Create benchmark

This commit is contained in:
2021-09-24 11:18:38 +02:00
parent ebe768f566
commit 2fc188adca
65 changed files with 27900 additions and 0 deletions

267
src/Experiments.py Normal file
View File

@@ -0,0 +1,267 @@
import os
import json
import random
import warnings
import time
from datetime import datetime
from tqdm import tqdm
import numpy as np
import pandas as pd
from sklearn.model_selection import StratifiedKFold, cross_validate
from sklearn.tree import DecisionTreeClassifier
from stree import Stree
from Utils import Folders, Files
class Randomized:
seeds = [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1]
class Models:
@staticmethod
def get_model(name):
if name == "STree":
return Stree
elif name == "Cart":
return DecisionTreeClassifier
else:
msg = f"No model recognized {name}"
if name == "Stree" or name == "stree":
msg += ", did you mean STree?"
raise ValueError(msg)
class Diterator:
def __init__(self, data):
self._stack = data.copy()
def __next__(self):
if len(self._stack) == 0:
raise StopIteration()
return self._stack.pop(0)
class Datasets:
def __init__(self):
with open(os.path.join(Folders.data, Files.index)) as f:
self.data_sets = f.read().splitlines()
def load(self, name):
data = pd.read_csv(
os.path.join(Folders.data, Files.dataset(name)),
sep="\t",
index_col=0,
)
X = data.drop("clase", axis=1).to_numpy()
y = data["clase"].to_numpy()
return X, y
def __iter__(self) -> Diterator:
return Diterator(self.data_sets)
class BestResults:
def __init__(self, model, datasets):
self.datasets = datasets
self.model = model
self.data = {}
def _get_file_name(self):
return os.path.join(Folders.results, Files.best_results(self.model))
def load(self, dictionary):
self.file_name = self._get_file_name()
try:
with open(self.file_name) as f:
self.data = json.load(f)
except FileNotFoundError:
raise ValueError(f"{self.file_name} does not exist")
return self.fill(dictionary, self.data)
def fill(self, dictionary, data=None):
if data is None:
data = {}
for dataset in self.datasets:
if dataset not in data:
data[dataset] = (0.0, dictionary, "")
return data
def _process_datafile(self, results, data, file_name):
for record in data["results"]:
dataset = record["dataset"]
if dataset in results:
if record["accuracy"] > results[dataset]["accuracy"]:
record["file_name"] = file_name
results[dataset] = record
else:
record["file_name"] = file_name
results[dataset] = record
def build(self):
results = {}
init_suffix, end_suffix = Files.results_suffixes(self.model)
all_files = list(os.walk(Folders.results))
for root, _, files in tqdm(all_files, desc="files"):
for name in files:
if name.startswith(init_suffix) and name.endswith(end_suffix):
file_name = os.path.join(root, name)
with open(file_name) as fp:
data = json.load(fp)
self._process_datafile(results, data, name)
# Build best results json file
output = {}
datasets = Datasets()
for name in tqdm(list(datasets), desc="datasets"):
output[name] = (
results[name]["accuracy"],
results[name]["hyperparameters"],
results[name]["file_name"],
)
self.data = output
with open(self._get_file_name(), "w") as fp:
json.dump(output, fp)
class Experiment:
def __init__(
self,
model_name,
datasets,
hyperparams_dict,
hyperparams_file,
platform,
progress_bar=True,
folds=5,
):
today = datetime.now()
self.time = today.strftime("%H:%M:%S")
self.date = today.strftime("%Y-%m-%d")
self.output_file = os.path.join(
Folders.results,
Files.results(model_name, platform, self.date, self.time),
)
self.model_name = model_name
self.model = Models.get_model(model_name)
self.datasets = datasets
dictionary = json.loads(hyperparams_dict)
hyper = BestResults(model=model_name, datasets=datasets)
if hyperparams_file:
self.hyperparameters_dict = hyper.load(
dictionary=dictionary,
)
else:
self.hyperparameters_dict = hyper.fill(
dictionary=dictionary,
)
self.platform = platform
self.progress_bar = progress_bar
self.folds = folds
self.random_seeds = Randomized.seeds
self.results = []
self.duration = 0
self._init_experiment()
def get_output_file(self):
return self.output_file
def _build_classifier(self, random_state, hyperparameters):
clf = self.model(random_state=random_state)
clf.set_params(**hyperparameters)
return clf
def _init_experiment(self):
self.scores = []
self.times = []
self.nodes = []
self.leaves = []
self.depths = []
def _n_fold_crossval(self, X, y, hyperparameters):
if self.scores != []:
raise ValueError("Must init experiment before!")
loop = tqdm(
self.random_seeds,
position=1,
leave=False,
disable=not self.progress_bar,
)
for random_state in loop:
loop.set_description(f"Seed({random_state:4d})")
random.seed(random_state)
np.random.seed(random_state)
kfold = StratifiedKFold(
shuffle=True, random_state=random_state, n_splits=self.folds
)
clf = self._build_classifier(random_state, hyperparameters)
with warnings.catch_warnings():
warnings.filterwarnings("ignore")
res = cross_validate(
clf, X, y, cv=kfold, return_estimator=True
)
self.scores.append(res["test_score"])
self.times.append(res["fit_time"])
for result_item in res["estimator"]:
if self.model_name == "Cart":
nodes_item = result_item.tree_.node_count
depth_item = result_item.tree_.max_depth
leaves_item = result_item.get_n_leaves()
else:
nodes_item, leaves_item = result_item.nodes_leaves()
depth_item = (
result_item.depth_
if hasattr(result_item, "depth_")
else 0
)
self.nodes.append(nodes_item)
self.leaves.append(leaves_item)
self.depths.append(depth_item)
def _add_results(self, name, hyperparameters, samples, features, classes):
record = {}
record["dataset"] = name
record["samples"] = samples
record["features"] = features
record["classes"] = classes
record["hyperparameters"] = hyperparameters
record["nodes"] = np.mean(self.nodes)
record["leaves"] = np.mean(self.leaves)
record["depth"] = np.mean(self.depths)
record["accuracy"] = np.mean(self.scores)
record["accuracy_std"] = np.std(self.scores)
record["time"] = np.mean(self.times)
record["time_std"] = np.std(self.times)
self.results.append(record)
def _output_results(self):
output = {}
output["model"] = self.model_name
output["folds"] = self.folds
output["date"] = self.date
output["time"] = self.time
output["duration"] = self.duration
output["seeds"] = self.random_seeds
output["platform"] = self.platform
output["results"] = self.results
with open(self.output_file, "w") as f:
json.dump(output, f)
def do_experiment(self):
now = time.time()
loop = tqdm(
list(self.datasets),
position=0,
disable=not self.progress_bar,
)
for name in loop:
loop.set_description(f"{name:30s}")
X, y = self.datasets.load(name)
samp, feat = X.shape
n_classes = len(np.unique(y))
hyperparameters = self.hyperparameters_dict[name][1]
self._init_experiment()
self._n_fold_crossval(X, y, hyperparameters)
self._add_results(name, hyperparameters, samp, feat, n_classes)
self.duration = time.time() - now
self._output_results()
if self.progress_bar:
print(f"Results in {self.output_file}")