From 7a1d8c9f4246ac901479546ecd1caa6144fcac4d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Ricardo=20Montan=CC=83ana?= Date: Fri, 25 Feb 2022 14:05:17 +0100 Subject: [PATCH] Add date to sort metric list and some results --- results/best_results_accuracy_ODTE.json | 2 +- results/exreport_accuracy.csv | 311 ++++++++---------- results/exreport_accuracy.txt | 50 ++- results/exreport_err_accuracy.txt | 16 +- ...ggingStree_bart_2022-02-20_16:22:48_0.xlsx | Bin 0 -> 11830 bytes ...ggingStree_bart_2022-02-21_10:54:13_0.xlsx | Bin 0 -> 11826 bytes ..._Bagging_iMac27_2022-01-14_14:00:32_0.json | 1 - ..._Bagging_iMac27_2022-01-14_14:01:48_0.json | 1 - ..._Bagging_iMac27_2022-01-14_14:03:24_0.json | 1 - ...racy_ODTE_Galgo_2022-02-17_09:59:54_0.xlsx | Bin 11893 -> 11894 bytes src/Results.py | 7 +- 11 files changed, 168 insertions(+), 221 deletions(-) create mode 100644 results/results_accuracy_BaggingStree_bart_2022-02-20_16:22:48_0.xlsx create mode 100644 results/results_accuracy_BaggingStree_bart_2022-02-21_10:54:13_0.xlsx delete mode 100644 results/results_accuracy_Bagging_iMac27_2022-01-14_14:00:32_0.json delete mode 100644 results/results_accuracy_Bagging_iMac27_2022-01-14_14:01:48_0.json delete mode 100644 results/results_accuracy_Bagging_iMac27_2022-01-14_14:03:24_0.json diff --git a/results/best_results_accuracy_ODTE.json b/results/best_results_accuracy_ODTE.json index 0692579..4a41f7b 100644 --- a/results/best_results_accuracy_ODTE.json +++ b/results/best_results_accuracy_ODTE.json @@ -1 +1 @@ -{"balance-scale": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"C\": 10000.0, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0, \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "balloons": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0, \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "breast-cancer-wisc-diag": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"C\": 0.2, \"max_iter\": 10000.0, \"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "breast-cancer-wisc-prog": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"C\": 0.2, \"max_iter\": 10000.0, \"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "breast-cancer-wisc": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"rbf\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "breast-cancer": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "cardiotocography-10clases": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{}"}, "-program made-"], "cardiotocography-3clases": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{}"}, "-program made-"], "conn-bench-sonar-mines-rocks": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"rbf\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "cylinder-bands": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"rbf\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "dermatology": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"C\": 55, \"max_iter\": 10000.0, \"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "echocardiogram": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"splitter\": \"random\", \"max_features\": \"auto\"}"}, "-program made-"], "fertility": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"C\": 0.05, \"max_features\": \"auto\", \"max_iter\": 10000.0, \"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "haberman-survival": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "heart-hungarian": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"C\": 0.05, \"max_iter\": 10000.0, \"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "hepatitis": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0, \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "ilpd-indian-liver": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "ionosphere": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0, \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "iris": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{}"}, "-program made-"], "led-display": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "libras": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"C\": 0.08, \"max_iter\": 10000.0, \"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "low-res-spect": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{}"}, "-program made-"], "lymphography": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"C\": 0.05, \"max_iter\": 10000.0, \"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "mammographic": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"rbf\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "molec-biol-promoter": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"rbf\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "musk-1": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"C\": 0.05, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_iter\": 10000.0, \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "oocytes_merluccius_nucleus_4d": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"C\": 8.25, \"gamma\": 0.1, \"kernel\": \"poly\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "oocytes_merluccius_states_2f": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{}"}, "-program made-"], "oocytes_trisopterus_nucleus_2f": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "oocytes_trisopterus_states_5b": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"C\": 0.11, \"max_iter\": 10000.0, \"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "parkinsons": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "pima": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{}"}, "-program made-"], "pittsburg-bridges-MATERIAL": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0, \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "pittsburg-bridges-REL-L": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{}"}, "-program made-"], "pittsburg-bridges-SPAN": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"C\": 0.05, \"max_iter\": 10000.0, \"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "pittsburg-bridges-T-OR-D": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"splitter\": \"random\", \"max_features\": \"auto\"}"}, "-program made-"], "planning": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"C\": 7, \"gamma\": 10.0, \"kernel\": \"rbf\", \"max_iter\": 10000.0, \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "post-operative": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"C\": 55, \"degree\": 5, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_iter\": 10000.0, \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "seeds": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"C\": 10000.0, \"max_iter\": 10000.0, \"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "statlog-australian-credit": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{}"}, "-program made-"], "statlog-german-credit": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{}"}, "-program made-"], "statlog-heart": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "statlog-image": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"C\": 7, \"max_iter\": 10000.0, \"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "statlog-vehicle": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "synthetic-control": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{}"}, "-program made-"], "tic-tac-toe": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"C\": 0.2, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_iter\": 10000.0, \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "vertebral-column-2clases": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "wine": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"C\": 0.55, \"max_iter\": 10000.0, \"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "zoo": [0.0, {"n_jobs": 1, "n_estimators": 100, "be_hyperparams": "{\"C\": 0.1, \"max_iter\": 10000.0, \"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"]} +{"balance-scale": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"C\": 10000.0, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0, \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "balloons": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0, \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "breast-cancer-wisc-diag": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"C\": 0.2, \"max_iter\": 10000.0, \"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "breast-cancer-wisc-prog": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"C\": 0.2, \"max_iter\": 10000.0, \"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "breast-cancer-wisc": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"rbf\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "breast-cancer": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "cardiotocography-10clases": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{}"}, "-program made-"], "cardiotocography-3clases": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{}"}, "-program made-"], "conn-bench-sonar-mines-rocks": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"rbf\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "cylinder-bands": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"rbf\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "dermatology": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"C\": 55, \"max_iter\": 10000.0, \"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "echocardiogram": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"splitter\": \"random\", \"max_features\": \"auto\"}"}, "-program made-"], "fertility": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"C\": 0.05, \"max_features\": \"auto\", \"max_iter\": 10000.0, \"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "haberman-survival": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "heart-hungarian": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"C\": 0.05, \"max_iter\": 10000.0, \"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "hepatitis": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0, \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "ilpd-indian-liver": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "ionosphere": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0, \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "iris": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{}"}, "-program made-"], "led-display": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "libras": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"C\": 0.08, \"max_iter\": 10000.0, \"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "low-res-spect": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{}"}, "-program made-"], "lymphography": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"C\": 0.05, \"max_iter\": 10000.0, \"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "mammographic": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"rbf\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "molec-biol-promoter": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"rbf\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "musk-1": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"C\": 