time']:18s} "
|
||||
+ color1
|
||||
+ "Time Spent: "
|
||||
+ color2
|
||||
+ f"{result.data['duration']:9,.2f}"
|
||||
+ color1
|
||||
+ " secs."
|
||||
+ whites(length - 78)
|
||||
)
|
||||
seeds = str(result.data["seeds"])
|
||||
seeds_len = len(seeds)
|
||||
print(
|
||||
"* Seeds: "
|
||||
+ color2
|
||||
+ f"{seeds:{seeds_len}s} "
|
||||
+ color1
|
||||
+ "Platform: "
|
||||
+ color2
|
||||
+ f"{result.data['platform']:17s} "
|
||||
+ whites(length - 79)
|
||||
)
|
||||
print(
|
||||
"* Stratified: "
|
||||
+ color2
|
||||
+ f"{str(result.data['stratified']):15s}"
|
||||
+ whites(length - 30)
|
||||
)
|
||||
print("* " + color2 + f"{file_name:60s}" + whites(length - 63))
|
||||
print(color1 + "*" + whites(length - 2))
|
||||
print(color1 + "*" * length)
|
||||
|
||||
def best_results(self, criterion=None, value=None, score="accuracy", n=10):
|
||||
# First filter the same score results (accuracy, f1, ...)
|
||||
haystack = [x for x in self.data if x["score"] == score]
|
||||
haystack = (
|
||||
haystack
|
||||
if criterion is None or value is None
|
||||
else [x for x in haystack if x[criterion] == value]
|
||||
)
|
||||
if haystack == []:
|
||||
raise ValueError(NO_RESULTS)
|
||||
return (
|
||||
sorted(
|
||||
haystack,
|
||||
key=lambda x: -1.0 if math.isnan(x["metric"]) else x["metric"],
|
||||
reverse=True,
|
||||
)[:n]
|
||||
if len(haystack) > 0
|
||||
else {}
|
||||
)
|
||||
|
||||
def best_result(
|
||||
self, criterion=None, value=None, score="accuracy"
|
||||
) -> dict:
|
||||
return self.best_results(criterion, value, score)[0]
|
||||
|
||||
def best_results_datasets(self, score="accuracy") -> dict:
|
||||
"""Get the best results for each dataset"""
|
||||
dt = Datasets()
|
||||
best_results = {}
|
||||
for dataset in dt:
|
||||
best_results[dataset] = (1, "", "", "")
|
||||
haystack = [x for x in self.data if x["score"] == score]
|
||||
# Search for the best results for each dataset
|
||||
for entry in haystack:
|
||||
for dataset in self.datasets[entry["file"]]:
|
||||
if dataset["score"] < best_results[dataset["dataset"]][0]:
|
||||
best_results[dataset["dataset"]] = (
|
||||
dataset["score"],
|
||||
dataset["hyperparameters"],
|
||||
entry["file"],
|
||||
entry["title"],
|
||||
)
|
||||
return best_results
|
||||
|
||||
def show_top(self, score="accuracy", n=10):
|
||||
try:
|
||||
self.list_results(
|
||||
score=score,
|
||||
input_data=self.best_results(score=score, n=n),
|
||||
sort_key="metric",
|
||||
)
|
||||
except ValueError as e:
|
||||
print(e)
|
||||
|
||||
|
||||
class PairCheck:
|
||||
def __init__(self, score, model_a, model_b, winners=False, losers=False):
|
||||
self.score = score
|
||||
|
@@ -1,7 +1,11 @@
|
||||
import abc
|
||||
import json
|
||||
import math
|
||||
import os
|
||||
from operator import itemgetter
|
||||
|
||||
from benchmark.Datasets import Datasets
|
||||
from benchmark.Utils import NO_RESULTS, Files, Folders, TextColor
|
||||
|
||||
from .Arguments import ALL_METRICS, EnvData
|
||||
from .Datasets import Datasets
|
||||
@@ -9,10 +13,6 @@ from .Experiments import BestResults
|
||||
from .Utils import Folders, Symbols
|
||||
|
||||
|
||||
def get_input(message="", is_test=False):
|
||||
return "test" if is_test else input(message)
|
||||
|
||||
|
||||
class BestResultsEver:
|
||||
def __init__(self):
|
||||
self.data = {}
|
||||
@@ -161,3 +161,273 @@ class StubReport(BaseReport):
|
||||
def footer(self, accuracy: float) -> None:
|
||||
self.accuracy = accuracy
|
||||
self.score = accuracy / self._get_best_accuracy()
|
||||
|
||||
|
||||
class Summary:
|
||||
def __init__(self, hidden=False, compare=False) -> None:
|
||||
self.results = Files().get_all_results(hidden=hidden)
|
||||
self.data = []
|
||||
self.data_filtered = []
|
||||
self.datasets = {}
|
||||
self.models = set()
|
||||
self.hidden = hidden
|
||||
self.compare = compare
|
||||
|
||||
def get_models(self):
|
||||
return sorted(self.models)
|
||||
|
||||
def acquire(self, given_score="any") -> None:
|
||||
"""Get all results"""
|
||||
for result in self.results:
|
||||
(
|
||||
score,
|
||||
model,
|
||||
platform,
|
||||
date,
|
||||
time,
|
||||
stratified,
|
||||
) = Files().split_file_name(result)
|
||||
if given_score in ("any", score):
|
||||
self.models.add(model)
|
||||
