mirror of
https://github.com/Doctorado-ML/benchmark.git
synced 2025-08-16 16:05:54 +00:00
fix stochastic error in discretization
This commit is contained in:
@@ -26,7 +26,7 @@ class DatasetsArff:
|
|||||||
def folder():
|
def folder():
|
||||||
return "datasets"
|
return "datasets"
|
||||||
|
|
||||||
def load(self, name, class_name, dataframe):
|
def load(self, name, class_name):
|
||||||
file_name = os.path.join(self.folder(), self.dataset_names(name))
|
file_name = os.path.join(self.folder(), self.dataset_names(name))
|
||||||
data = arff.loadarff(file_name)
|
data = arff.loadarff(file_name)
|
||||||
df = pd.DataFrame(data[0])
|
df = pd.DataFrame(data[0])
|
||||||
@@ -35,9 +35,8 @@ class DatasetsArff:
|
|||||||
self.features = X.columns
|
self.features = X.columns
|
||||||
self.class_name = class_name
|
self.class_name = class_name
|
||||||
y, _ = pd.factorize(df[class_name])
|
y, _ = pd.factorize(df[class_name])
|
||||||
df[class_name] = y
|
|
||||||
X = X.to_numpy()
|
X = X.to_numpy()
|
||||||
return df if dataframe else (X, y)
|
return X, y
|
||||||
|
|
||||||
|
|
||||||
class DatasetsTanveer:
|
class DatasetsTanveer:
|
||||||
@@ -149,10 +148,10 @@ class Datasets:
|
|||||||
def get_class_name(self):
|
def get_class_name(self):
|
||||||
return self.dataset.class_name
|
return self.dataset.class_name
|
||||||
|
|
||||||
def load_continuous(self, name, dataframe=False):
|
def load_continuous(self, name):
|
||||||
try:
|
try:
|
||||||
class_name = self.class_names[self.data_sets.index(name)]
|
class_name = self.class_names[self.data_sets.index(name)]
|
||||||
return self.dataset.load(name, class_name, dataframe)
|
return self.dataset.load(name, class_name)
|
||||||
except (ValueError, FileNotFoundError):
|
except (ValueError, FileNotFoundError):
|
||||||
raise ValueError(f"Unknown dataset: {name}")
|
raise ValueError(f"Unknown dataset: {name}")
|
||||||
|
|
||||||
@@ -170,16 +169,18 @@ class Datasets:
|
|||||||
-------
|
-------
|
||||||
tuple (X, y) of numpy.ndarray
|
tuple (X, y) of numpy.ndarray
|
||||||
"""
|
"""
|
||||||
discretiz = MDLP()
|
discretiz = MDLP(random_state=17, dtype=np.int32)
|
||||||
Xdisc = discretiz.fit_transform(X, y)
|
Xdisc = discretiz.fit_transform(X, y)
|
||||||
return Xdisc.astype(int), y.astype(int)
|
return Xdisc
|
||||||
|
|
||||||
def load_discretized(self, name, dataframe=False):
|
def load_discretized(self, name, dataframe=False):
|
||||||
X, y = self.load_continuous(name)
|
X, yd = self.load_continuous(name)
|
||||||
X, y = self.discretize(X, y)
|
Xd = self.discretize(X, yd)
|
||||||
dataset = pd.DataFrame(X, columns=self.get_features())
|
dataset = pd.DataFrame(Xd, columns=self.get_features())
|
||||||
dataset[self.get_class_name()] = y
|
dataset[self.get_class_name()] = yd
|
||||||
return dataset if dataframe else X, y
|
if dataframe:
|
||||||
|
return dataset
|
||||||
|
return Xd, yd
|
||||||
|
|
||||||
def __iter__(self) -> Diterator:
|
def __iter__(self) -> Diterator:
|
||||||
return Diterator(self.data_sets)
|
return Diterator(self.data_sets)
|
||||||
|
@@ -30,6 +30,19 @@ class DatasetTest(TestBase):
|
|||||||
expected = [271, 314, 171]
|
expected = [271, 314, 171]
|
||||||
self.assertSequenceEqual(Randomized.seeds(), expected)
|
self.assertSequenceEqual(Randomized.seeds(), expected)
|
||||||
|
|
||||||
|
def test_load_dataframe(self):
|
||||||
|
self.set_env(".env.arff")
|
||||||
|
dt = Datasets()
|
||||||
|
X, y = dt.load_discretized("iris", dataframe=False)
|
||||||
|
dataset = dt.load_discretized("iris", dataframe=True)
|
||||||
|
class_name = dt.get_class_name()
|
||||||
|
features = dt.get_features()
|
||||||
|
self.assertListEqual(y.tolist(), dataset[class_name].tolist())
|
||||||
|
for i in range(len(features)):
|
||||||
|
self.assertListEqual(
|
||||||
|
X[:, i].tolist(), dataset[features[i]].tolist()
|
||||||
|
)
|
||||||
|
|
||||||
def test_Datasets_iterator(self):
|
def test_Datasets_iterator(self):
|
||||||
test = {
|
test = {
|
||||||
".env.dist": ["balance-scale", "balloons"],
|
".env.dist": ["balance-scale", "balloons"],
|
||||||
|
Reference in New Issue
Block a user