0.05, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_iter\": 10000.0, \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "oocytes_merluccius_nucleus_4d": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"C\": 8.25, \"gamma\": 0.1, \"kernel\": \"poly\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "oocytes_merluccius_states_2f": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{}"}, "-program made-"], "oocytes_trisopterus_nucleus_2f": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "oocytes_trisopterus_states_5b": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"C\": 0.11, \"max_iter\": 10000.0, \"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "parkinsons": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "pima": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{}"}, "-program made-"], "pittsburg-bridges-MATERIAL": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"C\": 7, \"gamma\": 0.1, \"kernel\": \"rbf\", \"max_iter\": 10000.0, \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "pittsburg-bridges-REL-L": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{}"}, "-program made-"], "pittsburg-bridges-SPAN": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"C\": 0.05, \"max_iter\": 10000.0, \"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "pittsburg-bridges-T-OR-D": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"splitter\": \"random\", \"max_features\": \"auto\"}"}, "-program made-"], "planning": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"C\": 7, \"gamma\": 10.0, \"kernel\": \"rbf\", \"max_iter\": 10000.0, \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "post-operative": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"C\": 55, \"degree\": 5, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_iter\": 10000.0, \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "seeds": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"C\": 10000.0, \"max_iter\": 10000.0, \"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "statlog-australian-credit": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{}"}, "-program made-"], "statlog-german-credit": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{}"}, "-program made-"], "statlog-heart": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "statlog-image": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"C\": 7, \"max_iter\": 10000.0, \"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "statlog-vehicle": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "synthetic-control": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{}"}, "-program made-"], "tic-tac-toe": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"C\": 0.2, \"gamma\": 0.1, \"kernel\": \"poly\", \"max_iter\": 10000.0, \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "vertebral-column-2clases": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "wine": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"C\": 0.55, \"max_iter\": 10000.0, \"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"], "zoo": [0.0, {"n_jobs": -1, "n_estimators": 100, "be_hyperparams": "{\"C\": 0.1, \"max_iter\": 10000.0, \"kernel\": \"liblinear\", \"multiclass_strategy\": \"ovr\"}"}, "-program made-"]} diff --git a/results/exreport_accuracy.csv b/results/exreport_accuracy.csv index 007c9b9..1b6fcea 100644 --- a/results/exreport_accuracy.csv +++ b/results/exreport_accuracy.csv @@ -142,7 +142,7 @@ ODTE, statlog-heart, 0.8381481481481482, 0.046379185057354784 ODTE, statlog-image, 0.9641991341991343, 0.007272340744212073 ODTE, statlog-vehicle, 0.8072182387747998, 0.02404945671905629 ODTE, synthetic-control, 0.987, 0.009741092797468319 -ODTE, tic-tac-toe, 0.9846531413612564, 0.00756301332812281 +ODTE, tic-tac-toe, 0.9871591404886563, 0.0074727077754232615 ODTE, vertebral-column-2clases, 0.8564516129032256, 0.037928954891305953 ODTE, wine, 0.9814285714285714, 0.02424781771927406 ODTE, zoo, 0.9574761904761906, 0.04557023434769017 @@ -244,6 +244,104 @@ Wodt, tic-tac-toe, 0.9449798211169285, 0.029347280139619656 Wodt, vertebral-column-2clases, 0.8138709677419353, 0.04530047675895885 Wodt, wine, 0.967920634920635, 0.028208046326376822 Wodt, zoo, 0.9514285714285715, 0.043724036675722826 +RandomForest, balance-scale, 0.8488000000000001, 0.025562472493872744 +RandomForest, balloons, 0.6583333333333333, 0.24958298553119895 +RandomForest, breast-cancer-wisc-diag, 0.9602856699270299, 0.01304850246785924 +RandomForest, breast-cancer-wisc-prog, 0.7889487179487179, 0.062095973522275645 +RandomForest, breast-cancer-wisc, 0.9682384378211717, 0.012979760074633098 +RandomForest, breast-cancer, 0.7173260738052026, 0.05543339031060783 +RandomForest, cardiotocography-10clases, 0.8729086992543498, 0.01716119423915263 +RandomForest, cardiotocography-3clases, 0.9415357083678542, 0.011745284632829643 +RandomForest, conn-bench-sonar-mines-rocks, 0.833437862950058, 0.05787314265134896 +RandomForest, cylinder-bands, 0.792147344374643, 0.03975693903506292 +RandomForest, dermatology, 0.9778563495001852, 0.015194540700548658 +RandomForest, echocardiogram, 0.8292592592592591, 0.07125299167854407 +RandomForest, fertility, 0.887, 0.06067124524847005 +RandomForest, haberman-survival, 0.7084822845055527, 0.05577963957846104 +RandomForest, heart-hungarian, 0.8169783752191703, 0.047084407169907465 +RandomForest, hepatitis, 0.8225806451612903, 0.07162452681024038 +RandomForest, ilpd-indian-liver, 0.7048010610079575, 0.03367965359465586 +RandomForest, ionosphere, 0.9327565392354125, 0.02623998580282412 +RandomForest, iris, 0.9499999999999998, 0.03144660377352201 +RandomForest, led-display, 0.7132000000000001, 0.027545598559479512 +RandomForest, libras, 0.8008333333333334, 0.051039351799359346 +RandomForest, low-res-spect, 0.8941421266090636, 0.033512494391602414 +RandomForest, lymphography, 0.8472873563218392, 0.07011193134668385 +RandomForest, mammographic, 0.8082259283246978, 0.022691310103387825 +RandomForest, molec-biol-promoter, 0.8914718614718615, 0.06923296108787423 +RandomForest, musk-1, 0.8892916666666667, 0.032218163597528444 +RandomForest, oocytes_merluccius_nucleus_4d, 0.8008857006217122, 0.026005202449345177 +RandomForest, oocytes_merluccius_states_2f, 0.9224098517455765, 0.014089731590980637 +RandomForest, oocytes_trisopterus_nucleus_2f, 0.80932324506095, 0.02940827813910382 +RandomForest, oocytes_trisopterus_states_5b, 0.9135879421125322, 0.018448127398280962 +RandomForest, parkinsons, 0.906153846153846, 0.043092182889324544 +RandomForest, pima, 0.7619658772599949, 0.029215416907967737 +RandomForest, pittsburg-bridges-MATERIAL, 0.8393939393939392, 0.06465451660842308 +RandomForest, pittsburg-bridges-REL-L, 0.6780476190476192, 0.08371922895638823 +RandomForest, pittsburg-bridges-SPAN, 0.6433333333333333, 0.1000367396003129 +RandomForest, pittsburg-bridges-T-OR-D, 0.856095238095238, 0.07211284933039848 +RandomForest, planning, 0.7022522522522522, 0.06398440367639394 +RandomForest, post-operative, 0.6344444444444445, 0.08613082211681551 +RandomForest, seeds, 0.9333333333333332, 0.041785544701867246 +RandomForest, statlog-australian-credit, 0.6682608695652174, 0.03491189739487307 +RandomForest, statlog-german-credit, 0.7622999999999999, 0.02486382914999218 +RandomForest, statlog-heart, 0.8307407407407408, 0.044445987627530076 +RandomForest, statlog-image, 0.9785714285714286, 0.007182103906076649 +RandomForest, statlog-vehicle, 0.7494166376609818, 0.02747614895571888 +RandomForest, synthetic-control, 0.9860000000000001, 0.010598742063723111 +RandomForest, tic-tac-toe, 0.9884075043630017, 0.0071140588943835546 +RandomForest, vertebral-column-2clases, 0.8322580645161289, 0.04539112025635577 +RandomForest, wine, 0.9825873015873016, 0.02303907423919074 +RandomForest, zoo, 0.9594761904761906, 0.04292716501935155 +BaggingStree, balance-scale, 0.9743999999999999, 0.01893145530591877 +BaggingStree, balloons, 0.7733333333333333, 0.27235597621087326 +BaggingStree, breast-cancer-wisc-diag, 0.9759276509858718, 0.014451052166715531 +BaggingStree, breast-cancer-wisc-prog, 0.8091410256410256, 0.05525623326760874 +BaggingStree, breast-cancer-wisc, 0.9682353545734841, 0.013372407783798355 +BaggingStree, breast-cancer, 0.7394494857834241, 0.04747649879695565 +BaggingStree, cardiotocography-10clases, 0.8287906103286384, 0.019919444360845064 +BaggingStree, cardiotocography-3clases, 0.9121377520022094, 0.01484624306368222 +BaggingStree, conn-bench-sonar-mines-rocks, 0.8364227642276423, 0.05768447229690234 +BaggingStree, cylinder-bands, 0.7509347039786789, 0.041363431918714964 +BaggingStree, dermatology, 0.983054424287301, 0.01146631014778772 +BaggingStree, echocardiogram, 0.855156695156695, 0.06266151037590971 +BaggingStree, fertility, 0.88, 0.0547722557505166 +BaggingStree, haberman-survival, 0.7359545214172395, 0.047857454758329004 +BaggingStree, heart-hungarian, 0.8299006428988897, 0.050874048012859115 +BaggingStree, hepatitis, 0.8283870967741934, 0.06780028209248852 +BaggingStree, ilpd-indian-liver, 0.7269378131447097, 0.03708761542948765 +BaggingStree, ionosphere, 0.9510100603621732, 0.02418916928619684 +BaggingStree, iris, 0.9653333333333335, 0.032632635334721105 +BaggingStree, led-display, 0.7218000000000001, 0.027124896313165885 +BaggingStree, libras, 0.8544444444444445, 0.044724810139063854 +BaggingStree, low-res-spect, 0.910904602362899, 0.034998937080933226 +BaggingStree, lymphography, 0.8511724137931036, 0.060541983349731314 +BaggingStree, mammographic, 0.8272695379965458, 0.02450569044585343 +BaggingStree, molec-biol-promoter, 0.8387012987012987, 0.07620183897953593 +BaggingStree, musk-1, 0.9128135964912282, 0.029764363025043043 +BaggingStree, oocytes_merluccius_nucleus_4d, 0.8454954567192731, 0.02495631167694985 +BaggingStree, oocytes_merluccius_states_2f, 0.9220148254423719, 0.01653121938374588 +BaggingStree, oocytes_trisopterus_nucleus_2f, 0.8103038491563082, 0.020971220779186443 +BaggingStree, oocytes_trisopterus_states_5b, 0.9239998799015193, 0.01817568579552671 +BaggingStree, parkinsons, 0.901025641025641, 0.04865312826739729 +BaggingStree, pima, 0.7726398438163143, 0.028486201404109596 +BaggingStree, pittsburg-bridges-MATERIAL, 0.8658874458874459, 0.07136421080457399 +BaggingStree, pittsburg-bridges-REL-L, 0.6818095238095239, 0.09893968478062681 +BaggingStree, pittsburg-bridges-SPAN, 0.7003508771929825, 0.10417934569394204 +BaggingStree, pittsburg-bridges-T-OR-D, 0.8628095238095238, 0.0747571882042698 +BaggingStree, planning, 0.7352702702702704, 0.06697755238925641 +BaggingStree, post-operative, 0.711111111111111, 0.07535922203472521 +BaggingStree, seeds, 0.9576190476190476, 0.028686277108245766 +BaggingStree, statlog-australian-credit, 0.6782608695652174, 0.03904983647915211 +BaggingStree, statlog-german-credit, 0.7656000000000001, 0.028716545753276115 +BaggingStree, statlog-heart, 0.8392592592592593, 0.04262317742463941 +BaggingStree, statlog-image, 0.9613419913419912, 0.007744079362039781 +BaggingStree, statlog-vehicle, 0.8039122868082146, 0.02550795916537555 +BaggingStree, synthetic-control, 0.9868333333333333, 0.009441339358845712 +BaggingStree, tic-tac-toe, 0.9862183682373472, 0.007729402310947018 +BaggingStree, vertebral-column-2clases, 