report = StubReport(
|
||||
os.path.join(
|
||||
Folders.hidden_results
|
||||
if self.hidden
|
||||
else Folders.results,
|
||||
result,
|
||||
)
|
||||
)
|
||||
report.report()
|
||||
entry = dict(
|
||||
score=score,
|
||||
model=model,
|
||||
title=report.title,
|
||||
platform=platform,
|
||||
date=date,
|
||||
time=time,
|
||||
stratified=stratified,
|
||||
file=result,
|
||||
metric=report.score,
|
||||
duration=report.duration,
|
||||
)
|
||||
self.datasets[result] = report.lines
|
||||
self.data.append(entry)
|
||||
|
||||
def get_results_criteria(
|
||||
self, score, model, input_data, sort_key, number, nan=False
|
||||
):
|
||||
data = self.data.copy() if input_data is None else input_data
|
||||
if score:
|
||||
data = [x for x in data if x["score"] == score]
|
||||
if model:
|
||||
data = [x for x in data if x["model"] == model]
|
||||
if nan:
|
||||
data = [x for x in data if x["metric"] != x["metric"]]
|
||||
keys = (
|
||||
itemgetter(sort_key, "time")
|
||||
if sort_key == "date"
|
||||
else itemgetter(sort_key, "date", "time")
|
||||
)
|
||||
data = sorted(data, key=keys, reverse=True)
|
||||
if number > 0:
|
||||
data = data[:number]
|
||||
return data
|
||||
|
||||
def list_results(
|
||||
self,
|
||||
score=None,
|
||||
model=None,
|
||||
input_data=None,
|
||||
sort_key="date",
|
||||
number=0,
|
||||
nan=False,
|
||||
) -> None:
|
||||
"""Print the list of results"""
|
||||
if self.data_filtered == []:
|
||||
self.data_filtered = self.get_results_criteria(
|
||||
score, model, input_data, sort_key, number, nan=nan
|
||||
)
|
||||
if self.data_filtered == []:
|
||||
raise ValueError(NO_RESULTS)
|
||||
max_file = max(len(x["file"]) for x in self.data_filtered)
|
||||
max_title = max(len(x["title"]) for x in self.data_filtered)
|
||||
if self.hidden:
|
||||
color1 = TextColor.GREEN
|
||||
color2 = TextColor.YELLOW
|
||||
else:
|
||||
color1 = TextColor.LINE1
|
||||
color2 = TextColor.LINE2
|
||||
print(color1, end="")
|
||||
print(
|
||||
f" # {'Date':10s} {'File':{max_file}s} {'Score':8s} "
|
||||
f"{'Time(h)':7s} {'Title':s}"
|
||||
)
|
||||
print(
|
||||
"===",
|
||||
"=" * 10
|
||||
+ " "
|
||||
+ "=" * max_file
|
||||
+ " "
|
||||
+ "=" * 8
|
||||
+ " "
|
||||
+ "=" * 7
|
||||
+ " "
|
||||
+ "=" * max_title,
|
||||
)
|
||||
print(
|
||||
"\n".join(
|
||||
[
|
||||
(color2 if n % 2 == 0 else color1) + f"{n:3d} "
|
||||
f"{x['date']} {x['file']:{max_file}s} "
|
||||
f"{x['metric']:8.5f} "
|
||||
f"{x['duration']/3600:7.3f} "
|
||||
f"{x['title']}"
|
||||
for n, x in enumerate(self.data_filtered)
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
def show_result(self, data: dict, title: str = "") -> None:
|
||||
def whites(n: int) -> str:
|
||||
return " " * n + color1 + "*"
|
||||
|
||||
if data == {}:
|
||||
print(f"** {title} has No data **")
|
||||
return
|
||||
color1 = TextColor.CYAN
|
||||
color2 = TextColor.YELLOW
|
||||
file_name = data["file"]
|
||||
metric = data["metric"]
|
||||
result = StubReport(os.path.join(Folders.results, file_name))
|
||||
length = 81
|
||||
print(color1 + "*" * length)
|
||||
if title != "":
|
||||
print(
|
||||
"*"
|
||||
+ color2
|
||||
+ TextColor.BOLD
|
||||
+ f"{title:^{length - 2}s}"
|
||||
+ TextColor.ENDC
|
||||
+ color1
|
||||
+ "*"
|
||||
)
|
||||
print("*" + "-" * (length - 2) + "*")
|
||||
print("*" + whites(length - 2))
|
||||
print(
|
||||
"* "
|
||||
+ color2
|
||||
+ f"{result.data['title']:^{length - 4}}"
|
||||
+ color1
|
||||
+ " *"
|
||||
)
|
||||
print("*" + whites(length - 2))
|
||||
print(
|
||||
"* Model: "
|
||||
+ color2
|
||||
+ f"{result.data['model']:15s} "
|
||||
+ color1
|
||||
+ "Ver. "
|
||||
+ color2
|
||||
+ f"{result.data['version']:10s} "
|
||||
+ color1
|
||||
+ "Score: "
|
||||
+ color2
|
||||
+ f"{result.data['score_name']:10s} "
|
||||
+ color1
|
||||
+ "Metric: "
|
||||
+ color2
|
||||
+ f"{metric:10.7f}"
|
||||
+ whites(length - 78)
|
||||
)
|
||||
print(color1 + "*" + whites(length - 2))
|
||||
print(
|
||||
"* Date : "
|
||||
+ color2
|
||||
+ f"{result.data['date']:15s}"
|
||||
+ color1
|
||||
+ " Time: "
|
||||
+ color2
|
||||
+ f"{result.data['time']:18s} "
|
||||
+ color1
|
||||
+ "Time Spent: "
|
||||
+ color2
|
||||
+ f"{result.data['duration']:9,.2f}"
|
||||
+ color1
|
||||
+ " secs."
