mirror of
https://github.com/Doctorado-ML/benchmark.git
synced 2025-08-20 01:45:54 +00:00
Fix tests
This commit is contained in:
@@ -1,7 +1,11 @@
|
||||
import abc
|
||||
import json
|
||||
import math
|
||||
import os
|
||||
from operator import itemgetter
|
||||
|
||||
from benchmark.Datasets import Datasets
|
||||
from benchmark.Utils import NO_RESULTS, Files, Folders, TextColor
|
||||
|
||||
from .Arguments import ALL_METRICS, EnvData
|
||||
from .Datasets import Datasets
|
||||
@@ -9,10 +13,6 @@ from .Experiments import BestResults
|
||||
from .Utils import Folders, Symbols
|
||||
|
||||
|
||||
def get_input(message="", is_test=False):
|
||||
return "test" if is_test else input(message)
|
||||
|
||||
|
||||
class BestResultsEver:
|
||||
def __init__(self):
|
||||
self.data = {}
|
||||
@@ -161,3 +161,273 @@ class StubReport(BaseReport):
|
||||
def footer(self, accuracy: float) -> None:
|
||||
self.accuracy = accuracy
|
||||
self.score = accuracy / self._get_best_accuracy()
|
||||
|
||||
|
||||
class Summary:
|
||||
def __init__(self, hidden=False, compare=False) -> None:
|
||||
self.results = Files().get_all_results(hidden=hidden)
|
||||
self.data = []
|
||||
self.data_filtered = []
|
||||
self.datasets = {}
|
||||
self.models = set()
|
||||
self.hidden = hidden
|
||||
self.compare = compare
|
||||
|
||||
def get_models(self):
|
||||
return sorted(self.models)
|
||||
|
||||
def acquire(self, given_score="any") -> None:
|
||||
"""Get all results"""
|
||||
for result in self.results:
|
||||
(
|
||||
score,
|
||||
model,
|
||||
platform,
|
||||
date,
|
||||
time,
|
||||
stratified,
|
||||
) = Files().split_file_name(result)
|
||||
if given_score in ("any", score):
|
||||
self.models.add(model)
|
||||
report = StubReport(
|
||||
os.path.join(
|
||||
Folders.hidden_results
|
||||
if self.hidden
|
||||
else Folders.results,
|
||||
result,
|
||||
)
|
||||
)
|
||||
report.report()
|
||||
entry = dict(
|
||||
score=score,
|
||||
model=model,
|
||||
title=report.title,
|
||||
platform=platform,
|
||||
date=date,
|
||||
time=time,
|
||||
stratified=stratified,
|
||||
file=result,
|
||||
metric=report.score,
|
||||
duration=report.duration,
|
||||
)
|
||||
self.datasets[result] = report.lines
|
||||
self.data.append(entry)
|
||||
|
||||
def get_results_criteria(
|
||||
self, score, model, input_data, sort_key, number, nan=False
|
||||
):
|
||||
data = self.data.copy() if input_data is None else input_data
|
||||
if score:
|
||||
data = [x for x in data if x["score"] == score]
|
||||
if model:
|
||||
data = [x for x in data if x["model"] == model]
|
||||
if nan:
|
||||
data = [x for x in data if x["metric"] != x["metric"]]
|
||||
keys = (
|
||||
itemgetter(sort_key, "time")
|
||||
if sort_key == "date"
|
||||
else itemgetter(sort_key, "date", "time")
|
||||
)
|
||||
data = sorted(data, key=keys, reverse=True)
|
||||
if number > 0:
|
||||
data = data[:number]
|
||||
return data
|
||||
|
||||
def list_results(
|
||||
self,
|
||||
score=None,
|
||||
model=None,
|
||||
input_data=None,
|
||||
sort_key="date",
|
||||
number=0,
|
||||
nan=False,
|
||||
) -> None:
|
||||
"""Print the list of results"""
|
||||
if self.data_filtered == []:
|
||||
self.data_filtered = self.get_results_criteria(
|
||||
score, model, input_data, sort_key, number, nan=nan
|
||||
)
|
||||
if self.data_filtered == []:
|
||||
raise ValueError(NO_RESULTS)
|
||||
max_file = max(len(x["file"]) for x in self.data_filtered)
|
||||
max_title = max(len(x["title"]) for x in self.data_filtered)
|
||||
if self.hidden:
|
||||
color1 = TextColor.GREEN
|
||||
color2 = TextColor.YELLOW
|
||||
else:
|
||||
color1 = TextColor.LINE1
|
||||
color2 = TextColor.LINE2
|
||||
print(color1, end="")
|
||||
print(
|
||||
f" # {'Date':10s} {'File':{max_file}s} {'Score':8s} "
|
||||
f"{'Time(h)':7s} {'Title':s}"
|
||||
)
|
||||
print(
|
||||
"===",
|
||||
"=" * 10
|
||||
+ " "
|
||||
+ "=" * max_file
|
||||
+ " "
|
||||
+ "=" * 8
|
||||
+ " "
|
||||
+ "=" * 7
|
||||
+ " "
|
||||
+ "=" * max_title,
|
||||
)
|
||||
print(
|
||||
"\n".join(
|
||||
[
|
||||
(color2 if n % 2 == 0 else color1) + f"{n:3d} "
|
||||
f"{x['date']} {x['file']:{max_file}s} "
|
||||
f"{x['metric']:8.5f} "
|
||||
f"{x['duration']/3600:7.3f} "