0.8574193548387095, 0.03942352546439275 +BaggingStree, wine, 0.9791746031746031, 0.025059546117196532 +BaggingStree, zoo, 0.9664285714285715, 0.04138270586454204 SVC, balance-scale, 0.9785600000000001, 0.013711542582802286 SVC, balloons, 0.86, 0.28501461950807594 SVC, breast-cancer-wisc-diag, 0.9753951249805931, 0.014597293231205878 @@ -342,104 +440,6 @@ BaggingWodt, tic-tac-toe, 0.9527105148342061, 0.020956068837478 BaggingWodt, vertebral-column-2clases, 0.8429032258064517, 0.04325588746295833 BaggingWodt, wine, 0.9831111111111112, 0.020289564182456803 BaggingWodt, zoo, 0.9574761904761906, 0.038427155222620905 -BaggingStree, balance-scale, 0.9046400000000001, 0.024778829673735604 -BaggingStree, balloons, 0.7466666666666666, 0.22543784558547889 -BaggingStree, breast-cancer-wisc-diag, 0.9664291259121255, 0.014671587276866486 -BaggingStree, breast-cancer-wisc-prog, 0.7687564102564102, 0.07070554199381442 -BaggingStree, breast-cancer-wisc, 0.9678129496402877, 0.013280622942249616 -BaggingStree, breast-cancer, 0.7293768905021173, 0.04592856682964331 -BaggingStree, cardiotocography-10clases, 0.8248878210439105, 0.020088771819471586 -BaggingStree, cardiotocography-3clases, 0.8991088649544325, 0.017672766557020134 -BaggingStree, conn-bench-sonar-mines-rocks, 0.8200696864111499, 0.04751360241183439 -BaggingStree, cylinder-bands, 0.6814201408718826, 0.04672859958144014 -BaggingStree, dermatology, 0.983054424287301, 0.01146631014778772 -BaggingStree, echocardiogram, 0.855156695156695, 0.06266151037590971 -BaggingStree, fertility, 0.88, 0.0547722557505166 -BaggingStree, haberman-survival, 0.7353199365415125, 0.048398466240040176 -BaggingStree, heart-hungarian, 0.8207364114552892, 0.04947084712984143 -BaggingStree, hepatitis, 0.8019354838709677, 0.07688254755551763 -BaggingStree, ilpd-indian-liver, 0.7135661656351313, 0.038048725185040336 -BaggingStree, ionosphere, 0.9208088531187122, 0.03440093358479876 -BaggingStree, iris, 0.9553333333333331, 0.0295221197673127 -BaggingStree, led-display, 0.7128, 0.029885782572989444 -BaggingStree, libras, 0.8544444444444445, 0.044724810139063854 -BaggingStree, low-res-spect, 0.9043078822077234, 0.031947679613072245 -BaggingStree, lymphography, 0.7700689655172414, 0.07050802195491458 -BaggingStree, mammographic, 0.8272695379965458, 0.02450569044585343 -BaggingStree, molec-biol-promoter, 0.8387012987012987, 0.07620183897953593 -BaggingStree, musk-1, 0.8318991228070175, 0.03598591892932648 -BaggingStree, oocytes_merluccius_nucleus_4d, 0.7072391200382592, 0.03671500267792582 -BaggingStree, oocytes_merluccius_states_2f, 0.9130105212816835, 0.018260354243601108 -BaggingStree, oocytes_trisopterus_nucleus_2f, 0.7445030925358793, 0.03262686720944289 -BaggingStree, oocytes_trisopterus_states_5b, 0.8790548249564645, 0.02150378389813439 -BaggingStree, parkinsons, 0.8697435897435898, 0.04751275824369424 -BaggingStree, pima, 0.759612087259146, 0.025906439151399386 -BaggingStree, pittsburg-bridges-MATERIAL, 0.8563636363636362, 0.07381651843817168 -BaggingStree, pittsburg-bridges-REL-L, 0.6818095238095239, 0.09893968478062681 -BaggingStree, pittsburg-bridges-SPAN, 0.6563157894736843, 0.10692196863427415 -BaggingStree, pittsburg-bridges-T-OR-D, 0.8628095238095238, 0.0747571882042698 -BaggingStree, planning, 0.7143693693693695, 0.0715459100205182 -BaggingStree, post-operative, 0.711111111111111, 0.07535922203472521 -BaggingStree, seeds, 0.939047619047619, 0.04045097253637199 -BaggingStree, statlog-australian-credit, 0.6782608695652174, 0.03904983647915211 -BaggingStree, statlog-german-credit, 0.7364999999999999, 0.03200390601161053 -BaggingStree, statlog-heart, 0.8392592592592593, 0.04262317742463941 -BaggingStree, statlog-image, 0.9594372294372293, 0.008806199315273038 -BaggingStree, statlog-vehicle, 0.7127880264531847, 0.04127485840961743 -BaggingStree, synthetic-control, 0.9860000000000001, 0.008406346808612346 -BaggingStree, tic-tac-toe, 0.7933235165794066, 0.042192838956410524 -BaggingStree, vertebral-column-2clases, 0.8487096774193548, 0.042781783007912466 -BaggingStree, wine, 0.978063492063492, 0.025306267118142396 -BaggingStree, zoo, 0.9664285714285715, 0.04138270586454204 -Bagging, balance-scale, nan, nan -Bagging, balloons, nan, nan -Bagging, breast-cancer-wisc-diag, nan, nan -Bagging, breast-cancer-wisc-prog, nan, nan -Bagging, breast-cancer-wisc, nan, nan -Bagging, breast-cancer, nan, nan -Bagging, cardiotocography-10clases, nan, nan -Bagging, cardiotocography-3clases, nan, nan -Bagging, conn-bench-sonar-mines-rocks, nan, nan -Bagging, cylinder-bands, nan, nan -Bagging, dermatology, nan, nan -Bagging, echocardiogram, nan, nan -Bagging, fertility, nan, nan -Bagging, haberman-survival, nan, nan -Bagging, heart-hungarian, nan, nan -Bagging, hepatitis, nan, nan -Bagging, ilpd-indian-liver, nan, nan -Bagging, ionosphere, nan, nan -Bagging, iris, nan, nan -Bagging, led-display, nan, nan -Bagging, libras, nan, nan -Bagging, low-res-spect, nan, nan -Bagging, lymphography, nan, nan -Bagging, mammographic, nan, nan -Bagging, molec-biol-promoter, nan, nan -Bagging, musk-1, nan, nan -Bagging, oocytes_merluccius_nucleus_4d, nan, nan -Bagging, oocytes_merluccius_states_2f, nan, nan -Bagging, oocytes_trisopterus_nucleus_2f, nan, nan -Bagging, oocytes_trisopterus_states_5b, nan, nan -Bagging, parkinsons, nan, nan -Bagging, pima, nan, nan -Bagging, pittsburg-bridges-MATERIAL, nan, nan -Bagging, pittsburg-bridges-REL-L, nan, nan -Bagging, pittsburg-bridges-SPAN, nan, nan -Bagging, pittsburg-bridges-T-OR-D, nan, nan -Bagging, planning, nan, nan -Bagging, post-operative, nan, nan -Bagging, seeds, nan, nan -Bagging, statlog-australian-credit, nan, nan -Bagging, statlog-german-credit, nan, nan -Bagging, statlog-heart, nan, nan -Bagging, statlog-image, nan, nan -Bagging, statlog-vehicle, nan, nan -Bagging, synthetic-control, nan, nan -Bagging, tic-tac-toe, nan, nan -Bagging, vertebral-column-2clases, nan, nan -Bagging, wine, nan, nan -Bagging, zoo, nan, nan Cart, balance-scale, 0.7820799999999999, 0.03608203985364464 Cart, balloons, 0.6833333333333335, 0.26977356760397747 Cart, breast-cancer-wisc-diag, 0.9239217512808571, 0.02323176886368342 @@ -542,11 +542,11 @@ TBRRoF, balance-scale, 0.901701780173118, 0.022727898539488985 TBRRoF, balloons, 0.64875, 0.23921130353453926 TBRRoF, breast-cancer-wisc-diag, 0.9734979808923474, 0.01211458933120479 TBRRoF, breast-cancer-wisc-prog, 0.8079471788715488, 0.05471208977777354 -TBRRoF, breast-cancer-wisc, 0.9688194038573934, 0.01104260329962437 +TBRRoF, breast-cancer-wisc, 0.9684692187804401, 0.011827258213964388 TBRRoF, breast-cancer, 0.7354775226702683, 0.04827367740143163 TBRRoF, cardiotocography-10clases, 0.8288138243181649, 0.01645252887633946 TBRRoF, cardiotocography-3clases, 0.9224819890962925, 0.011610247810599902 -TBRRoF, conn-bench-sonar-mines-rocks, 0.8375, 0.053844346412695955 +TBRRoF, conn-bench-sonar-mines-rocks, 0.834423076923077, 0.05150748510916756 TBRRoF, cylinder-bands, 0.767890625, 0.03324347930143141 TBRRoF, dermatology, 0.9746077041238331, 0.014736301000625167 TBRRoF, echocardiogram, 0.8499598214285714, 0.05162023787508073 @@ -554,43 +554,43 @@ TBRRoF, fertility, 0.8810000000000003, 0.060740820180344164 TBRRoF, haberman-survival, 0.7374089068825913, 0.044260313726551134 TBRRoF, heart-hungarian, 0.8190036529680362, 0.03888797653544859 TBRRoF, hepatitis, 0.8227984595635432, 0.0532198072811453 -TBRRoF, ilpd-indian-liver, 0.7193709226467846, 0.023486304382908652 +TBRRoF, ilpd-indian-liver, 0.714239981360671, 0.033670460871576914 TBRRoF, ionosphere, 0.9459827586206895, 0.02184731993247911 TBRRoF, iris, 0.9658281358281358, 0.02676690588381821 TBRRoF, led-display, 0.68436, 0.04995546157031798 TBRRoF, libras, 0.8801666666666665, 0.03679035193712203 TBRRoF, low-res-spect, 0.8999957912457909, 0.026355170969855124 -TBRRoF, lymphography, 0.8621621621621622, 0.05538892305924108 +TBRRoF, lymphography, 0.8536486486486488, 0.05135724820856693 TBRRoF, mammographic, 0.8280522130013831, 0.020736800209974978 -TBRRoF, molec-biol-promoter, 0.8082417582417584, 0.08100093455762149 +TBRRoF, molec-biol-promoter, 0.8059340659340658, 0.07345265473126247 TBRRoF, musk-1, 0.8918907563025209, 0.028415223920829437 -TBRRoF, oocytes_merluccius_nucleus_4d, 0.8403234912642101, 0.018770954783619315 +TBRRoF, oocytes_merluccius_nucleus_4d, 0.8380727855344474, 0.021149025869688552 TBRRoF, oocytes_merluccius_states_2f, 0.9260048065918971, 0.01392436830249517 -TBRRoF, oocytes_trisopterus_nucleus_2f, 0.8344298245614035, 0.02138638757870041 -TBRRoF, oocytes_trisopterus_states_5b, 0.9350877192982455, 0.013985948140735555 +TBRRoF, oocytes_trisopterus_nucleus_2f, 0.8335307017543863, 0.025458035585743156 +TBRRoF, oocytes_trisopterus_states_5b, 0.931666666666666, 0.01590439823771617 TBRRoF, parkinsons, 0.9318872549019607, 0.03330032511327817 TBRRoF, pima, 0.768046875, 0.028059285918720294 TBRRoF, pittsburg-bridges-MATERIAL, 0.8622252747252745, 0.05272285056647456 TBRRoF, pittsburg-bridges-REL-L, 0.6864928571428571, 0.08623338832389287 -TBRRoF, pittsburg-bridges-SPAN, 0.6956521739130435, 0.06464277753695896 +TBRRoF, pittsburg-bridges-SPAN, 0.6932608695652175, 0.08145095608868286 TBRRoF, pittsburg-bridges-T-OR-D, 0.8713629629629633, 0.06055900326616563 TBRRoF, planning, 0.7224751773049648, 0.05837993833973262 TBRRoF, post-operative, 0.7113068181818182, 0.08162598674627758 -TBRRoF, seeds, 0.9512464387464385, 0.033266940266918926 +TBRRoF, seeds, 0.9474358974358972, 0.027630596849567368 TBRRoF, statlog-australian-credit, 0.6782665062817429, 0.029157752633879357 -TBRRoF, statlog-german-credit, 0.7592000000000001, 0.019449259220096972 -TBRRoF, statlog-heart, 0.8392277741726153, 0.037384083235462114 +TBRRoF, statlog-german-credit, 0.7554400000000001, 0.024236821524035296 +TBRRoF, statlog-heart, 0.8349664719878868, 0.0410218444181296 TBRRoF, statlog-image, 0.9756969824863881, 0.006903978139917843 TBRRoF, statlog-vehicle, 0.7870681752441981, 0.026493453010463675 -TBRRoF, synthetic-control, 0.9919999999999998, 0.009575797952794753 +TBRRoF, synthetic-control, 0.9910666666666664, 0.00849185901074688 TBRRoF, tic-tac-toe, 0.9844217781558706, 0.008102161082608183 TBRRoF, vertebral-column-2clases, 0.8515140555646883, 0.03497531619650492 -TBRRoF, wine, 0.9821640316205533, 0.018615197860478525 +TBRRoF, wine, 0.9804743083003953, 0.020476239593149058 TBRRoF, zoo, 0.9492615384615388, 0.04884462984878655 TBRaF, balance-scale, 0.8975269475747183, 0.023461084398242734 -TBRaF, balloons, 0.6375, 0.23612831034708318 -TBRaF, breast-cancer-wisc-diag, 0.9722372697724811, 0.013193347862443736 -TBRaF, breast-cancer-wisc-prog, 0.801140456182473, 0.05994146019366561 +TBRaF, balloons, 0.59875, 0.23763055126492547 +TBRaF, breast-cancer-wisc-diag, 0.9693809711415347, 0.012888038813231393 +TBRaF, breast-cancer-wisc-prog, 0.8002541016406561, 0.05869323051922061 TBRaF, breast-cancer-wisc, 0.9685330216247806, 0.011892547172713566 TBRaF, breast-cancer, 0.732153193131391, 0.04414297240873954 TBRaF, cardiotocography-10clases, 0.8268112132229536, 0.016587713750123762 @@ -598,90 +598,41 @@ TBRaF, cardiotocography-3clases, 0.9193786017390813, 0.011408461529019366 TBRaF, conn-bench-sonar-mines-rocks, 