|
||||
+ whites(length - 78)
|
||||
)
|
||||
seeds = str(result.data["seeds"])
|
||||
seeds_len = len(seeds)
|
||||
print(
|
||||
"* Seeds: "
|
||||
+ color2
|
||||
+ f"{seeds:{seeds_len}s} "
|
||||
+ color1
|
||||
+ "Platform: "
|
||||
+ color2
|
||||
+ f"{result.data['platform']:17s} "
|
||||
+ whites(length - 79)
|
||||
)
|
||||
print(
|
||||
"* Stratified: "
|
||||
+ color2
|
||||
+ f"{str(result.data['stratified']):15s}"
|
||||
+ whites(length - 30)
|
||||
)
|
||||
print("* " + color2 + f"{file_name:60s}" + whites(length - 63))
|
||||
print(color1 + "*" + whites(length - 2))
|
||||
print(color1 + "*" * length)
|
||||
|
||||
def best_results(self, criterion=None, value=None, score="accuracy", n=10):
|
||||
# First filter the same score results (accuracy, f1, ...)
|
||||
haystack = [x for x in self.data if x["score"] == score]
|
||||
haystack = (
|
||||
haystack
|
||||
if criterion is None or value is None
|
||||
else [x for x in haystack if x[criterion] == value]
|
||||
)
|
||||
if haystack == []:
|
||||
raise ValueError(NO_RESULTS)
|
||||
return (
|
||||
sorted(
|
||||
haystack,
|
||||
key=lambda x: -1.0 if math.isnan(x["metric"]) else x["metric"],
|
||||
reverse=True,
|
||||
)[:n]
|
||||
if len(haystack) > 0
|
||||
else {}
|
||||
)
|
||||
|
||||
def best_result(
|
||||
self, criterion=None, value=None, score="accuracy"
|
||||
) -> dict:
|
||||
return self.best_results(criterion, value, score)[0]
|
||||
|
||||
def best_results_datasets(self, score="accuracy") -> dict:
|
||||
"""Get the best results for each dataset"""
|
||||
dt = Datasets()
|
||||
best_results = {}
|
||||
for dataset in dt:
|
||||
best_results[dataset] = (1, "", "", "")
|
||||
haystack = [x for x in self.data if x["score"] == score]
|
||||
# Search for the best results for each dataset
|
||||
for entry in haystack:
|
||||
for dataset in self.datasets[entry["file"]]:
|
||||
if dataset["score"] < best_results[dataset["dataset"]][0]:
|
||||
best_results[dataset["dataset"]] = (
|
||||
dataset["score"],
|
||||
dataset["hyperparameters"],
|
||||
entry["file"],
|
||||
entry["title"],
|
||||
)
|
||||
return best_results
|
||||
|
||||
def show_top(self, score="accuracy", n=10):
|
||||
try:
|
||||
self.list_results(
|
||||
score=score,
|
||||
input_data=self.best_results(score=score, n=n),
|
||||
sort_key="metric",
|
||||
)
|
||||
except ValueError as e:
|
||||
print(e)
|
||||
|
@@ -12,7 +12,7 @@ from xlsxwriter.exceptions import DuplicateWorksheetName
|
||||
from ._version import __version__
|
||||
from .Arguments import EnvData
|
||||
from .Datasets import Datasets
|
||||
from .ResultsBase import BaseReport
|
||||
from .ResultsBase import BaseReport, BestResultsEver, Summary, StubReport
|
||||
from .Utils import NO_RESULTS, Files, Folders, TextColor
|
||||
|
||||
|
||||
|
@@ -1,3 +1,4 @@
|
||||
from .ResultsBase import Summary
|
||||
from .Datasets import (
|
||||
Datasets,
|
||||
DatasetsSurcov,
|
||||
@@ -5,7 +6,7 @@ from .Datasets import (
|
||||
DatasetsArff,
|
||||
)
|
||||
from .Experiments import Experiment
|
||||
from .Results import Report, Summary
|
||||
from .Results import Report
|
||||
from ._version import __version__
|
||||
|
||||
__author__ = "Ricardo Montañana Gómez"
|
||||
|
@@ -1,5 +1,5 @@
|
||||
#!/usr/bin/env python
|
||||
from benchmark.Results import Benchmark
|
||||
from benchmark.ResultsFiles import Benchmark
|
||||
from benchmark.Utils import Files
|
||||
from benchmark.Arguments import Arguments
|
||||
|
||||
|
@@ -1,6 +1,6 @@
|
||||
#!/usr/bin/env python
|
||||
import json
|
||||
from benchmark.Results import Summary
|
||||
from benchmark.ResultsBase import Summary
|
||||
from benchmark.Arguments import ALL_METRICS, Arguments
|
||||
|
||||
|
||||
|
@@ -1,8 +1,9 @@
|
||||
#! /usr/bin/env python
|
||||
import os
|
||||
from benchmark.Results import Summary
|
||||
from benchmark.ResultsBase import Summary
|
||||
from benchmark.Utils import Files, Folders
|
||||
