Add Discretizer to Datasets

This commit is contained in:
2022-11-10 11:47:01 +01:00
parent feaf85d0b8
commit 4b442a46f2
3 changed files with 55 additions and 7 deletions

View File

@@ -3,6 +3,7 @@ import pandas as pd
from scipy.io import arff
from .Utils import Files
from .Arguments import EnvData
from mdlp import MDLP
class Diterator:
@@ -28,15 +29,20 @@ class DatasetsArff:
file_name = os.path.join(self.folder(), self.dataset_names(name))
data = arff.loadarff(file_name)
df = pd.DataFrame(data[0])
df = df.dropna()
df.dropna(axis=0, how="any", inplace=True)
X = df.drop(class_name, axis=1)
self.features = X.columns
self.class_name = class_name
y, _ = pd.factorize(df[class_name])
return df if dataframe else (X.to_numpy(), y)
df[class_name] = y
X = X.to_numpy()
return df if dataframe else (X, y)
class DatasetsTanveer:
def __init__(self, discretized):
self.discretized = discretized
@staticmethod
def dataset_names(name):
return f"{name}_R.dat"
@@ -82,7 +88,6 @@ class DatasetsSurcov:
class Datasets:
def __init__(self, dataset_name=None):
envData = EnvData.load()
class_name = getattr(
__import__(__name__),
@@ -90,7 +95,7 @@ class Datasets:
)
self.dataset = class_name()
self.class_names = []
self.load_names()
self._load_names()
if dataset_name is not None:
try:
class_name = self.class_names[
@@ -101,7 +106,7 @@ class Datasets:
raise ValueError(f"Unknown dataset: {dataset_name}")
self.data_sets = [dataset_name]
def load_names(self):
def _load_names(self):
file_name = os.path.join(self.dataset.folder(), Files.index)
default_class = "class"
with open(file_name) as f:
@@ -117,6 +122,12 @@ class Datasets:
self.data_sets = result
self.class_names = class_names
def get_features(self):
return self.dataset.features
def get_class_name(self):
return self.dataset.class_name
def load(self, name, dataframe=False):
try:
class_name = self.class_names[self.data_sets.index(name)]
@@ -126,3 +137,33 @@ class Datasets:
def __iter__(self) -> Diterator:
return Diterator(self.data_sets)
class Discretizer(Datasets):
def __init__(self, dataset_name=None):
super().__init__(dataset_name)
def load(self, name, dataframe=False):
X, y = super().load(name)
X, y = self.discretize(X, y)
dataset = pd.DataFrame(X, columns=self.get_features())
dataset[self.get_class_name()] = y
return dataset if dataframe else X, y
def discretize(self, X, y):
"""Supervised discretization with Fayyad and Irani's MDLP algorithm.
Parameters
----------
X : np.ndarray
array (n_samples, n_features) of features
y : np.ndarray
array (n_samples,) of labels
Returns
-------
tuple (X, y) of numpy.ndarray
"""
discretiz = MDLP()
Xdisc = discretiz.fit_transform(X, y)
return Xdisc.astype(int), y.astype(int)

View File

@@ -1,4 +1,10 @@
from .Datasets import Datasets, DatasetsSurcov, DatasetsTanveer, DatasetsArff
from .Datasets import (
Datasets,
DatasetsSurcov,
DatasetsTanveer,
DatasetsArff,
Discretizer,
)
from .Experiments import Experiment
from .Results import Report, Summary
@@ -7,4 +13,4 @@ __copyright__ = "Copyright 2020-2022, Ricardo Montañana Gómez"
__license__ = "MIT License"
__author_email__ = "ricardo.montanana@alu.uclm.es"
__all__ = ["Experiment", "Datasets", "Report", "Summary"]
__all__ = ["Experiment", "Datasets", "Report", "Summary", "Discretizer"]

View File

@@ -2,6 +2,7 @@ pandas
scikit-learn
scipy
odte
mdlp
mufs
xlsxwriter
openpyxl