0.8092307692307693, 0.052101905394016206 TBRaF, cylinder-bands, 0.748671875, 0.037879462930709165 TBRaF, dermatology, 0.974489542715349, 0.015244381530713037 -TBRaF, echocardiogram, 0.8470982142857144, 0.04121407375891862 +TBRaF, echocardiogram, 0.8456473214285714, 0.06257980864237837 TBRaF, fertility, 0.8804000000000003, 0.05947711861036103 -TBRaF, haberman-survival, 0.7405026990553306, 0.04442778063213871 +TBRaF, haberman-survival, 0.7328744939271254, 0.04650268909435261 TBRaF, heart-hungarian, 0.819897716894977, 0.040808946053684174 -TBRaF, hepatitis, 0.8308087291399229, 0.030786481618938533 +TBRaF, hepatitis, 0.8162130937098846, 0.057721855658188784 TBRaF, ilpd-indian-liver, 0.7113035880708294, 0.03241044043427038 -TBRaF, ionosphere, 0.9350574712643678, 0.03531528446913812 -TBRaF, iris, 0.9625086625086627, 0.02370416415994463 +TBRaF, ionosphere, 0.932176245210728, 0.027745840941158267 +TBRaF, iris, 0.9624047124047124, 0.027672604537966147 TBRaF, led-display, 0.7121600000000001, 0.025910057029585667 TBRaF, libras, 0.8463888888888887, 0.03918389343605342 TBRaF, low-res-spect, 0.9000336700336697, 0.023601420494052557 TBRaF, lymphography, 0.8422972972972973, 0.0589135421754256 -TBRaF, mammographic, 0.8293430152143845, 0.022325145379837995 +TBRaF, mammographic, 0.827950899031812, 0.021234429745443983 TBRaF, molec-biol-promoter, 0.7957554945054945, 0.07181386667033816 TBRaF, musk-1, 0.8739495798319328, 0.0282061820436449 TBRaF, oocytes_merluccius_nucleus_4d, 0.8366516365300984, 0.02109662119057668 TBRaF, oocytes_merluccius_states_2f, 0.9237768368047604, 0.015521407216536862 -TBRaF, oocytes_trisopterus_nucleus_2f, 0.8346491228070174, 0.019722730155514016 +TBRaF, oocytes_trisopterus_nucleus_2f, 0.8296710526315794, 0.02406624812234792 TBRaF, oocytes_trisopterus_states_5b, 0.9273903508771925, 0.016976508458830007 TBRaF, parkinsons, 0.9110845588235295, 0.03900626598564447 -TBRaF, pima, 0.7598958333333333, 0.02539774065272653 +TBRaF, pima, 0.7593229166666666, 0.028362314210191343 TBRaF, pittsburg-bridges-MATERIAL, 0.8643956043956043, 0.0575076392003003 TBRaF, pittsburg-bridges-REL-L, 0.6964571428571429, 0.08540119415248532 TBRaF, pittsburg-bridges-SPAN, 0.6832608695652175, 0.08456145562451363 TBRaF, pittsburg-bridges-T-OR-D, 0.8654074074074076, 0.059112371460567796 -TBRaF, planning, 0.7153900709219856, 0.05557611621471211 -TBRaF, post-operative, 0.707007575757576, 0.10139602230667759 +TBRaF, planning, 0.7097068557919625, 0.055516738956114635 +TBRaF, post-operative, 0.7067613636363635, 0.08307013468275573 TBRaF, seeds, 0.9433297720797718, 0.03028629022052037 -TBRaF, statlog-australian-credit, 0.6782812082330928, 0.03941790588788404 -TBRaF, statlog-german-credit, 0.7564000000000001, 0.023820380482179344 -TBRaF, statlog-heart, 0.8361345446679644, 0.04254934551175193 +TBRaF, statlog-australian-credit, 0.6782645014701952, 0.030260627344985316 +TBRaF, statlog-german-credit, 0.74954, 0.026938015580533888 +TBRaF, statlog-heart, 0.8338795154661477, 0.03857659315818731 TBRaF, statlog-image, 0.9680695515784999, 0.007978763699442637 TBRaF, statlog-vehicle, 0.7753996172930158, 0.02537062422962424 TBRaF, synthetic-control, 0.9886666666666664, 0.008239844094951121 -TBRaF, tic-tac-toe, 0.9768216462091356, 0.010279827512750403 -TBRaF, vertebral-column-2clases, 0.8508877198750617, 0.031040561304764965 +TBRaF, tic-tac-toe, 0.9759070469973432, 0.012840130632245466 +TBRaF, vertebral-column-2clases, 0.8492429722176555, 0.03473914078871642 TBRaF, wine, 0.9804347826086953, 0.019004456684509077 TBRaF, zoo, 0.9336076923076927, 0.058309997782000134 -RandomForest, balance-scale, 0.83616, 0.02649630917694009 -RandomForest, balloons, 0.625, 0.24958298553119898 -RandomForest, breast-cancer-wisc-diag, 0.9602856699270299, 0.01304850246785924 -RandomForest, breast-cancer-wisc-prog, 0.7889487179487179, 0.062095973522275645 -RandomForest, breast-cancer-wisc, 0.9678078108941419, 0.013450156204218109 -RandomForest, breast-cancer, 0.7173260738052026, 0.05543339031060783 -RandomForest, cardiotocography-10clases, 0.8729086992543498, 0.01716119423915263 -RandomForest, cardiotocography-3clases, 0.9415357083678542, 0.011745284632829643 -RandomForest, conn-bench-sonar-mines-rocks, 0.833437862950058, 0.05787314265134896 -RandomForest, cylinder-bands, 0.792147344374643, 0.03975693903506292 -RandomForest, dermatology, 0.9778563495001852, 0.015194540700548658 -RandomForest, echocardiogram, 0.8139316239316239, 0.07230626105687148 -RandomForest, fertility, 0.8740000000000001, 0.0626418390534633 -RandomForest, haberman-survival, 0.7029666842940243, 0.046522788130533295 -RandomForest, heart-hungarian, 0.813249561659848, 0.04539952943524693 -RandomForest, hepatitis, 0.8225806451612903, 0.07162452681024038 -RandomForest, ilpd-indian-liver, 0.7048010610079575, 0.03367965359465586 -RandomForest, ionosphere, 0.9321851106639838, 0.031025947121713787 -RandomForest, iris, 0.9473333333333332, 0.03061590000854675 -RandomForest, led-display, 0.7097, 0.028747347703744767 -RandomForest, libras, 0.8008333333333334, 0.051039351799359346 -RandomForest, low-res-spect, 0.8941421266090636, 0.033512494391602414 -RandomForest, lymphography, 0.8472873563218392, 0.07011193134668385 -RandomForest, mammographic, 0.7956336355785838, 0.021570639366604298 -RandomForest, molec-biol-promoter, 0.8914718614718615, 0.06923296108787423 -RandomForest, musk-1, 0.8892916666666667, 0.032218163597528444 -RandomForest, oocytes_merluccius_nucleus_4d, 0.8008857006217122, 0.026005202449345177 -RandomForest, oocytes_merluccius_states_2f, 0.9224098517455765, 0.014089731590980637 -RandomForest, oocytes_trisopterus_nucleus_2f, 0.8086627034168018, 0.02785857804335842 -RandomForest, oocytes_trisopterus_states_5b, 0.9135879421125322, 0.018448127398280962 -RandomForest, parkinsons, 0.906153846153846, 0.043092182889324544 -RandomForest, pima, 0.7619658772599949, 0.029215416907967737 -RandomForest, pittsburg-bridges-MATERIAL, 0.8291341991341992, 0.07027590215086539 -RandomForest, pittsburg-bridges-REL-L, 0.6680952380952381, 0.07481193351882705 -RandomForest, pittsburg-bridges-SPAN, 0.6433333333333333, 0.1000367396003129 -RandomForest, pittsburg-bridges-T-OR-D, 0.8541428571428571, 0.0780557536653904 -RandomForest, planning, 0.6983483483483484, 0.0654856086595986 -RandomForest, post-operative, 0.6188888888888889, 0.09687079341723154 -RandomForest, seeds, 0.9333333333333332, 0.041785544701867246 -RandomForest, statlog-australian-credit, 0.6607246376811594, 0.04062342366030316 -RandomForest, statlog-german-credit, 0.76, 0.023748684174075843 -RandomForest, statlog-heart, 0.822962962962963, 0.04257809737244419 -RandomForest, statlog-image, 0.9785714285714286, 0.007182103906076649 -RandomForest, statlog-vehicle, 0.7494166376609818, 0.02747614895571888 -RandomForest, synthetic-control, 0.9860000000000001, 0.010598742063723111 -RandomForest, tic-tac-toe, 0.9884075043630017, 0.0071140588943835546 -RandomForest, vertebral-column-2clases, 0.8322580645161289, 0.04539112025635577 -RandomForest, wine, 0.9825873015873016, 0.02303907423919074 -RandomForest, zoo, 0.9594761904761906, 0.04292716501935155 diff --git a/results/exreport_accuracy.txt b/results/exreport_accuracy.txt index c9c6e11..a988153 100644 --- a/results/exreport_accuracy.txt +++ b/results/exreport_accuracy.txt @@ -1,41 +1,39 @@ --------------------------------------------------------------------- -Friedman test, objetive maximize output variable accuracy. Obtained p-value: 6.6349e-82 -Chi squared with 13 degrees of freedom statistic: 421.4222 -Test rejected: p-value: 6.6349e-82 < 0.0500 +Friedman test, objetive maximize output variable accuracy. Obtained p-value: 3.5365e-68 +Chi squared with 12 degrees of freedom statistic: 352.8361 +Test rejected: p-value: 3.5365e-68 < 0.0500 --------------------------------------------------------------------- Control post hoc test for output accuracy Adjust method: Holm Control method: ODTE p-values: - TBRRoF 0.2667 - SVC 0.0337 - TBRaF 0.0337 - STree 0.0305 - BaggingWodt 0.0181 - RandomForest 0.0001 - TBRoF 0.0001 - BaggingStree 0.0000 + BaggingStree 0.4919 + TBRRoF 0.2100 + SVC 0.0072 + BaggingWodt 0.0068 + STree 0.0052 + TBRaF 0.0022 + RandomForest 0.0002 + TBRoF 0.0000 Hedge 0.0000 Wodt 0.0000 Cart 0.0000 ExtraTree 0.0000 - Bagging 0.0000 --------------------------------------------------------------------- $testMultiple classifier pvalue rank win tie loss -ODTE ODTE NA 2.918367 NA NA NA -TBRRoF TBRRoF 2.666656e-01 3.857143 30 0 19 -TBRaF TBRaF 3.368966e-02 5.040816 37 0 12 -SVC SVC 3.368966e-02 5.061224 34 3 12 -STree STree 3.049694e-02 5.173469 36 6 7 -BaggingWodt BaggingWodt 1.808617e-02 5.377551 33 1 15 -RandomForest RandomForest 9.782582e-05 6.561224 39 0 10 -TBRoF TBRoF 6.942731e-05 6.653061 43 0 6 -BaggingStree BaggingStree 1.994251e-05 6.897959 42 4 3 -Hedge Hedge 3.459008e-14 9.561224 47 0 2 -Wodt Wodt 1.250970e-16 10.142857 49 0 0 -Cart Cart 2.205000e-22 11.346939 48 0 1 -ExtraTree ExtraTree 3.546304e-28 12.408163 49 0 0 -Bagging Bagging 3.655835e-38 14.000000 49 0 0 +ODTE ODTE NA 3.091837 NA NA NA +BaggingStree BaggingStree 4.918524e-01 3.632653 27 5 17 +TBRRoF TBRRoF 2.099730e-01 4.367347 34 0 15 +SVC SVC 7.221246e-03 5.479592 35 3 11 +BaggingWodt BaggingWodt 6.791738e-03 5.561224 33 1 15 +STree STree 5.168361e-03 5.673469 36 6 7 +TBRaF TBRaF 2.170524e-03 5.897959 39 0 10 +RandomForest RandomForest 2.461390e-04 6.346939 38 0 11 +TBRoF TBRoF 5.434435e-06 7.000000 43 0 6 +Hedge Hedge 3.112186e-16 9.724490 47 0 2 +Wodt Wodt 2.308557e-19 10.367347 49 0 0 +Cart Cart 4.521871e-25 11.408163 48 0 1 +ExtraTree ExtraTree 1.549559e-31 12.448980 49 0 0 diff --git a/results/exreport_err_accuracy.txt b/results/exreport_err_accuracy.txt index 3cd9b3a..8ee4ae4 100644 --- a/results/exreport_err_accuracy.txt +++ b/results/exreport_err_accuracy.txt @@ -1,21 +1,17 @@ Warning messages: -1: Removed 49 rows containing missing values (geom_bar). -2: Removed 49 rows containing missing values (geom_bar). -3: In grSoftVersion() : +1: In grSoftVersion() : unable to load shared object '/Library/Frameworks/R.framework/Resources/modules//R_X11.so': dlopen(/Library/Frameworks/R.framework/Resources/modules//R_X11.so, 0x0006): Library not loaded: /opt/X11/lib/libSM.6.dylib Referenced from: /Library/Frameworks/R.framework/Versions/4.0/Resources/modules/R_X11.so Reason: tried: '/opt/X11/lib/libSM.6.dylib' (no such file), '/Library/Frameworks/R.framework/Resources/lib/libSM.6.dylib' (no such file), '/Library/Java/JavaVirtualMachines/jdk1.8.0_241.jdk/Contents/Home/jre/lib/server/libSM.6.dylib' (no such file) -4: In cairoVersion() : +2: In cairoVersion() : unable to load shared object '/Library/Frameworks/R.framework/Resources/library/grDevices/libs//cairo.so': dlopen(/Library/Frameworks/R.framework/Resources/library/grDevices/libs//cairo.so, 0x0006): Library not loaded: /opt/X11/lib/libXrender.1.dylib Referenced from: /Library/Frameworks/R.framework/Versions/4.0/Resources/library/grDevices/libs/cairo.so Reason: tried: '/opt/X11/lib/libXrender.1.dylib' (no such file), '/Library/Frameworks/R.framework/Resources/lib/libXrender.1.dylib' (no such file), '/Library/Java/JavaVirtualMachines/jdk1.8.0_241.jdk/Contents/Home/jre/lib/server/libXrender.1.dylib' (no such file) +3: In svg(paste(figPath, id, ".svg", sep = ""), width = 11.69, height = 8.27) : + failed to load cairo DLL +4: In svg(paste(figPath, id, ".svg", sep = ""), width = 11.69, height = 8.27) : + failed to load cairo DLL 5: In svg(paste(figPath, id, ".svg", sep = ""), width = 11.69, height = 8.27) : failed to load cairo DLL -6: Removed 49 rows containing missing values (geom_bar). -7: Removed 49 rows containing missing values (geom_bar). -8: In svg(paste(figPath, id, ".svg", sep = ""), width = 11.69, height = 8.27) : - failed to load cairo DLL -9: In svg(paste(figPath, id, ".svg", sep = ""), width = 11.69, height = 8.27) : - failed to load cairo DLL diff --git a/results/results_accuracy_BaggingStree_bart_2022-02-20_16:22:48_0.xlsx b/results/results_accuracy_BaggingStree_bart_2022-02-20_16:22:48_0.