from benchmark.Arguments import Arguments
|
||||
from benchmark.Manager import Manage
|
||||
|
||||
"""List experiments of a model
|
||||
"""
|
||||
@@ -27,7 +28,8 @@ def main(args_test=None):
|
||||
except ValueError as e:
|
||||
print(e)
|
||||
return
|
||||
excel_generated = data.manage_results()
|
||||
manager = Manage(data)
|
||||
excel_generated = manager.manage_results()
|
||||
if excel_generated:
|
||||
name = os.path.join(Folders.excel, Files.be_list_excel)
|
||||
print(f"Generated file: {name}")
|
||||
|
@@ -1,5 +1,5 @@
|
||||
#!/usr/bin/env python
|
||||
from benchmark.Results import Summary
|
||||
from benchmark.ResultsBase import Summary
|
||||
from benchmark.Arguments import ALL_METRICS, Arguments
|
||||
|
||||
|
||||
|
@@ -90,15 +90,6 @@ class BenchmarkTest(TestBase):
|
||||
self.assertTrue(os.path.exists(benchmark.get_tex_file()))
|
||||
self.check_file_file(benchmark.get_tex_file(), "exreport_tex")
|
||||
|
||||
@staticmethod
|
||||
def generate_excel_sheet(test, sheet, file_name):
|
||||
with open(os.path.join("test_files", file_name), "w") as f:
|
||||
for row in range(1, sheet.max_row + 1):
|
||||
for col in range(1, sheet.max_column + 1):
|
||||
value = sheet.cell(row=row, column=col).value
|
||||
if value is not None:
|
||||
print(f'{row};{col};"{value}"', file=f)
|
||||
|
||||
def test_excel_output(self):
|
||||
benchmark = Benchmark("accuracy", visualize=False)
|
||||
benchmark.compile_results()
|
||||
|
@@ -4,7 +4,8 @@ from unittest.mock import patch
|
||||
from .TestBase import TestBase
|
||||
from ..Results import Report, ReportBest
|
||||
from ..ResultsFiles import ReportDatasets
|
||||
from ..ResultsBase import BaseReport, get_input
|
||||
from ..ResultsBase import BaseReport
|
||||
from ..Manager import get_input
|
||||
from ..Utils import Symbols
|
||||
|
||||
|
||||
|
@@ -1,7 +1,7 @@
|
||||
from io import StringIO
|
||||
from unittest.mock import patch
|
||||
from .TestBase import TestBase
|
||||
from ..Results import Summary
|
||||
from ..ResultsBase import Summary
|
||||
from ..Utils import NO_RESULTS
|
||||
|
||||
|
||||
|
@@ -10,31 +10,31 @@ class BeListTest(TestBase):
|
||||
def setUp(self):
|
||||
self.prepare_scripts_env()
|
||||
|
||||
@patch("benchmark.Results.get_input", return_value="q")
|
||||
@patch("benchmark.Manager.get_input", return_value="q")
|
||||
def test_be_list(self, input_data):
|
||||
stdout, stderr = self.execute_script("be_list", ["-m", "STree"])
|
||||
self.assertEqual(stderr.getvalue(), "")
|
||||
self.check_output_file(stdout, "be_list_model")
|
||||
|
||||
@patch("benchmark.Results.get_input", side_effect=iter(["x", "q"]))
|
||||
@patch("benchmark.Manager.get_input", side_effect=iter(["x", "q"]))
|
||||
def test_be_list_invalid_option(self, input_data):
|
||||
stdout, stderr = self.execute_script("be_list", ["-m", "STree"])
|
||||
self.assertEqual(stderr.getvalue(), "")
|
||||
self.check_output_file(stdout, "be_list_model_invalid")
|
||||
|
||||
@patch("benchmark.Results.get_input", side_effect=iter(["0", "q"]))
|
||||
@patch("benchmark.Manager.get_input", side_effect=iter(["0", "q"]))
|
||||
def test_be_list_report(self, input_data):
|
||||
stdout, stderr = self.execute_script("be_list", ["-m", "STree"])
|
||||
self.assertEqual(stderr.getvalue(), "")
|
||||
self.check_output_file(stdout, "be_list_report")
|
||||
|
||||
@patch("benchmark.Results.get_input", side_effect=iter(["r", "q"]))
|
||||
@patch("benchmark.Manager.get_input", side_effect=iter(["r", "q"]))
|
||||
def test_be_list_twice(self, input_data):
|
||||
stdout, stderr = self.execute_script("be_list", ["-m", "STree"])
|
||||
self.assertEqual(stderr.getvalue(), "")
|
||||
self.check_output_file(stdout, "be_list_model_2")
|
||||
|
||||
@patch("benchmark.Results.get_input", side_effect=iter(["e 2", "q"]))
|
||||
@patch("benchmark.Manager.get_input", side_effect=iter(["e 2", "q"]))
|
||||
def test_be_list_report_excel(self, input_data):
|
||||
