mirror of
https://github.com/Doctorado-ML/benchmark.git
synced 2025-08-15 15:35:52 +00:00
Add Discretizer to Datasets
This commit is contained in:
@@ -3,6 +3,7 @@ import pandas as pd
|
|||||||
from scipy.io import arff
|
from scipy.io import arff
|
||||||
from .Utils import Files
|
from .Utils import Files
|
||||||
from .Arguments import EnvData
|
from .Arguments import EnvData
|
||||||
|
from mdlp import MDLP
|
||||||
|
|
||||||
|
|
||||||
class Diterator:
|
class Diterator:
|
||||||
@@ -28,15 +29,20 @@ class DatasetsArff:
|
|||||||
file_name = os.path.join(self.folder(), self.dataset_names(name))
|
file_name = os.path.join(self.folder(), self.dataset_names(name))
|
||||||
data = arff.loadarff(file_name)
|
data = arff.loadarff(file_name)
|
||||||
df = pd.DataFrame(data[0])
|
df = pd.DataFrame(data[0])
|
||||||
df = df.dropna()
|
df.dropna(axis=0, how="any", inplace=True)
|
||||||
X = df.drop(class_name, axis=1)
|
X = df.drop(class_name, axis=1)
|
||||||
self.features = X.columns
|
self.features = X.columns
|
||||||
self.class_name = class_name
|
self.class_name = class_name
|
||||||
y, _ = pd.factorize(df[class_name])
|
y, _ = pd.factorize(df[class_name])
|
||||||
return df if dataframe else (X.to_numpy(), y)
|
df[class_name] = y
|
||||||
|
X = X.to_numpy()
|
||||||
|
return df if dataframe else (X, y)
|
||||||
|
|
||||||
|
|
||||||
class DatasetsTanveer:
|
class DatasetsTanveer:
|
||||||
|
def __init__(self, discretized):
|
||||||
|
self.discretized = discretized
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def dataset_names(name):
|
def dataset_names(name):
|
||||||
return f"{name}_R.dat"
|
return f"{name}_R.dat"
|
||||||
@@ -82,7 +88,6 @@ class DatasetsSurcov:
|
|||||||
|
|
||||||
class Datasets:
|
class Datasets:
|
||||||
def __init__(self, dataset_name=None):
|
def __init__(self, dataset_name=None):
|
||||||
|
|
||||||
envData = EnvData.load()
|
envData = EnvData.load()
|
||||||
class_name = getattr(
|
class_name = getattr(
|
||||||
__import__(__name__),
|
__import__(__name__),
|
||||||
@@ -90,7 +95,7 @@ class Datasets:
|
|||||||
)
|
)
|
||||||
self.dataset = class_name()
|
self.dataset = class_name()
|
||||||
self.class_names = []
|
self.class_names = []
|
||||||
self.load_names()
|
self._load_names()
|
||||||
if dataset_name is not None:
|
if dataset_name is not None:
|
||||||
try:
|
try:
|
||||||
class_name = self.class_names[
|
class_name = self.class_names[
|
||||||
@@ -101,7 +106,7 @@ class Datasets:
|
|||||||
raise ValueError(f"Unknown dataset: {dataset_name}")
|
raise ValueError(f"Unknown dataset: {dataset_name}")
|
||||||
self.data_sets = [dataset_name]
|
self.data_sets = [dataset_name]
|
||||||
|
|
||||||
def load_names(self):
|
def _load_names(self):
|
||||||
file_name = os.path.join(self.dataset.folder(), Files.index)
|
file_name = os.path.join(self.dataset.folder(), Files.index)
|
||||||
default_class = "class"
|
default_class = "class"
|
||||||
with open(file_name) as f:
|
with open(file_name) as f:
|
||||||
@@ -117,6 +122,12 @@ class Datasets:
|
|||||||
self.data_sets = result
|
self.data_sets = result
|
||||||
self.class_names = class_names
|
self.class_names = class_names
|
||||||
|
|
||||||
|
def get_features(self):
|
||||||
|
return self.dataset.features
|
||||||
|
|
||||||
|
def get_class_name(self):
|
||||||
|
return self.dataset.class_name
|
||||||
|
|
||||||
def load(self, name, dataframe=False):
|
def load(self, name, dataframe=False):
|
||||||
try:
|
try:
|
||||||
class_name = self.class_names[self.data_sets.index(name)]
|
class_name = self.class_names[self.data_sets.index(name)]
|
||||||
@@ -126,3 +137,33 @@ class Datasets:
|
|||||||
|
|
||||||
def __iter__(self) -> Diterator:
|
def __iter__(self) -> Diterator:
|
||||||
return Diterator(self.data_sets)
|
return Diterator(self.data_sets)
|
||||||
|
|
||||||
|
|
||||||
|
class Discretizer(Datasets):
|
||||||
|
def __init__(self, dataset_name=None):
|
||||||
|
super().__init__(dataset_name)
|
||||||
|
|
||||||
|
def load(self, name, dataframe=False):
|
||||||
|
X, y = super().load(name)
|
||||||
|
X, y = self.discretize(X, y)
|
||||||
|
dataset = pd.DataFrame(X, columns=self.get_features())
|
||||||
|
dataset[self.get_class_name()] = y
|
||||||
|
return dataset if dataframe else X, y
|
||||||
|
|
||||||
|
def discretize(self, X, y):
|
||||||
|
"""Supervised discretization with Fayyad and Irani's MDLP algorithm.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
X : np.ndarray
|
||||||
|
array (n_samples, n_features) of features
|
||||||
|
y : np.ndarray
|
||||||
|
array (n_samples,) of labels
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
tuple (X, y) of numpy.ndarray
|
||||||
|
"""
|
||||||
|
discretiz = MDLP()
|
||||||
|
Xdisc = discretiz.fit_transform(X, y)
|
||||||
|
return Xdisc.astype(int), y.astype(int)
|
||||||
|
@@ -1,4 +1,10 @@
|
|||||||
from .Datasets import Datasets, DatasetsSurcov, DatasetsTanveer, DatasetsArff
|
from .Datasets import (
|
||||||
|
Datasets,
|
||||||
|
DatasetsSurcov,
|
||||||
|
DatasetsTanveer,
|
||||||
|
DatasetsArff,
|
||||||
|
Discretizer,
|
||||||
|
)
|
||||||
from .Experiments import Experiment
|
from .Experiments import Experiment
|
||||||
from .Results import Report, Summary
|
from .Results import Report, Summary
|
||||||
|
|
||||||
@@ -7,4 +13,4 @@ __copyright__ = "Copyright 2020-2022, Ricardo Montañana Gómez"
|
|||||||
__license__ = "MIT License"
|
__license__ = "MIT License"
|
||||||
__author_email__ = "ricardo.montanana@alu.uclm.es"
|
__author_email__ = "ricardo.montanana@alu.uclm.es"
|
||||||
|
|
||||||
__all__ = ["Experiment", "Datasets", "Report", "Summary"]
|
__all__ = ["Experiment", "Datasets", "Report", "Summary", "Discretizer"]
|
||||||
|
@@ -2,6 +2,7 @@ pandas
|
|||||||
scikit-learn
|
scikit-learn
|
||||||
scipy
|
scipy
|
||||||
odte
|
odte
|
||||||
|
mdlp
|
||||||
mufs
|
mufs
|
||||||
xlsxwriter
|
xlsxwriter
|
||||||
openpyxl
|
openpyxl
|
||||||
|
Reference in New Issue
Block a user