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..94ee51c44af67159626adf99e434cf93c554f4ac GIT binary patch literal 11830 zcmZ{K19YTYw{6f-$F^;&W81cE+qRu_l8!nZ8x`BO)v@ioob%uN&OQC^s~Yv~Q8m6f zYmE8rz4qE`O?fHMFDO7jK#-pwJ|F`fiEnbiKtOR{fPj!cf6)@MvvoGHb=Fh%us3ni zp>wyfu1FrW?O{L=d3cK)TBTxiR!~6=5WycsE4>BP_7bGQS-plqdGAQNl-E+o3zR80 zK3{VhjOE6l#ZIFo$cODfdHX@mbomYAq@>6_m;1ntNJw#m0-ZbA5R5{!x2)S36`0xf zUOh6CVnZsTHB{69k;uJLnUFQ|kyXY-*|WHqz|ON>t2BuGGFj<_Ff>T)=iHjYef{3# z2>}#NcO_{RFD;ZaA~|{BqWU`6W*Z(!tRglRUS)#90^^H zuqJ0$omhW5KV~`bPlx`MTgZ$@zredXKeo;~PLNj^i+jYL)0y5zt7(c8xh*%tM!ufgFe?Pdiae{xPmGtKu;|!~{t(M(U z!kNJj0yE9m5ej2z+=u{=xr^*jwf%f5`KbdP)kVN7Psw-jsrOu!%$qFU9uT2qa3S*{ za{Ho}G9UmatB)G`dMPzx(6_)iDI zKZfCCW-+~C_pSIR*{Sy2#JwEDvxQtN6Hv8j5=%;`9I1v@8KO81I3{=Sha|p_17Jou zF~bLW>2EK3?irhM&37TJo@S2`K4k9UrV|E*8N*KvIlG$5cV3m_nj|LF6V zGEU|uCeBXue-Dg*NtB|a<(j&DaN zPrF|`*WSjkn(%qOJ>72h@7FK%Y&&?l=^Wi|o}Pj2KHhgr>>duP^g2F*Yu<0N*Vnz> zUEbY3MpdW|=yf}}+iyR-Tc2)xZx8CiPV_!*_HV`kVObB4KogVCa`z`^XME3Fr0;1b zN_y!n=p}A<7j9-3cD&jj?@!x&wjXPo-p^;dplA|4BY@S(hms33JzgK4ir3%Ixp7sO zM{m7@Y6m-^J32{;6O$Wnz9054zy0tbUT1FyBepFJ-M=6D+5X^`Nj`}9U9#U_;^FYS z?UseUB0DX2|98sG$ZT7!qpnY;+Q&10ubhmv9P;W)#D))hhZfJ>vfb-(=_b$M$M0_z z(=NK)&!@wko7#NZoxUD!F9*x(!xk5vIuADIen(|4^zf5X+%G(An*g{Eufbf??T>rf zr$MWS>wf$}Z(R;)+S7e>xRQ`wa|6Ei>T+%Mv7T*@ZRDLEBID*~VO;T0mvG44i)GQ=C2!EU#uGW>0!r(^`i z_itZ>S@s-31kt#q`4dBN$O&$zb!GTR>WPz6OleC}cHK>ChxZW^@oex8*X=s#8MZs@ z28?c(+i~N53y`#Sb_{8vTjmg&U6_R{kyZgQBTenI#lwb3-kZ${*Es)n3uG0Rp(ZKFFr63{qR9BVzX z(Odydh95T_>sdAsy1?`{gl^;ykvDS;zz4op@#!fFeH#n>dy)iO^g3U z;x0zpLYj}iCoXj$uVhgZE+%b-LR&=!!z4uZ%}CqiWcG_@7Prk!u*b?`4Da;W4H9|T zwArI*Ol|wTKKLSy@g#Knqr6g4+9o2A{p%VZaEIT*JS%=XG$o%ec^2|Y(HEFTn;}x8 zFsEWwd%ms}C<~%~EUoZc4IB%bxHSYV>U@rXn`ye%Os4VdWpd1i#N~D!uA1dHju5Aw zRbG0=?xu~O0!DXN`Zx&RZoJVJsbNtKQgQteDr-R9+Yg*X#!^v~5SNDQK;2jFh`=bD zlBtSRhEIWXx%iz3yJCc7!GN=I{TF0e`!ub(jxqCzsv)G+DJR{#R%V7E0Imk`ki_ti zDa_9|NJ)4IsoeV9hqGH)B~8#^r9n}o)$2iy1!Q9|_j2I}@ie51`-z~_RE9rz@^J&b zN9aI~l^j{Cw+AmdI3g}7@o}#uwnnzatswgHu#^t-1z`$WGHYdWYF<`G=A(1~HR~qU zZursLCe~V$srYe@8F#8Nsu*m8Ok%(2Q8)&GJ(7oU+co1pw3B!Qz9aMhENVH;=_(2t z-XhJ<2@}}kB1==`GT}J@p=Wrdey3lYm&Ca4F zB=1TC50}7e0CJxQIYyi#YDq~eVatH9oIq<}29XjEm;`@bc;-#v8}cJ3gnpbPB^0T0 zmnjP`!Z1WUIg@MIC?r$B@})qx4<45Eu{J0Yo{=|y6|5+zW`twqts^6pS9fsHe%qGW z?`$)AaaS9%XSsB8`mHs9kM2$%V)}8JLK5ge(9ce2yEAAWTtv1kluP2icc`mZ3+Nsp zip|apl)Py;6U~?*?tGIy7skCfvz>rfU933jn$HPXG8{phn?_Sr498isKEEfBo^cN2&)4>byu*1z+#~*F+_q?6 zQ3F88;>f!sfU=o_jh_YeWaM5_2<%L+MxW0h#W6F}-X^pJ%xVqBS{U)PKv&16SGMdy z4SO}%cx5y%o8DpDo;ar7r%;e#!;5F^>0HC&(!|pIKr)lhA(vl|62HmA93Uka1c|mO zS>6#Cjw)*i0Tw3&B-%AkZQ0XxbSQ3B@NSn+ST$NYXKdp-g2hbLu2(kq`3DZmwO5j5 zyL+8?lFZBwJ`z<*K@RcBuhyC!Q`E36)j-w6!iJna7Y)|nyZ(&__qRE?{w$3h4n82L zG^H&AFIRb6I<2E!-^;a2Dn7p#}4#**tO(B6g2Atbk)w@};ocpbXf9ljEThOGn{@ZFMpz zF&n&7GBZeVJZwl%4iFs#=?{`PLo;dzqRH?VM%=nBg%ebs7*a2Sq0?>TpD{JQ(UiJb zBGfN(s?O4(6b2rKeWSiRMd2_2WyD^Gpv^-Su#ah==451SGSFJY*`U4g5p*E+DkFDgh(_}j8a+6l}@o%%NzHIjq*N^ngwdh^Bu10M+J zqJh0#g!;fRB9QY0{yF)}tM2uLMbTIXR`Dum>=8Lt$Kq&YQ<%=ymhNA|fJY| z{i}J-9B?-V5oGXY(@(6fP3f<_lX-UWSdtS_k=+dP*$GldXQ z;ke(skeAQvoBffVL0S)fEZy|}wHiYM8Ul5y6A{o;vl!4$y$yBo2O=@mE-m9lv{=(G z37b4x?ug=>4>HhBVS4JI&0ETUv)GPo_0Ux}qd9&wm0ZodST2FFa7$gaL-qx)Aj1NH zXz>uYwE4#m<**R(7v<6|Wb0t9QULm>ME6TF7}Rb{Yy%Jj*BS=+81R|1*sN4GJKXPr z0wA^J+gV(1SQZred)7Wkm)>UHPL#hBrz)xWhs8L6vXz^OxG3DI-o}bke0y>gcP#II zcIAcTp+8okS0IgNyajuh?!IdR)2k1MyUmlC15c{^(iE|#y3A3q<8-JLU@EM-9#Dio z60*+b77*koL2cN)ewf8Q<-C4 zt`MrhuLM|_j>;{WRu1SAx6Ajn0$ftKa; zFeTIwB>&Uwl1k>xDM-3$X-K40b@)5yGUx^4%N!4|$n${9Yfvy_@{p>)=Yg zjJZiod?Y^K!*s6@d3Dv!%<5U~c6zG@-Wnpson1{#D<4`X9E76k1n8l}g%WU+AtRa1 zYQFZFu5EL%-F(NHb?CcO!lVLzKHQYBt~aXBAh7g9Toww7xcoRL z;mO=2ms)@R_nKFa^vzvx$bRgFam5(9s>F_IKuoj=uU)b(=81JgL@v#+w`KhN_o56y zQFnWFC3&7zrT52#DcM;Cp*}hSqyX4=9Hk-9?gFkFFZ=rrzl=sak1HjX_zlcxrp@NH z`Cv{{nReAB4N}i*-RRLNG)$IB9=Iknpw5csUjVv^=*zP+PZv!Rs9dl>rlUYq=EluuNnW&L# z@~ROPvNDgZRg<#^eAH_TPfNSmzR(-+R#DqyA?T*BQU}9~6Wj~txFcS1_a`fCg!EYK zBu>!*W%s{mJ4VHfo(Ba&e??Jq60jXqW%F4TyOEWrS|EAzC&-j7ETiNa$5|NBRwkyY)e0@n2XnYs9bL(8P|WE{Z{@;M6NorE ziH&*UDH^aTsd?*PB+AWthzS0*=}E_2+|FnxxE`4nUUT;}r1f`vXToP#YWndtH(Lh@ zOZj|{M8*-^WH*hEg2Pa$GyS(wpp?jVV{8FP8sWov2TtpAlw=SW19>zv`O%Ojt6aHu zU*@>zb?tTv(V$tAXEJP+b5{rOKKp$LNP#sQ)vN5!3OSC$bJE$33v?nh|1m|!&dmV){(8f&Wl5Pr|irab&QE4ZGMU|#+micw>>hCmG`Ez=@2PRLUu%a z-7OQ$ZSDgYgX-zQYGA}3zkt{w83R} z6mHUYWgRkA3(|KOHeW*jn)s~p_$0KE1M+Zh?v#w&;GOz(M+ddl>bO}dBH)-|KCfuM z3B3TKx>dwx4`u36&&DKh4jV)PzOB3eV?5YopUq3VY+ZyJ&B3BA!sslvO30=_kLfv( zBHMeSG#Omqzvl{RGdwL_24RDnJttwi=NWm zatgj5X9R~iO_{^}A;a(r+6~CSHS|mhoyoED#PPU__mY#hyR~M-YII{Y ziOpbsYJMivR)wX~ZXT>L9~?(pVgX@^4lHHiZ23$)wg(n^|$iaS6Nv(NulV7mN2ZOeR4XE$(pBz zM4fs=c}CXk#8Yc%(>WV^>qpXYSy)f?jkWO(`FI#WaS@g5sAt2HGC#Z4O*3Hg)({CR z3;(57Z3W6ir%{$6v?*V&`5v}Wg=YvuESl7<(XQ{Nl-ZAgUy6nEswp{xX(-OnsVGbJ2( zl`IyFdyirlB#PFzh4UU_;;eIhBsc7hV%B##Q3Ezs%~?$-REz;e_ID$E0(A z51@mB1&}D4m)_OA7>+r~U(y6g$vh`7i0DrMeZ>K9=FSEs)jw(=SoY~*a{};HsN5!| z#8NH#N$~JZ%KNjR&5sp0-BPUTtS`n0b-IkXss$SGEo~#o6CyRr>$-a@{t!FtzK4zz zC#^rp@zgDp5M*3hwOIyhtF?qJ%_9=Ngg5*ppv$!z24QjpKXpV!gbsupnn?_7Q8AEK zp4vA)kj1j_h&8IP%CfNhsA{S?^EgK^$|J?>CKdD|tmDc0l!)`F)p^xNxt%x#d7bw% z?NuG~u1w2YE~UA60?#9=u%vIi_=vTguo#=?+0uNkPLi(8XA+Ic$XD zU7A8JLUO+mJ?grsX7+*{PZZfW<>DusCZ@USb$a@)90EzV^=Q@aci+ZnPd@g45?5;nJyTQkASU{I1#kbPUXvZ2>`L{yOyGE=aY z=PL&$_5;0OGv)g1xhcyJ(D8CMyZBN!$&Sx346D9#?yx?a`&pgMc@M_FU0j7|JAUZ& zX>0NIb6WfeO?$ETdbxa~e`~7c{-`Wk{DA*=X&RIRPeb;znMCthx`+R#H2vR2`xpfo zxzC11`wcbGrUu`finS(}g?G3FWIV}Ip2FrA4`-M z;giB?OyN2NjN=~2(lVG0H~2;NuIvL%dlMGZ%MiGQr})Ibdep}_PEAcj0-#R+WQIl8M%}Z3G&0H_ zD*&smRXR>>Mt?JYq+o!N@x8YDxAfV3HNjb*J-npPmcU=#z0aRKU^f8$OVAjw(IdKo%+}GzE9$pnB8i6i7he5JP{kR~RS<;8Ec{i*5P`EDPH_~R( zSg;T|sLd0rM{dXm+})j)Zc~(P^n-65yI>UiL`s38!#(Q#+#M@z7n0C4PGJ6OwYdXV zx_XTHT)|nAUfFDzuHr@gxu`f5VxliOM|}}Td#0&1)R=?A)6t-S;ECjH0gG~SzFKZE zwaIp{p9aFgiPYQBOa$bjrm^-`*~C(0A_LrpB#q?p1=z_t;X`?9lWxVCq+L%o@g&?ljhi=# ziM`KvxqK7(zVB~yvZICD2RrC$45(!#5o3zq3G%a%kxPGDQsyxI&Iy^#YxXO-dU*Es zOL~CRS9a5$qV4R&mych07oQg3d>Cap>oOQN?31)q z(Wo=~?)Z9@%7^<0E6!N3dr1n8aH#zQzZGN@eeLG3gzbcJQ4443P02QDges)?$&*M1 zkJM+@_oQDfVgT31U`3Q5d?&43ncP#Ab5R);{}P+mZ?jXzs_|Rqa0;Xx-MkXEcWA>0 z2LjG|S`)=u7b3m5vQ{eKPAAVl$z4l=mR@(Sx(bV5}X}!D+kX)eTbIi+}$(pD~`I`RHjH|>f09fdwmZT%@?P@ zlFjLGZZ^iLvu0aRHDa^w4|=2A%=mD>^HzG?pC|JQoV_mg!pB+ZOzBM=I^>1nW}~&r zSbWF}C2==W>6H~w!lsUa12m*XM%mgejRMjHY=JG0n(Uj`*J|6u0q>exwY(gd_MRe({sGm7MEn?wwC*Oz(Jc18%X_MH z`vQhsA<;I%$_|vlI`8f&jHma`CkoA{0AVA+M2d}N%#Gy}u7i?~KU%Ipf3S$Y8oUTEi`)zO#n`#Qi zq(G8tVyung3qzZ4qIht@82V6xh;{aqCtXCbhRf|9h4<|&4CqPG>EQ4~zq7B5Yuf0|EI@&Gv&5!c)sy&w6_EQHe}$4zWv`Xh`m zR*6uh>J0ULs>OpiXWhlck!5zJZ91c}cox1=oWdxo$2pe8wwh5mVobJ6{{k>D0=-Ix zH#?{kUWt0%W6mXY2vL?LrLxkTP6sT-DIZE4@`Sy`DJ0&O=stVKe6~t|PCeJro>^%0jg=$`H4`>&^q@0ylEp z_&SwIs2@4RGUK(i4ZN*`&~m2@)s^ji&4Hf1-?UtOhU`r&K9`4 zMY>G9v0L_kZ+sZfqRQ1^KtPJv|1q$9ZhX$>CN?Jjx&GY=KhuzjTNTFWxSIcqFium3q1!BbO$=~bRFZ0jU+h6n|vfPhY7i-RCvn$n!CS112PnEgEMuCA3d|e4peo^E>t3^+sY%jf6izk_uI0Gw5jx~U z$ht-_M-X3b0{G+*jMT5T^%a`$HK!G2_u1j4sP$Mnd>_fqqyh|;2hKz|6HqxF00$GZ ziB8>1y@5N=cH7B}n^EAUhi*kPsFQmwS+fBpP}H>1HUMkYzUmd$#{iOV!R(PcHmbK# zfLq#Sh34#frP}2=$OY}m=JL5~7HV5l7kk>}8#T5}Q{A8I{#%ihg-S=%KO$zBbQyly=Yey}j+aq%gi*ZcpdyOLEX{*zDkM+oKn}A17II zQ@L`TK2MKQ%(};qo4&8Ni+UXlpebRxA4@=+Xzo9IAy~+e)`z%JQ5!oDEJw5M|{2 zijfe!)+<@{wN=cgn-rhYIqnBsv1l61p?pS!?G(li6DuWTe&wU-1>Lc|sbQy3>@RT& z$T4XesIum(Z{I0!uvrHfXA{_KBBdqqWJB~Enw1fb;u&H+ffHtgowTH>kIxMcg$JrH zYAm!xzKRTz?a7R_#I9}c+6M2={bZIQ!hOld5sEadpG;AJ(yfTMhIQx~9AUo>#+0xU>FosL_W zsRx+SXb%I{0n4hj;?A?mVulUNj@%}P;Am$Jb*BwFT+xP7^4^iNwy;%jFfT>zfo5;F z-X=yrF>sUv%$LcEKRrZZ^;*SZ#475kzI(sk*^(NzGF&`FnM++1OvTsg{+LALQ14-F z4F1zjkdIwaB2w`CHA-`-L`X`Mc&7}NE6T(pP7VbzOu;@n)S3v6;qVM?8C4!?GWyw? zFi&uu>FQUCo@)1z8jFdGeyV8msRS+UJs5ZA_mlW4mb+8b*3Nv&7-*J$FE^QCCiH;? z(Rloy`Y;F>CY&pc&GLw0bjhM~7tk0ujv9IBfwe=*f;3*6*+-JGXg+0I3M?%QiV!Tq zfr2GU2?WM^DXtx%8A^+}Rm`F$xfx~Dvpa6$v5?rt^Q&X0P4X-!WJSb|Ye#v@#m88o zZy%R?yOrtQ6L|1wfonHoM3oD-4PxB`tEKi6Vm9m64(nPk3RykdpeA}#&83&ih8?(< zpy9lka>2Q+IL#6y@ zLV)<03>e!P$vfKFJJB22Ihy=+tjS3n|H}pzeBtx806;rRmk+rb(6~3ppHE5K4rP%P zuE{5EnbYQDGU$MGSvojB=F0{6sfnkY^%{6HbBL8dBL-z|8$1WVYPVB80+saE*Q{PJ z|2d7wt;yzw+LVk9Q8l4%FAyk4BcnM|Ur_BZQWpFAG1eco(vm4zGsN~hUH&2^01x5_IZlR8& z1zuNnpz@@)5~rMzuRHf7t;t|s`S@KKM_vg^wgnU|+KS3sr?0nREX;-bN;S}(ThwRY zMtg4#f+zy`kn&vPi6ZwqJM|ojheDx80-CW9+AVL1$L?>wZ`G)38yFIT;V76TrwqtgJC7)k;nT}t>uH_Y>$F8=q*E2S@N2C=sOM{H^-XB zeOprY-A075;ya>#3ac33qOB8Z_qIwAV4a#$6QzS_r-&MSj+F@;yGo-QK0TSR8(=pJ zKg?Q2ZtRfYqdWSpe`Ue+4?C>id}O9}!#o{Y_?;%^sy68ylmpAg&A~79@#pWH4tD1$ zIc_Kqn}_YwYVsay4||llg5%gGe%4YEsh(tidIcMpYE>uHAA779Y$Gt&`pwL#5_tjl z5XusIhNE#uC7miqFS+z7@P$1}!V)DVB6Ie%xW=BTwc~(6X@C8VLb5#??llT`Szc_3;hC~=Gd+j`s%jYE7VOReSEiVNOf&%*gcj$gT zufJdZ0e=nui(mIofZa`G+Be z;6Dui_k{8%^v@LaA80qx-_So3);|gU41xa;{Gj+>0^*3!ULZIHio2Flytq5XgS)$Had#^aw79#wySqGk&b{xyr|-UG zWUrAuGUpzdYpu`LryvatgAD-z0sr<9fY8;FFfWUgYqakc<Rvu~8LW1HAyQZu-LS~uOuDu(Qpy)EkrPz!?ZWQgW5G1cY_`TJ%_J6_ipKbbYl zQ!u5AsB^d1i2qI!{7?#6X#0EN3O@PH)91RzlcTMM8|n$!^ai8zXrim$e4OS`e$7cQ zZrSc-O2GH%DU#5o3^R#S${j`XX{*i6+P?3E|APml!hh(0ktw;b|E9Y%6a)m)+o)q_ zXkpLH^ygX@(;?UO5n1rmU3BX)#YzG`JFl4}cbN*v-%epgP#2!l?R#<>93_YxZVDG+ zd$emjcsR@#eh{v713+dd!N-Oj90?q0AAB*jMWaJ{7f24rYLkncx?}V#LoQX+-x{fg zBhmNHHTo{=NBt++B>D*K0r^2wA==TY{UFEoh^ylAQ-_CsuN}Xl`Vql}UzCN251aq2!p*{rcToWRCluJ6vlS7zRos3eJaS17|YJ8Pcy+#E|S|A zRB!tMSkyw;9SxHfYItn|r1<-gJEQ>zmQ;Ig)p4MM;@e10nwqC|U(xk!k`4$5~ zmJmK0F0(sqE*Y-*aCmeq6q@S5M^yob68?&6ZlnQ`-^n_1lq9IG;TIYaPMAbx5%J9F zocRdb)-MUNKxd`3q|MMc0|07D2>SSLCROfd`-Gx+#ne_SMW%rZ$$ZmyQ>w{&<~X@! zWr9aNL9hL&vXdX&QFhD)M>*-XoFv@rg3^S4m__4gGQ<=V(Am-TEq)B;*5w-AAnudQ z7;Z)$37CjReTQtabOAo zf%k8H{wQN_Vrb}K&-|}}<&Q-1TITlHO)<~lHlMRwMvA-)EViY_L zLCto*Gk|(kQvv*2AA0i z+|mlVJs-4g(|o%1)Os;*b+&!AdEQ>WE?8vde7m_i{QP@W`+0EGb7kdu^QCKexC;sX z&hB;acVJ*(g+Qyj%j-?o@b2N``pw}mZdglO>!bU#SKG?-&Be>%^6+)@W$xQU-|b!u zj?NOdY4S7aQ6%*8IyYphlNKT$}Tsp2lq}D=#@{ z+UuE`nGX{~t$d!vo^5XDZxq+3nM5y}H>1zPy{r6uf)WSHD=Qwq1Uy0K_nV0|TcfkD z?(UtvPH4m)P3WB1rzvp`=NreTw`dKSueY}C0CVkT|en96WFA5ZHIl;Z@3@Q@C1@r-_x`di7t^^sLc|M_uoDpcy!!ai$*3P3V zpV;ZiurmW1+4%EyXzh=pEoAOkt>Y`Mok_TP0jP@{VSM%A39&Yb68s}~%ME?04W-Mv zu^KddMzBgzm4QwxmiX$GqOb2@)RA2<6QW4$1ofB6{CI6ux>o#t@0qduh`5oR#xf)x z;>htB*PNb!8P?>5ZM-$eLJH9Br*?2Lr)Ef@POd2mDy4)}+18pCBQn29WeNX=Q~Rr$ z9Xjj0z9D(cd-GuKfHY7xu6>F^pNz9Py~=W_f$Lp<_?L9nvH(kh3dZV~Ss1^bE#_mVo3XxKB> zOcSXAOUXKPY7>-xi<4@}n;1}K?n!Ra8D>&PS*VkwQV&fISY5SRWQwLui!q?DplRE6 z!1N`k<7Y=Q@JYbHC#cwaZ?3cR=cRG~md{_74!Qm6sQ3HP7O-2`0D8|7?a=zwSL}4N zgR331bFWZNi4qjk0|UQ~pXxO`$gg^5DanEp%$fLWq=a6=mg*G{=$C?! z;D2|TXG_9YZG!;+JmO}+M%sZ?i6B!