stdout, stderr = self.execute_script("be_list", ["-m", "STree"])
|
||||
self.assertEqual(stderr.getvalue(), "")
|
||||
@@ -45,7 +45,7 @@ class BeListTest(TestBase):
|
||||
self.check_excel_sheet(sheet, "excel")
|
||||
|
||||
@patch(
|
||||
"benchmark.Results.get_input",
|
||||
"benchmark.Manager.get_input",
|
||||
side_effect=iter(["e 2", "e 1", "q"]),
|
||||
)
|
||||
def test_be_list_report_excel_twice(self, input_data):
|
||||
@@ -58,7 +58,7 @@ class BeListTest(TestBase):
|
||||
sheet = book["STree2"]
|
||||
self.check_excel_sheet(sheet, "excel2")
|
||||
|
||||
@patch("benchmark.Results.get_input", return_value="q")
|
||||
@patch("benchmark.Manager.get_input", return_value="q")
|
||||
def test_be_list_no_data(self, input_data):
|
||||
stdout, stderr = self.execute_script(
|
||||
"be_list", ["-m", "Wodt", "-s", "f1-macro"]
|
||||
@@ -67,7 +67,7 @@ class BeListTest(TestBase):
|
||||
self.assertEqual(stdout.getvalue(), f"{NO_RESULTS}\n")
|
||||
|
||||
@patch(
|
||||
"benchmark.Results.get_input",
|
||||
"benchmark.Manager.get_input",
|
||||
side_effect=iter(["d 0", "y", "", "q"]),
|
||||
)
|
||||
# @patch("benchmark.ResultsBase.get_input", side_effect=iter(["q"]))
|
||||
@@ -94,7 +94,7 @@ class BeListTest(TestBase):
|
||||
self.fail("test_be_list_delete() should not raise exception")
|
||||
|
||||
@patch(
|
||||
"benchmark.Results.get_input",
|
||||
"benchmark.Manager.get_input",
|
||||
side_effect=iter(["h 0", "y", "", "q"]),
|
||||
)
|
||||
def test_be_list_hide(self, input_data):
|
||||
@@ -119,25 +119,25 @@ class BeListTest(TestBase):
|
||||
swap_files(Folders.results, Folders.hidden_results, file_name)
|
||||
self.fail("test_be_list_hide() should not raise exception")
|
||||
|
||||
@patch("benchmark.Results.get_input", side_effect=iter(["h 0", "q"]))
|
||||
@patch("benchmark.Manager.get_input", side_effect=iter(["h 0", "q"]))
|
||||
def test_be_list_already_hidden(self, input_data):
|
||||
stdout, stderr = self.execute_script("be_list", ["--hidden"])
|
||||
self.assertEqual(stderr.getvalue(), "")
|
||||
self.check_output_file(stdout, "be_list_already_hidden")
|
||||
|
||||
@patch("benchmark.Results.get_input", side_effect=iter(["h 0", "n", "q"]))
|
||||
@patch("benchmark.Manager.get_input", side_effect=iter(["h 0", "n", "q"]))
|
||||
def test_be_list_dont_hide(self, input_data):
|
||||
stdout, stderr = self.execute_script("be_list", "")
|
||||
self.assertEqual(stderr.getvalue(), "")
|
||||
self.check_output_file(stdout, "be_list_default")
|
||||
|
||||
@patch("benchmark.Results.get_input", side_effect=iter(["q"]))
|
||||
@patch("benchmark.Manager.get_input", side_effect=iter(["q"]))
|
||||
def test_be_list_hidden_nan(self, input_data):
|
||||
stdout, stderr = self.execute_script("be_list", ["--hidden", "--nan"])
|
||||
self.assertEqual(stderr.getvalue(), "")
|
||||
self.check_output_file(stdout, "be_list_hidden_nan")
|
||||
|
||||
@patch("benchmark.Results.get_input", side_effect=iter(["q"]))
|
||||
@patch("benchmark.Manager.get_input", side_effect=iter(["q"]))
|
||||
def test_be_list_hidden(self, input_data):
|
||||
stdout, stderr = self.execute_script("be_list", ["--hidden"])
|
||||
self.assertEqual(stderr.getvalue(), "")
|
||||
|
@@ -25,7 +25,7 @@ class BeMainTest(TestBase):
|
||||
self.check_output_lines(
|
||||
stdout=stdout,
|
||||
file_name="be_main_dataset",
|
||||
lines_to_compare=[0, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13],
|
||||
lines_to_compare=[0, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14],
|
||||
)
|
||||
|
||||
def test_be_main_complete(self):
|
||||
@@ -37,7 +37,9 @@ class BeMainTest(TestBase):
|
||||
report_name = stdout.getvalue().splitlines()[-1].split("in ")[1]
|
||||
self.files.append(report_name)
|
||||
self.check_output_lines(
|
||||
stdout, "be_main_complete", [0, 2, 3, 5, 6, 7, 8, 9, 12, 13, 14]
|
||||
stdout,
|
||||
"be_main_complete",
|
||||
[0, 2, 3, 5, 6, 7, 8, 9, 12, 13, 14, 15],
|
||||
)
|
||||
|
||||