|
||||
f"{x['title']}"
|
||||
for n, x in enumerate(self.data_filtered)
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
def show_result(self, data: dict, title: str = "") -> None:
|
||||
def whites(n: int) -> str:
|
||||
return " " * n + color1 + "*"
|
||||
|
||||
if data == {}:
|
||||
print(f"** {title} has No data **")
|
||||
return
|
||||
color1 = TextColor.CYAN
|
||||
color2 = TextColor.YELLOW
|
||||
file_name = data["file"]
|
||||
metric = data["metric"]
|
||||
result = StubReport(os.path.join(Folders.results, file_name))
|
||||
length = 81
|
||||
print(color1 + "*" * length)
|
||||
if title != "":
|
||||
print(
|
||||
"*"
|
||||
+ color2
|
||||
+ TextColor.BOLD
|
||||
+ f"{title:^{length - 2}s}"
|
||||
+ TextColor.ENDC
|
||||
+ color1
|
||||
+ "*"
|
||||
)
|
||||
print("*" + "-" * (length - 2) + "*")
|
||||
print("*" + whites(length - 2))
|
||||
print(
|
||||
"* "
|
||||
+ color2
|
||||
+ f"{result.data['title']:^{length - 4}}"
|
||||
+ color1
|
||||
+ " *"
|
||||
)
|
||||
print("*" + whites(length - 2))
|
||||
print(
|
||||
"* Model: "
|
||||
+ color2
|
||||
+ f"{result.data['model']:15s} "
|
||||
+ color1
|
||||
+ "Ver. "
|
||||
+ color2
|
||||
+ f"{result.data['version']:10s} "
|
||||
+ color1
|
||||
+ "Score: "
|
||||
+ color2
|
||||
+ f"{result.data['score_name']:10s} "
|
||||
+ color1
|
||||
+ "Metric: "
|
||||
+ color2
|
||||
+ f"{metric:10.7f}"
|
||||
+ whites(length - 78)
|
||||
)
|
||||
print(color1 + "*" + whites(length - 2))
|
||||
print(
|
||||
"* Date : "
|
||||
+ color2
|
||||
+ f"{result.data['date']:15s}"
|
||||
+ color1
|
||||
+ " Time: "
|
||||
+ color2
|
||||
+ f"{result.data['time']:18s} "
|
||||
+ color1
|
||||
+ "Time Spent: "
|
||||
+ color2
|
||||
+ f"{result.data['duration']:9,.2f}"
|
||||
+ color1
|
||||
+ " secs."
|
||||
+ whites(length - 78)
|
||||
)
|
||||
seeds = str(result.data["seeds"])
|
||||
seeds_len = len(seeds)
|
||||
print(
|
||||
"* Seeds: "
|
||||
+ color2
|
||||
+ f"{seeds:{seeds_len}s} "
|
||||
+ color1
|
||||
+ "Platform: "
|
||||
+ color2
|
||||
+ f"{result.data['platform']:17s} "
|
||||
+ whites(length - 79)
|
||||
)
|
||||
print(
|
||||
"* Stratified: "
|
||||
+ color2
|
||||
+ f"{str(result.data['stratified']):15s}"
|
||||
+ whites(length - 30)
|
||||
)
|
||||
print("* " + color2 + f"{file_name:60s}" + whites(length - 63))
|
||||
print(color1 + "*" + whites(length - 2))
|
||||
print(color1 + "*" * length)
|
||||
|
||||
def best_results(self, criterion=None, value=None, score="accuracy", n=10):
|
||||
# First filter the same score results (accuracy, f1, ...)
|
||||
haystack = [x for x in self.data if x["score"] == score]
|
||||
haystack = (
|
||||
haystack
|
||||
if criterion is None or value is None
|
||||
else [x for x in haystack if x[criterion] == value]
|
||||
)
|
||||
if haystack == []:
|
||||
raise ValueError(NO_RESULTS)
|
||||
return (
|
||||
sorted(
|
||||
haystack,
|
||||
key=lambda x: -1.0 if math.isnan(x["metric"]) else x["metric"],
|
||||
reverse=True,
|
||||
)[:n]
|
||||
if len(haystack) > 0
|
||||
else {}
|
||||
)
|
||||
|
||||
def best_result(
|
||||
self, criterion=None, value=None, score="accuracy"
|
||||
) -> dict:
|
||||
return self.best_results(criterion, value, score)[0]
|
||||
|
||||
def best_results_datasets(self, score="accuracy") -> dict:
|
||||
"""Get the best results for each dataset"""
|
||||
dt = Datasets()
|
||||
best_results = {}
|
||||
for dataset in dt:
|
||||
best_results[dataset] = (1, "", "", "")
|
||||
haystack = [x for x in self.data if x["score"] == score]
|
||||
# Search for the best results for each dataset
|
||||
for entry in haystack:
|
||||
for dataset in self.datasets[entry["file"]]:
|
||||
if dataset["score"] < best_results[dataset["dataset"]][0]:
|
||||
best_results[dataset["dataset"]] = (
|
||||
dataset["score"],
|
||||
dataset["hyperparameters"],
|
||||
entry["file"],
|
||||
entry["title"],
|
||||
)
|
||||
return best_results
|
||||
|
||||
def show_top(self, score="accuracy", n=10):
|
||||
try:
|
||||
self.list_results(
|
||||
score=score,
|
||||
input_data=self.best_results(score=score, n=n),
|
||||
sort_key="metric",
|
||||
)
|
||||
except ValueError as e:
|
||||
print(e)
|
||||
|
Reference in New Issue
Block a user