*JDSwK0M!pi-&~2{7mWaOBeQ6X5le-hAoHDX zZ*on2OG)hW!5SG{N4ijVHUjU$Gu8(8FX{ferY)aa(Xd|XTHhS`c~L=-RQbD^mVg30 zvL_FnhY=B{_vv0Y2qgkiva;Wfv5Je>%ycxsu2t0pC0adZw;g+0J;m3hcjq*->ef>x z{@QG5YcfWlqIMQkNiM$QJ=0H6Ho7-3E~t=@;CaK`#Y&TPzq63B5pr>_jGrVB-QC>1 zpF1W=g7o;;=nnpJQTUe-7hsh)^m#+cn9 z0>PnHmtrire}zw2K9w>BK#dC%<_iujP-k6pPEQ_dAvyfTe4abAY{#EHv)7*}QU7hC zcKd_bGZTRo`Ka7gE7Mz_xj2_UK$si7`Z=RMe_{@Wt!N=xESFhF$Nx;c|JlztKn!Hj zvv1Dj_YlApz`zo`OSj(F32i5t=#DfYR6KL6F+EfaVszVO6z{gS+U$Kwue@Dw70qBt z%@JcO0rB-=A8t=fEl;eiU}*)CeS&pf@gh0pCTt`F#(XxZ=w6^r{K6GM2p^%8*CE^G zlm)Kf=rpetw-C2v-dGa>?BW;D{un~P@nAIm^MK!jJ@hjXjJAh3Zbt5pnDzzlHc4m# zjf5}r5`bCw90#*O-9ry6<}b*nfF?I9d7XKvAdA6tePQGiS^}u5DhL$u@t_GNKXnWg zLbz^nB=MiCdc#HAY0~vgFMcUTg|2N0gO>?Bm{f<)NyC>TRS03+?8+OA<1S`nXnIPw z(n5C@IlQEpxVml?O~9SNa+9UJZ|FnHLVOY#phfR7uz2X6=6;c+0r# zqN%RAQR0zxaE7(&pu=j9+pd|{}2ZaRXC6^!I_VJ?{W=rX_knn6nzrNBYl5_ z%|%+Yk>)@QjQzT%BV3w39-M7k3nr`ewNeKJh0Oi~iuqv{u6XST{)G6EMDlI9J7k4P)ecE5z*K%E!S zA7)E*GO~?^c0?7NQ%=vX#WDi6{hIH<6pOC8|G0DEzF|3^g~xq!r5ik??As}&lhmYv zzZ57~JW?3T_P)G}&cIR=V60kCwEMD?@;dR zA0sRvAwv5_dtF9PTn5_iseP)jd)_a2r3WmAMnFdCl&=OF-DI4p4v0#XeUp4mZOY$+ z=yg3(LBv3p8LjF#xy_3;T zQ1jebnO4n=XV6OXPJAc>lZco7Sbpqc?cV4PrQ4ELyh{eF_#!Yj4P#X#dYkZ%26v2* z@TGcDji}3QQlT)NLQPtb-mWHLDXuIQ$^*1fe;ZR^Dd{3n?KgDlkKUw~H2oR?-vG1o zxo?^n#3pmN-0#-Sid5F%Kf9D@Vun1iuLn z%D{(LR;0|NPqbyc9tMKhDzVdq*nl7A$U*N(jq$#1&t#MLTg7OI#N#6J*Oh1<%I_PO z&*(@W!4Be8nXme>R3#!;;R36S;{=FyJk;6o4x(!G^~6I1^%OH|PI{yGfTuf&SNtYY zC~E;zi?9X|b>~cjIN2B@8or$3FT40k*!r*(fboJ_S2?Uy8W>5At%hqO7)^{WK0rbMNSY!xgn1-5Y>y_CJ9}a>kXQS=*fm)g7H(o zN1ymz=SN2D?VI|o9R64+C`gIOstax;4h=@GZ=ZfcFkUnEc)(~}(MP;KD#U(Qn}6cf zFJgz|%7Af~IzdHh=&3L1@-pBqo@GCQ3oedwL>`6pvIc110Bppix>xuXO1}!O{uvy2 z*rX9TFd<}oPhXNE!T%-3hGXKp49zarvhh0qbvgqr>^bqf-#Dv&JVq+530qi$bd*LO z1~M0-D`JZwWcPEw!3mTJ@(JI-dCARr9jzv2W%m$h>FN=8%4@f7q9)iGl;kMF9?_ME z+!$}h%l4-eC>wof+%JrL@MIW}j(LQUW8^XY$Jie&4;-)=C9rNV#)k)~Pp9!%i`tqm zrBg}+Gx052%eaSn9bx4_pKLQK(0z~xyB)JpTjv(_vd9cJvTbtzxRslCmaeM}s`{H$ z3%))`)lV;(vFcECjx{U63zv0HPtr6X=v6>X%EaW*PFZQ*O?Qm=(I5wAn?7`iCR-J# zNLU`F{&O+y2@X_9;A*;m16f|2B zXQu3o4;@ntW^?8MHD@vO&j^Z20{l~4PF%7yW=y?_bqtx`9)g_sIarPEkxAR)YfYe~ zQC!W&x-hU$92=*iz=k6ccGM{hwFmP^b$g_KnKgN=)ze=tP#32?f7p!l^# z4;C)i#luvG&IZ6h-G*g$i?tH5D4jpOI;!y%`+K_jW=1l-5V_K0%m`s3t-r;C6ZTS< zNFEz}_Nk{wWt#f#0e5}sIRg$+TR(csT27166>N_rd99YhrafR5U}x8Pjwc& zGd#E|%itGrdrH6Zl^y#2 z%5ai&L_`l*u^m>YW@09%7EF1*nx=3QX~0=^yK5~eCtlx#bs^yjc>p|QANt^t%J31X zIeT5fps6bCKem?~1G7__7?&Fp21665H~9T!zZBReCohOKWI3|;nW_4MmA|{MoG5)( z5}+4oJ8V{7_6X2>FjjE?#O^lY2W)A?SD(gthx$O z&WLF5jP)y7+v)G?_wsuYi+BJz;08KP&dMh zdVTqme%d?EkBtdKp$VThG^98be;l2^U*HI!%wtyk6BXq{fhoKy6_4=Hlkw-p4^{@p z?py+gWRGIC-kkh5rSsM<{(vEzHSaMZjQotr*A)GYTL**rmyV00J2KpkKn01Y;L0|5M%j00jcIs^5#@yZdi#1{`O_=MVQOD<*imt= z6{aQGxPZvcW{Nq>Ei{4JknUSRhenxYh44vJuyGS$B}K^Ad}VvBrImm~r`g`i0_tVN zTja_g;<8uu?I}9U;JH)SoSI%&hjEk3a9R~T%E|8^**<@wl=O2Pa}h2ke#B^A5$bg< z0P}4fmK7M-5V0g{xx7E&9oKoR8m1dQuX|TOyF5f`YyP3xM3Pj_f?6Ie65|0mA4QDkt5Lv zL-RZT^Bwr`(J{JYgdAxUQc~X@RdHo|E1X-V(Bh;AT*s$f3xg4>lghPoUVRN+EFAF& zoGv`SGdmbVtE$8>@#BP@h`{hxt_MxUsWGt|sM7vp)@p>^H;racOM{T?4bz=5sw5-EbKhyFpv2g>$@%X&-+00?a*v z!OFfw#hkkhZ=r*5m1$AhB(e@82f$>Zbjx@zD0lh-0+!&3zE~U^m2XmLjpcDq~oiS^345dGV?#R31br5RH zpj3%Xdo#NsAbReg*ono*!**x~wu-hxFGpLG9f@8-nyOwDds^)i_N&w&%>LnXMcJXgk|g5AW+~}%z@4?T;|;9M0r9L zXY@n#hU-#?eG{=?u)7$qOJ38?@&`OoTPmpMTXsQeya!t<80nP0ZLMWxMok4!&b=m_c(3NZwNaS2W~SM&q1*b zDImA^E7E=wXmPRi8!3f{wj4w2^>9vV+{#Z zBxT=nScR`>MQh9KJ^Vz_lI;BE7E23s2Jheg3JYhIWU*l+8j^MF&tjN^!E{_N`l4^w#S z=M&H`1Y3ympLlwnQoQy8gu0A}i46YTsVk|ua+`Jst+K_jBc=DSa%bTg_>}-l$Aa>G z0`-p?Jnt}e_uD~w)y%&!mW^iw&TUx|=FHlRNdrB0BFad{A0j1Sd7=>(S!j2o{hgSn ztj$DT!nitQI!&dN*%o>C#rwf+9ui{e(pY)oH=mz_kQ~LC#RZJE53j8`UmZcWi@nUZ z%x_iDUJ6dZ?&X}N%S>Xcwv1Ol>#NyCIKJz}RsJQ-w&tco&#ujt)fImCN9k8@rcr_X z{pnZe|13j8a}lY@y&W7eyp`$E{wYKMcY!`!QC9x#@S^pSo@`Z3U`oY8o!8VoND@8@ zZ;=~lMZhRqOp&*_y6Je}ML_-dX;I$e#tdYJ{U~ynJN`kW1|9F96TYYfdBq8Bma{!= zSKY=CXmsX}I&(i=%z1OCI}|A7iEZ*{zLcp&*Qd`Ku;q1q{v{Zo z93L*^$*gsyE;U`#*BsperT5OpA?2TsN6Fsf+}5_17#@=7#4D}8SOlHdgLY8LKuYb{ zPA}RLkz~GpS^MW`y3LN0lI&hCT!AEQN$zzr-}`yDooW|y<#t12x#R*zvdx*RoCJiS z4GMgxIys@aR*ECi#a!UP4t!v%L zz^Q^Wlba<|Yn1f|&L$UkitTsRvD8@Q!m#TtxUblI2gwZ(vUnKTTS|8^Vf|InP2@}X zyL};&(QJ_{n8^MVELC^F5H7DJQHt=%xE@+rtT@?T-bn)>!Na}9T;o|3!E5TPt6u9} zmqEnXmMfLAOLn(-pJY>c`_~~>SfX{0lzS)D_CxcARu)_XR;dXSX0eK<@g@Rvp$QtI z=!vQKs|t+zGpj701fD6TXzwlgK13<9lJrx|o4%k*@Zd-FuXr78*rTnUQ{O+EqGs6Y zd&7(4?baE(gPiO{-r4FP_7!X;Ny0hdL?jubLKTcA6;mwvn|dG*&2j();)a@R?tJ^Z zIAcehuGgW)uw{xnQSJ)CE)0Jwxp;)b(#v4!2f`h2#d?poJ-9-mDu=r0 zYk7vK5uizU#=6}}*@7NFY`B)xeFIosZE%HXTD+bn+~u+Gv~SO6%Yy^5Y%?7)E{wJrTd^Z1H7kFz zA#c!ttneDXOGHa%d(VHB;AdVKNFiBJD8u3-(plaOn5c3~Ums2$_CF6u?W``=oTRV< zBj0xR5_&A%6fOgaG*gTuSfmcZj1uUOhZW85L<^gH8tpYNk>x7|LwtG!OheYjTpU4R zy&7ML+NEo}aY$9tyZ7j5pQz$q0w9+g${4Lt7sO(xSNu*GJ6yeYehCvtx1znar!%S- z#2CubnH`ulV@j|?!=`mlR?ooJ`0OXPAF9}RAr@uee$GQw+s3BTiFO9!2hN$-$HBVdfz;vKav9R$`5+M+ zM>=xvNg2F(0C?ce#^uW~lgUNikriEYp?A|$L-jmpfd3*a%q^-x(Bo1vQINq0%yZ;>QSU_#=moV4#z6 zi;T!K(TPSIdv8Uftv^zwOMAr3KBgn}w`p1=9$kjql8V zbrn1#8XO)Vt5w5M)L>Rc*G&K|PYalBvw6CWO7PbrdmQ>P>S?Mut@}EL{khl0NcFwa zoP{+nJz@AT5|G2AtzT0kf5x9m04XVgH^xou%&qs*GXM4~dX&LDkZ(Ta2OIR9jCF<>0ya zyw#jz4cG*j;-cL@ByoNm%w|I&rA&*7R}KvyL}MT+n%>?Ex>?z6rkJl#eJ907e64mg9qHzV<#$k#&9QlJWr}CBI-kA%v13-?H@N5BpW`G6J@MGF zJMUe^@eg&@f|B$6m|CJ_=)NCiGZfsy4+Tdyc7^SP@EH4Z8>TynkBq+tl13<#s#F}~ zyo@!ukf$&I_+bZ}Txc0jF3+DtE0>_r5AAe_09sYDhy)MGwSPZt?ioN@q#~N^)e0)d zIq5XvmEMCZNtISvsOO^(JUf!o7o*e1!Y)Iz0#<*v8prD|Q&iHF_D&YgV0+i4htxUe zd$^oA?E@+{dd6xz!N@V?1SSz}Qb!0BxZEH=?q^o6eF=YRGYm|ufwaP(F`URe{qXfF zq%^XkZ{dmAypdT)qS@L-?#s+-`g0^WtEx5N9X_4u*YZ$3!q)a{7pPOhkYR(11XkhS zSpH_o+or|i9@A?}U_&IFK^jSa4WpY)Jt*o&URu*Zfk;JxJ;fAKv+A}c)azNM6r!Ok z&i{0Tcn@MIm! zpX+~IU$R_V*c<$*s^EiLX>z}nz3?#x0)iqsE`=2UU7;wxF;1sO0Y>ydXYE=%=G>@y zxIPr3j+-Lm{L;hoj&S#&4vs}wTts3Zwtic)TrG%#AI$`_zKqxRB`?80w^P#VgS^CI z3Z|*n;=>x<$`_1a1gHxUtBrab+IXvl`YT<6!9hMsge3x741HK>j0NxZ-gXWn$JVdr z3oQA;{+Iyh*~J`;YXp1)hO)8`mqfl5BK;O!#v5a!ln2<{9C*C*k!b@=SbOj_^{{qO z9(*KdasGG-h*q^_>MvDCWhFOhK}9&V_*w$5aSoK9KbG%0kO4*z(!tHPhQ=dp+GjdF z*RHKrqsfkO2!C>HyU!rJ<8BHiGwZ8>=ip-&+%V-FgG zd{3h>Snk8GSYpT6bKA5BO@hYs75LdKB?jXLa`yMRf(Pk;%K3fvnWnMEQN0%+CSW!uH8prqp9ddk@QGG-p+aj1-Zazm9F=7xew8j}fkr(Gw!}8Zz_;CwhA#J(Z_brkbLN zqP5WU*bctr&5vM37_+xGqeo7Fs#^or8cv5&0O z5{|}X1La!#Z7i}QW<6m-oF1!T#%Gq!z+|Zn2PAF(M`Df@LO#hGgsq21@FVyX913z$ zVXRoR#6_8z+1*IfX|aZOsfprC$TudiNnb|%WM#f1vZkI&&@ z9ltv9RafMalp$v0cASk&SCS_zhEo+#;Emxt3)GlJgnPb=`3#-H`l@|n;uB%*grwEq z!b7peH~&?3?OI_v!GUj0ZJAE8zp;d~(Sj7DWJxP^W5->c`%9=dD_-@MVQaJ2GW>gt z&mb492dlYYlE38Qg^KBbdFXv@$4;$-89hpQkc9si-fv>CDjw!H2NY_1I=4$hXt?@b z*#u<;qB+}7q3Ux5!qQ^o8znfrp@uGz^4J)GiZ)>Z7G$U&_m1Ds<0v4EhCNu2W(h5` zo)^dKeC^m*1seYNo*>qEB+1Bl1IyQzaTrwrygtJD)s{^gjs*Pe<|NzCirX_I7DZh6 z9T^?Zkb9xNQ2`^6DNbza6bTPtr2l1!K z$H8NsE0r*`-S40~Sef=1mcGohm|^(LggEPLofUC6S9Q)Chq~DtyS>wKGj3kcW>VDP z?b|BJ6Uewb(xn4>q;F)zMPBSTX=Mj&`Q>s;BAAB4wldR_>I6osJ{xE8px$$y!z9`1c>3(1{imc# zK4?^+H%Z?^LqMSaPf2xcZ2qOFQis*zTjG97kGxF4-SH9IyY#0t=T)U1WK6yB*L=(D zYJ;HC=%Yhw-k`%;UfF`)-oOItkb|AEU!}bg9CtztxJ`XysS4^kxEr>wmj~(w-D}b| z9r~mZ5*uQkii>zWVHVNVTWdw=DE18rF*3f4V`O!pgD<4@?L}dAZ~d4kE3lU{KaHCP zF0C=q!ob}Z#i_`@`)!vmUsDn~kni_QJ&$5Czcy&?mO{!!PNB_o3ubQ|^>$<_+pT=* zHwoNfROdg?>~|@0dXDR z8Z{AHkXp~F!fd};FUGm@z$J*-YR<17IxRqkM+&jqdA<%RW zEBi$G*WSD5d`KOAml<~}Wco7)b^BIL#tVm@OaXf-uyySVl7ciO6gKq#zdQGBzW(*{ z^8PdYFTJ{d6a3v?`foS{gqOG1+Zy;E&8B|?|L(&42N?6V7yth~nSb;A-L3c!PxadZ zeB=3Fdl&y^`McQk4-5BOi|Bu`{CDZ;Z}8vcl7GOpZ*k)r`2Q)M{LS!pPVx^!G|9gi z{%?lzH}vli^&e;}*}tHF2dsY+{A~jNA;_TlUku{k@V~eFKk#$f{{jE6&95L0`|i&# Q5Z~TjZ}Xf+|L5EP0q$)ESO5S3 literal 0 HcmV?d00001 diff --git a/results/results_accuracy_Bagging_iMac27_2022-01-14_14:00:32_0.json b/results/results_accuracy_Bagging_iMac27_2022-01-14_14:00:32_0.json deleted file mode 100644 index 52bfd1a..0000000 --- a/results/results_accuracy_Bagging_iMac27_2022-01-14_14:00:32_0.json +++ /dev/null @@ -1 +0,0 @@ -{"score_name": "accuracy", "title": "Test BaggingClassifier with STree", "model": "Bagging", "version": "-", "stratified": false, "folds": 5, "date": "2022-01-14", "time": "14:00:32", "duration": 2.4914512634277344, "seeds": [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1], "platform": "iMac27", "results": [{"dataset": "balance-scale", "samples": 625, "features": 4, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005263137817382812, "time_std": 7.377665193163519e-05}, {"dataset": "balloons", "samples": 16, "features": 4, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004933309555053711, "time_std": 2.092596432523415e-05}, {"dataset": "breast-cancer-wisc-diag", "samples": 569, "features": 30, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005257034301757813, "time_std": 3.4794574471198685e-05}, {"dataset": "breast-cancer-wisc-prog", "samples": 198, "features": 33, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005057001113891601, "time_std": 5.7292682248176166e-05}, {"dataset": "breast-cancer-wisc", "samples": 699, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005154132843017579, "time_std": 2.0927665269655704e-05}, {"dataset": "breast-cancer", "samples": 286, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004943180084228516, "time_std": 1.8228932626018702e-05}, {"dataset": "cardiotocography-10clases", "samples": 2126, "features": 21, "classes": 10, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005937576293945313, "time_std": 2.4039261891669122e-05}, {"dataset": "cardiotocography-3clases", "samples": 2126, "features": 21, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005949640274047852, "time_std": 3.824109773449134e-05}, {"dataset": "conn-bench-sonar-mines-rocks", "samples": 208, "features": 60, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005132055282592773, "time_std": 3.7698922143605884e-05}, {"dataset": "cylinder-bands", "samples": 512, "features": 35, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.000525522232055664, "time_std": 2.7082881417522173e-05}, {"dataset": "dermatology", "samples": 366, "features": 34, "classes": 6, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00051849365234375, "time_std": 2.7908380661143334e-05}, {"dataset": "echocardiogram", "samples": 131, "features": 10, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048015117645263674, "time_std": 1.560629451082849e-05}, {"dataset": "fertility", "samples": 100, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048199653625488284, "time_std": 2.1472701001829803e-05}, {"dataset": "haberman-survival", "samples": 306, "features": 3, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004975318908691407, "time_std": 3.940504494312087e-05}, {"dataset": "heart-hungarian", "samples": 294, "features": 12, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004956722259521484, "time_std": 1.977011941854855e-05}, {"dataset": "hepatitis", "samples": 155, "features": 19, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004927206039428711, "time_std": 1.830327428495406e-05}, {"dataset": "ilpd-indian-liver", "samples": 583, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005066823959350586, "time_std": 2.2940163893953717e-05}, {"dataset": "ionosphere", "samples": 351, "features": 33, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005111169815063477, "time_std": 2.2130910480793766e-05}, {"dataset": "iris", "samples": 150, "features": 4, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048386096954345704, "time_std": 1.5965445894293067e-05}, {"dataset": "led-display", "samples": 