def test_be_main_no_report(self):
|
||||
|
@@ -11,6 +11,7 @@ Dataset Sampl. Feat. Cls Nodes Leaves Depth Score
|
||||
[96mbalance-scale 625 4 3 23.32 12.16 6.44 0.840160±0.0304 0.013745±0.0019 {'splitter': 'best', 'max_features': 'auto'}
|
||||
[94mballoons 16 4 2 3.00 2.00 2.00 0.860000±0.2850 0.000388±0.0000 {'C': 7, 'gamma': 0.1, 'kernel': 'rbf', 'max_iter': 10000, 'multiclass_strategy': 'ovr'}
|
||||
[94m*************************************************************************************************************************
|
||||
[94m* ➶ Better than ZeroR + 10.0%.....: 1 *
|
||||
[94m* accuracy compared to STree_default (liblinear-ovr) .: 0.0422 *
|
||||
[94m*************************************************************************************************************************
|
||||
Results in results/results_accuracy_STree_iMac27_2022-05-09_00:15:25_0.json
|
||||
|
@@ -11,6 +11,7 @@ Dataset Sampl. Feat. Cls Nodes Leaves Depth Score
|
||||
[96mbalance-scale 625 4 3 17.36 9.18 6.18 0.908480±0.0247 0.007388±0.0013 {}
|
||||
[94mballoons 16 4 2 4.64 2.82 2.66 0.663333±0.3009 0.000664±0.0002 {}
|
||||
[94m*************************************************************************************************************************
|
||||
[94m* ➶ Better than ZeroR + 10.0%.....: 1 *
|
||||
[94m* accuracy compared to STree_default (liblinear-ovr) .: 0.0390 *
|
||||
[94m*************************************************************************************************************************
|
||||
Results in results/results_accuracy_STree_iMac27_2022-05-08_20:14:43_0.json
|
||||
|
@@ -8,8 +8,9 @@
|
||||
|
||||
Dataset Sampl. Feat. Cls Nodes Leaves Depth Score Time Hyperparameters
|
||||
============================== ====== ===== === ======= ======= ======= =============== ================= ===============
|
||||
[96mballoons 16 4 2 4.64 2.82 2.66 0.663333±0.3009 0.000671±0.0001 {}
|
||||
[96mballoons 16 4 2 4.64 2.82 2.66 0.663333±0.3009➶ 0.000671±0.0001 {}
|
||||
[94m*************************************************************************************************************************
|
||||
[94m* ➶ Better than ZeroR + 10.0%.....: 1 *
|
||||
[94m* accuracy compared to STree_default (liblinear-ovr) .: 0.0165 *
|
||||
[94m*************************************************************************************************************************
|
||||
Partial result file removed: results/results_accuracy_STree_iMac27_2022-05-08_19:38:28_0.json
|
||||
|
@@ -11,6 +11,7 @@ Dataset Sampl. Feat. Cls Nodes Leaves Depth Score
|
||||
[96mbalance-scale 625 4 3 26.12 13.56 7.94 0.910720±0.0249 0.015852±0.0027 {'C': 1.0, 'kernel': 'liblinear', 'multiclass_strategy': 'ovr'}
|
||||
[94mballoons 16 4 2 4.64 2.82 2.66 0.663333±0.3009 0.000640±0.0001 {'C': 1.0, 'kernel': 'linear', 'multiclass_strategy': 'ovr'}
|
||||
[94m*************************************************************************************************************************
|
||||
[94m* ➶ Better than ZeroR + 10.0%.....: 1 *
|
||||
[94m* accuracy compared to STree_default (liblinear-ovr) .: 0.0391 *
|
||||
[94m*************************************************************************************************************************
|
||||
Results in results/results_accuracy_STree_iMac27_2022-05-09_00:21:06_0.json
|
||||
|
@@ -3,12 +3,12 @@
|
||||
3;1;" Score is accuracy"
|
||||
3;2;" Execution time"
|
||||
3;5;"22,591.47 s"
|
||||
3;7;" "
|
||||
3;8;"Platform"
|
||||
3;7;"Platform"
|
||||
3;9;"Galgo"
|
||||
3;10;"Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1]"
|
||||
3;11;"Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1]"
|
||||
4;5;" 6.28 h"
|
||||
4;10;"Stratified: False"
|
||||
4;11;"Stratified: False"
|
||||
4;13;"Discretized: False"
|
||||
6;1;"Dataset"
|
||||
6;2;"Samples"
|
||||
6;3;"Features"
|
||||
@@ -17,10 +17,11 @@
|
||||
6;6;"Leaves"
|
||||
6;7;"Depth"
|
||||
6;8;"Score"
|
||||
6;9;"Score Std."
|
||||
6;10;"Time"
|
||||
6;11;"Time Std."
|
||||
6;12;"Hyperparameters"
|
||||
6;9;"Stat"
|
||||
6;10;"Score Std."
|
||||
6;11;"Time"
|
||||
6;12;"Time Std."
|
||||
6;13;"Hyperparameters"
|
||||
7;1;"balance-scale"
|
||||
7;2;"625"
|
||||
7;3;"4"
|
||||
@@ -29,10 +30,11 @@
|
||||
7;6;"4.180599999999999"
|
||||
7;7;"3.536"
|
||||
7;8;"0.96352"
|
||||
7;9;"0.02494974148162661"
|
||||
7;10;"0.3166321754455567"
|
||||
7;11;"0.1991881389525559"
|
||||
7;12;"{'base_estimator__C': 57, 'base_estimator__gamma': 0.1, 'base_estimator__kernel': 'rbf', 'base_estimator__multiclass_strategy': 'ovr', 'n_estimators': 100, 'n_jobs': -1}"
|
||||
7;9;" "
|
||||
7;10;"0.02494974148162661"
|
||||
7;11;"0.3166321754455567"
|
||||
7;12;"0.1991881389525559"
|
||||
7;13;"{'base_estimator__C': 57, 'base_estimator__gamma': 0.1, 'base_estimator__kernel': 'rbf', 'base_estimator__multiclass_strategy': 'ovr', 'n_estimators': 100, 'n_jobs': -1}"
|
||||
8;1;"balloons"
|
||||
8;2;"16"
|
||||
8;3;"4"
|
||||
@@ -41,8 +43,12 @@
|
||||
8;6;"1.9976"
|
||||
8;7;"1.9976"
|
||||
8;8;"0.785"
|
||||
8;9;"0.2461311755051675"
|
||||
8;10;"0.1156062078475952"
|
||||
8;11;"0.0127842418285999"
|
||||
8;12;"{'base_estimator__C': 5, 'base_estimator__gamma': 0.14, 'base_estimator__kernel': 'rbf', 'base_estimator__multiclass_strategy': 'ovr', 'n_estimators': 100, 'n_jobs': -1}"
|
||||
10;1;"** accuracy compared to STree_default (liblinear-ovr) .: 0.0434"
|
||||
8;9;"➶"
|
||||
8;10;"0.2461311755051675"
|
||||
8;11;"0.1156062078475952"
|
||||
8;12;"0.0127842418285999"
|
||||
8;13;"{'base_estimator__C': 5, 'base_estimator__gamma': 0.14, 'base_estimator__kernel': 'rbf', 'base_estimator__multiclass_strategy': 'ovr', 'n_estimators': 100, 'n_jobs': -1}"
|
||||
11;2;"➶"
|
||||
11;3;"1"
|
||||
11;4;"Better than ZeroR + 10.0%"
|
||||
13;1;"** accuracy compared to STree_default (liblinear-ovr) .: 0.0434"
|
||||
|
@@ -3,12 +3,12 @@
|
||||
3;1;" Score is accuracy"
|
||||
3;2;" Execution time"
|
||||
3;5;" 272.74 s"
|
||||
3;7;" "
|
||||
3;8;"Platform"
|
||||
3;7;"Platform"
|
||||
3;9;"iMac27"
|
||||
3;10;"Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1]"
|
||||
3;11;"Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1]"
|
||||
4;5;" 0.08 h"
|
||||
4;10;"Stratified: False"
|
||||
4;11;"Stratified: False"
|
||||
4;13;"Discretized: False"
|
||||
6;1;"Dataset"
|
||||
6;2;"Samples"
|
||||
6;3;"Features"
|
||||
@@ -17,10 +17,11 @@
|
||||
6;6;"Leaves"
|
||||
6;7;"Depth"
|
||||
6;8;"Score"
|
||||
6;9;"Score Std."
|
||||
6;10;"Time"
|
||||
6;11;"Time Std."
|
||||
6;12;"Hyperparameters"
|
||||
6;9;"Stat"
|
||||
6;10;"Score Std."
|
||||
6;11;"Time"
|
||||
6;12;"Time Std."