1000, "features": 7, "classes": 10, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005240583419799805, "time_std": 1.875979496378102e-05}, {"dataset": "libras", "samples": 360, "features": 90, "classes": 15, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005061721801757812, "time_std": 1.5156069358636807e-05}, {"dataset": "low-res-spect", "samples": 531, "features": 100, "classes": 9, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005510330200195312, "time_std": 3.36098494221528e-05}, {"dataset": "lymphography", "samples": 148, "features": 18, "classes": 4, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048254966735839845, "time_std": 9.87812339804443e-06}, {"dataset": "mammographic", "samples": 961, "features": 5, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.000506591796875, "time_std": 1.61811582471682e-05}, {"dataset": "molec-biol-promoter", "samples": 106, "features": 57, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004808998107910156, "time_std": 1.3302129557103326e-05}, {"dataset": "musk-1", "samples": 476, "features": 166, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005530166625976562, "time_std": 3.8085418152783326e-05}, {"dataset": "oocytes_merluccius_nucleus_4d", "samples": 1022, "features": 41, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005411386489868164, "time_std": 2.665815055535568e-05}, {"dataset": "oocytes_merluccius_states_2f", "samples": 1022, "features": 25, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005327844619750976, "time_std": 3.317222863959748e-05}, {"dataset": "oocytes_trisopterus_nucleus_2f", "samples": 912, "features": 25, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005249929428100586, "time_std": 2.764313018461084e-05}, {"dataset": "oocytes_trisopterus_states_5b", "samples": 912, "features": 32, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005200910568237305, "time_std": 1.4084230421520817e-05}, {"dataset": "parkinsons", "samples": 195, "features": 22, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048376083374023437, "time_std": 1.336769068755409e-05}, {"dataset": "pima", "samples": 768, "features": 8, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005081129074096679, "time_std": 2.3524977097410286e-05}, {"dataset": "pittsburg-bridges-MATERIAL", "samples": 106, "features": 7, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00047702789306640624, "time_std": 1.3968480441510278e-05}, {"dataset": "pittsburg-bridges-REL-L", "samples": 103, "features": 7, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048142433166503906, "time_std": 2.232293485171629e-05}, {"dataset": "pittsburg-bridges-SPAN", "samples": 92, "features": 7, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004941844940185547, "time_std": 3.362248288395386e-05}, {"dataset": "pittsburg-bridges-T-OR-D", "samples": 102, "features": 7, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00047479629516601564, "time_std": 1.8614256910559533e-05}, {"dataset": "planning", "samples": 182, "features": 12, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004884529113769531, "time_std": 2.8415975736854637e-05}, {"dataset": "post-operative", "samples": 90, "features": 8, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.000482640266418457, "time_std": 1.8524347875744278e-05}, {"dataset": "seeds", "samples": 210, "features": 7, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004790115356445312, "time_std": 2.0465295327247667e-05}, {"dataset": "statlog-australian-credit", "samples": 690, "features": 14, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.000498199462890625, "time_std": 1.3767387899897084e-05}, {"dataset": "statlog-german-credit", "samples": 1000, "features": 24, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005217790603637695, "time_std": 2.0114065827110867e-05}, {"dataset": "statlog-heart", "samples": 270, "features": 13, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004888153076171874, "time_std": 2.6317461380872597e-05}, {"dataset": "statlog-image", "samples": 2310, "features": 18, "classes": 7, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005964088439941406, "time_std": 1.9880063402281647e-05}, {"dataset": "statlog-vehicle", "samples": 846, "features": 18, "classes": 4, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005185222625732422, "time_std": 2.3849217232720542e-05}, {"dataset": "synthetic-control", "samples": 600, "features": 60, "classes": 6, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005260419845581055, "time_std": 2.117317479296291e-05}, {"dataset": "tic-tac-toe", "samples": 958, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005119562149047852, "time_std": 3.5585288801415974e-05}, {"dataset": "vertebral-column-2clases", "samples": 310, "features": 6, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004802560806274414, "time_std": 1.737962596399799e-05}, {"dataset": "wine", "samples": 178, "features": 13, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048253536224365237, "time_std": 9.563795107316843e-06}, {"dataset": "zoo", "samples": 101, "features": 16, "classes": 7, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004904699325561523, "time_std": 2.078909882487918e-05}]} \ No newline at end of file diff --git a/results/results_accuracy_Bagging_iMac27_2022-01-14_14:01:48_0.json b/results/results_accuracy_Bagging_iMac27_2022-01-14_14:01:48_0.json deleted file mode 100644 index d889a68..0000000 --- a/results/results_accuracy_Bagging_iMac27_2022-01-14_14:01:48_0.json +++ /dev/null @@ -1 +0,0 @@ -{"score_name": "accuracy", "title": "Test BaggingClassifier with Wodt", "model": "Bagging", "version": "-", "stratified": false, "folds": 5, "date": "2022-01-14", "time": "14:01:48", "duration": 2.4366021156311035, "seeds": [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1], "platform": "iMac27", "results": [{"dataset": "balance-scale", "samples": 625, "features": 4, "classes": 3, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005184221267700195, "time_std": 6.00996461159075e-05}, {"dataset": "balloons", "samples": 16, "features": 4, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004758596420288086, "time_std": 1.020445444778532e-05}, {"dataset": "breast-cancer-wisc-diag", "samples": 569, "features": 30, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005176591873168945, "time_std": 4.926658558136666e-05}, {"dataset": "breast-cancer-wisc-prog", "samples": 198, "features": 33, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004887628555297852, "time_std": 6.8435709645239e-05}, {"dataset": "breast-cancer-wisc", "samples": 699, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005065584182739257, "time_std": 2.8444589905408735e-05}, {"dataset": "breast-cancer", "samples": 286, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048090934753417967, "time_std": 1.5327169264742485e-05}, {"dataset": "cardiotocography-10clases", "samples": 2126, "features": 21, "classes": 10, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005686187744140625, "time_std": 2.1311578384106014e-05}, {"dataset": "cardiotocography-3clases", "samples": 2126, "features": 21, "classes": 3, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005528450012207032, "time_std": 3.053284799498396e-05}, {"dataset": "conn-bench-sonar-mines-rocks", "samples": 208, "features": 60, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048259735107421877, "time_std": 3.01099298345252e-05}, {"dataset": "cylinder-bands", "samples": 512, "features": 35, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004953813552856446, "time_std": 1.4375931768211606e-05}, {"dataset": "dermatology", "samples": 366, "features": 34, "classes": 6, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004842662811279297, "time_std": 1.5796151944061566e-05}, {"dataset": "echocardiogram", "samples": 131, "features": 10, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00046276092529296876, "time_std": 1.5049177127421802e-05}, {"dataset": "fertility", "samples": 100, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00046802520751953124, "time_std": 2.0680002604404965e-05}, {"dataset": "haberman-survival", "samples": 306, "features": 3, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00047430038452148435, "time_std": 2.8681259991312237e-05}, {"dataset": "heart-hungarian", "samples": 294, "features": 12, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048160552978515625, "time_std": 1.5314343766855652e-05}, {"dataset": "hepatitis", "samples": 155, "features": 19, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00047114372253417966, "time_std": 1.0327971427896761e-05}, {"dataset": "ilpd-indian-liver", "samples": 583, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004889917373657227, "time_std": 1.5636005201180538e-05}, {"dataset": "ionosphere", "samples": 351, "features": 33, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048388004302978515, "time_std": 1.566823414185599e-05}, {"dataset": "iris", "samples": 150, "features": 4, "classes": 3, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00047137260437011717, "time_std": 1.237324343445609e-05}, {"dataset": "led-display", "samples": 1000, "features": 7, "classes": 10, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005100822448730469, "time_std": 1.4402073652228514e-05}, {"dataset": "libras", "samples": 360, "features": 90, "classes": 15, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004958915710449219, "time_std": 2.0672243177444742e-05}, {"dataset": "low-res-spect", "samples": 531, "features": 100, "classes": 9, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005170536041259765, "time_std": 1.807542685246507e-05}, {"dataset": "lymphography", "samples": 148, "features": 18, "classes": 4, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00046901702880859376, "time_std": 1.0502331643854704e-05}, {"dataset": "mammographic", "samples": 961, "features": 5, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005019092559814453, "time_std": 1.6725933197794237e-05}, {"dataset": "molec-biol-promoter", "samples": 106, "features": 57, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004737091064453125, "time_std": 2.0518277984079168e-05}, {"dataset": "musk-1", "samples": 476, "features": 166, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005449199676513672, "time_std": 3.890868961059318e-05}, {"dataset": "oocytes_merluccius_nucleus_4d", "samples": 1022, "features": 41, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005295991897583008, "time_std": 2.2648121121631365e-05}, {"dataset": "oocytes_merluccius_states_2f", "samples": 1022, "features": 25, "classes": 3, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005144119262695312, "time_std": 3.538562254917059e-05}, {"dataset": "oocytes_trisopterus_nucleus_2f", "samples": 912, "features": 25, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005102968215942383, "time_std": 4.063504900873391e-05}, {"dataset": "oocytes_trisopterus_states_5b", "samples": 912, "features": 32, "classes": 3, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005081510543823243, "time_std": 3.35175690124355e-05}, {"dataset": "parkinsons", "samples": 