|
||||
6;13;"Hyperparameters"
|
||||
7;1;"balance-scale"
|
||||
7;2;"625"
|
||||
7;3;"4"
|
||||
@@ -29,10 +30,11 @@
|
||||
7;6;"98.42"
|
||||
7;7;"10.6814"
|
||||
7;8;"0.83616"
|
||||
7;9;"0.02649630917694009"
|
||||
7;10;"0.08222018241882324"
|
||||
7;11;"0.001302632681512063"
|
||||
7;12;"{}"
|
||||
7;9;" "
|
||||
7;10;"0.02649630917694009"
|
||||
7;11;"0.08222018241882324"
|
||||
7;12;"0.001302632681512063"
|
||||
7;13;"{}"
|
||||
8;1;"balloons"
|
||||
8;2;"16"
|
||||
8;3;"4"
|
||||
@@ -41,8 +43,12 @@
|
||||
8;6;"4.58"
|
||||
8;7;"3.0982"
|
||||
8;8;"0.625"
|
||||
8;9;"0.249582985531199"
|
||||
8;10;"0.07016648769378662"
|
||||
8;11;"0.002460508923990468"
|
||||
8;12;"{}"
|
||||
10;1;"** accuracy compared to STree_default (liblinear-ovr) .: 0.0363"
|
||||
8;9;"➶"
|
||||
8;10;"0.249582985531199"
|
||||
8;11;"0.07016648769378662"
|
||||
8;12;"0.002460508923990468"
|
||||
8;13;"{}"
|
||||
11;2;"➶"
|
||||
11;3;"1"
|
||||
11;4;"Better than ZeroR + 10.0%"
|
||||
13;1;"** accuracy compared to STree_default (liblinear-ovr) .: 0.0363"
|
||||
|
@@ -3,12 +3,12 @@
|
||||
3;1;" Score is accuracy"
|
||||
3;2;" Execution time"
|
||||
3;5;" 624.25 s"
|
||||
3;7;" "
|
||||
3;8;"Platform"
|
||||
3;7;"Platform"
|
||||
3;9;"iMac27"
|
||||
3;10;"Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1]"
|
||||
3;11;"Random seeds: [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1]"
|
||||
4;5;" 0.17 h"
|
||||
4;10;"Stratified: False"
|
||||
4;11;"Stratified: False"
|
||||
4;13;"Discretized: False"
|
||||
6;1;"Dataset"
|
||||
6;2;"Samples"
|
||||
6;3;"Features"
|
||||
@@ -17,10 +17,11 @@
|
||||
6;6;"Leaves"
|
||||
6;7;"Depth"
|
||||
6;8;"Score"
|
||||
6;9;"Score Std."
|
||||
6;10;"Time"
|
||||
6;11;"Time Std."
|
||||
6;12;"Hyperparameters"
|
||||
6;9;"Stat"
|
||||
6;10;"Score Std."
|
||||
6;11;"Time"
|
||||
6;12;"Time Std."
|
||||
6;13;"Hyperparameters"
|
||||
7;1;"balance-scale"
|
||||
7;2;"625"
|
||||
7;3;"4"
|
||||
@@ -29,10 +30,11 @@
|
||||
7;6;"4"
|
||||
7;7;"3"
|
||||
7;8;"0.97056"
|
||||
7;9;"0.0150468069702512"
|
||||
7;10;"0.01404867172241211"
|
||||
7;11;"0.002026269126958884"
|
||||
7;12;"{'C': 10000, 'gamma': 0.1, 'kernel': 'rbf', 'max_iter': 10000, 'multiclass_strategy': 'ovr'}"
|
||||
7;9;" "
|
||||
7;10;"0.0150468069702512"
|
||||
7;11;"0.01404867172241211"
|
||||
7;12;"0.002026269126958884"
|
||||
7;13;"{'C': 10000, 'gamma': 0.1, 'kernel': 'rbf', 'max_iter': 10000, 'multiclass_strategy': 'ovr'}"
|
||||
8;1;"balloons"
|
||||
8;2;"16"
|
||||
8;3;"4"
|
||||
@@ -41,8 +43,12 @@
|
||||
8;6;"2"
|
||||
8;7;"2"
|
||||
8;8;"0.86"
|
||||
8;9;"0.2850146195080759"
|
||||
8;10;"0.0008541679382324218"
|
||||
8;11;"3.629469326417878e-05"
|
||||
8;12;"{'C': 7, 'gamma': 0.1, 'kernel': 'rbf', 'max_iter': 10000, 'multiclass_strategy': 'ovr'}"
|
||||
10;1;"** accuracy compared to STree_default (liblinear-ovr) .: 0.0454"
|
||||
8;9;"➶"
|
||||
8;10;"0.2850146195080759"
|
||||
8;11;"0.0008541679382324218"
|
||||
8;12;"3.629469326417878e-05"
|
||||
8;13;"{'C': 7, 'gamma': 0.1, 'kernel': 'rbf', 'max_iter': 10000, 'multiclass_strategy': 'ovr'}"
|
||||
11;2;"➶"
|
||||
11;3;"1"
|
||||
11;4;"Better than ZeroR + 10.0%"
|
||||
13;1;"** accuracy compared to STree_default (liblinear-ovr) .: 0.0454"
|
||||
|
Reference in New Issue
Block a user