195, "features": 22, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00046638965606689455, "time_std": 2.1653379066784226e-05}, {"dataset": "pima", "samples": 768, "features": 8, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004924392700195313, "time_std": 1.8795198180659287e-05}, {"dataset": "pittsburg-bridges-MATERIAL", "samples": 106, "features": 7, "classes": 3, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004640769958496094, "time_std": 1.0593754972722917e-05}, {"dataset": "pittsburg-bridges-REL-L", "samples": 103, "features": 7, "classes": 3, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00047127246856689455, "time_std": 1.4395082010694131e-05}, {"dataset": "pittsburg-bridges-SPAN", "samples": 92, "features": 7, "classes": 3, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00046958446502685545, "time_std": 3.976021630110925e-05}, {"dataset": "pittsburg-bridges-T-OR-D", "samples": 102, "features": 7, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00045123100280761717, "time_std": 1.8973266038613075e-05}, {"dataset": "planning", "samples": 182, "features": 12, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004732275009155273, "time_std": 6.663628270611118e-05}, {"dataset": "post-operative", "samples": 90, "features": 8, "classes": 3, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00047130584716796874, "time_std": 1.6255811633485727e-05}, {"dataset": "seeds", "samples": 210, "features": 7, "classes": 3, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004734373092651367, "time_std": 1.6197436745884962e-05}, {"dataset": "statlog-australian-credit", "samples": 690, "features": 14, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048480987548828126, "time_std": 1.634996392288785e-05}, {"dataset": "statlog-german-credit", "samples": 1000, "features": 24, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005000972747802734, "time_std": 8.42156521331597e-06}, {"dataset": "statlog-heart", "samples": 270, "features": 13, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00046761512756347655, "time_std": 1.5125019100190142e-05}, {"dataset": "statlog-image", "samples": 2310, "features": 18, "classes": 7, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005717992782592774, "time_std": 1.2513614384948422e-05}, {"dataset": "statlog-vehicle", "samples": 846, "features": 18, "classes": 4, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005012655258178711, "time_std": 1.95943644542162e-05}, {"dataset": "synthetic-control", "samples": 600, "features": 60, "classes": 6, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005134725570678711, "time_std": 2.431895732738225e-05}, {"dataset": "tic-tac-toe", "samples": 958, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005024957656860351, "time_std": 3.155274712997172e-05}, {"dataset": "vertebral-column-2clases", "samples": 310, "features": 6, "classes": 2, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00046251296997070314, "time_std": 1.4064500928373617e-05}, {"dataset": "wine", "samples": 178, "features": 13, "classes": 3, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00046843528747558594, "time_std": 4.986008156370416e-05}, {"dataset": "zoo", "samples": 101, "features": 16, "classes": 7, "hyperparameters": {"base_estimator": "Wodt(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00047016143798828125, "time_std": 1.6675807402958984e-05}]} \ No newline at end of file diff --git a/results/results_accuracy_Bagging_iMac27_2022-01-14_14:03:24_0.json b/results/results_accuracy_Bagging_iMac27_2022-01-14_14:03:24_0.json deleted file mode 100644 index 8bc0463..0000000 --- a/results/results_accuracy_Bagging_iMac27_2022-01-14_14:03:24_0.json +++ /dev/null @@ -1 +0,0 @@ -{"score_name": "accuracy", "title": "Test BaggingClassifier with STree", "model": "Bagging", "version": "-", "stratified": false, "folds": 5, "date": "2022-01-14", "time": "14:03:24", "duration": 2.4223663806915283, "seeds": [57, 31, 1714, 17, 23, 79, 83, 97, 7, 1], "platform": "iMac27", "results": [{"dataset": "balance-scale", "samples": 625, "features": 4, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005065011978149414, "time_std": 5.136525834450233e-05}, {"dataset": "balloons", "samples": 16, "features": 4, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00047276496887207033, "time_std": 3.214515006867536e-05}, {"dataset": "breast-cancer-wisc-diag", "samples": 569, "features": 30, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005041408538818359, "time_std": 2.939882798777666e-05}, {"dataset": "breast-cancer-wisc-prog", "samples": 198, "features": 33, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004915332794189453, "time_std": 5.43326755374195e-05}, {"dataset": "breast-cancer-wisc", "samples": 699, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005038118362426758, "time_std": 3.0452652128564754e-05}, {"dataset": "breast-cancer", "samples": 286, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004764461517333984, "time_std": 1.2282769859981593e-05}, {"dataset": "cardiotocography-10clases", "samples": 2126, "features": 21, "classes": 10, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005846071243286133, "time_std": 5.9845143354218884e-05}, {"dataset": "cardiotocography-3clases", "samples": 2126, "features": 21, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005539178848266602, "time_std": 3.6433299991961104e-05}, {"dataset": "conn-bench-sonar-mines-rocks", "samples": 208, "features": 60, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048577308654785157, "time_std": 3.531532868803577e-05}, {"dataset": "cylinder-bands", "samples": 512, "features": 35, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005120658874511719, "time_std": 3.067910985637586e-05}, {"dataset": "dermatology", "samples": 366, "features": 34, "classes": 6, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004952478408813476, "time_std": 1.8872470778403913e-05}, {"dataset": "echocardiogram", "samples": 131, "features": 10, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00046515464782714844, "time_std": 2.257646444930716e-05}, {"dataset": "fertility", "samples": 100, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00047152042388916017, "time_std": 4.175850196554792e-05}, {"dataset": "haberman-survival", "samples": 306, "features": 3, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00047604560852050783, "time_std": 4.585766626134085e-05}, {"dataset": "heart-hungarian", "samples": 294, "features": 12, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004653739929199219, "time_std": 2.5768221792272443e-05}, {"dataset": "hepatitis", "samples": 155, "features": 19, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.000456695556640625, "time_std": 1.5456751322061266e-05}, {"dataset": "ilpd-indian-liver", "samples": 583, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004938745498657227, "time_std": 4.624976828681922e-05}, {"dataset": "ionosphere", "samples": 351, "features": 33, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004864740371704102, "time_std": 3.962732216249829e-05}, {"dataset": "iris", "samples": 150, "features": 4, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00046871185302734377, "time_std": 1.7467791502166625e-05}, {"dataset": "led-display", "samples": 1000, "features": 7, "classes": 10, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005125284194946289, "time_std": 1.5215159417065443e-05}, {"dataset": "libras", "samples": 360, "features": 90, "classes": 15, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004972410202026367, "time_std": 1.532525918047196e-05}, {"dataset": "low-res-spect", "samples": 531, "features": 100, "classes": 9, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005268669128417969, "time_std": 2.4557222903110458e-05}, {"dataset": "lymphography", "samples": 148, "features": 18, "classes": 4, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004548025131225586, "time_std": 2.1251059386884713e-05}, {"dataset": "mammographic", "samples": 961, "features": 5, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004792642593383789, "time_std": 2.0241537418883156e-05}, {"dataset": "molec-biol-promoter", "samples": 106, "features": 57, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004647064208984375, "time_std": 3.2586949521051496e-05}, {"dataset": "musk-1", "samples": 476, "features": 166, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005329132080078125, "time_std": 5.203737693040587e-05}, {"dataset": "oocytes_merluccius_nucleus_4d", "samples": 1022, "features": 41, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005167484283447266, "time_std": 2.206251896721242e-05}, {"dataset": "oocytes_merluccius_states_2f", "samples": 1022, "features": 25, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004944372177124024, "time_std": 1.0119591139195468e-05}, {"dataset": "oocytes_trisopterus_nucleus_2f", "samples": 912, "features": 25, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005001926422119141, "time_std": 2.629876717669011e-05}, {"dataset": "oocytes_trisopterus_states_5b", "samples": 912, "features": 32, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005071067810058594, "time_std": 2.375878930927778e-05}, {"dataset": "parkinsons", "samples": 195, "features": 22, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004682302474975586, "time_std": 2.0452103815092726e-05}, {"dataset": "pima", "samples": 768, "features": 8, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00048449993133544924, "time_std": 3.1457558817208884e-05}, {"dataset": "pittsburg-bridges-MATERIAL", "samples": 106, "features": 7, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004621696472167969, "time_std": 4.2713411813732965e-05}, {"dataset": "pittsburg-bridges-REL-L", "samples": 103, "features": 7, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004499673843383789, "time_std": 1.7820269701718283e-05}, {"dataset": "pittsburg-bridges-SPAN", "samples": 92, "features": 7, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004723834991455078, "time_std": 2.8633721561502912e-05}, {"dataset": "pittsburg-bridges-T-OR-D", "samples": 102, "features": 7, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004677248001098633, "time_std": 1.3531953856155116e-05}, {"dataset": "planning", "samples": 182, "features": 12, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00046132087707519533, "time_std": 3.063766277858698e-05}, {"dataset": "post-operative", "samples": 90, "features": 8, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004643440246582031, "time_std": 2.3795798634213833e-05}, {"dataset": "seeds", "samples": 210, "features": 7, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004665231704711914, "time_std": 1.9856005986478553e-05}, {"dataset": "statlog-australian-credit", "samples": 690, "features": 14, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004915523529052734, "time_std": 2.3400272323963106e-05}, {"dataset": "statlog-german-credit", "samples": 1000, "features": 24, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005113029479980469, "time_std": 2.0134228653772e-05}, {"dataset": "statlog-heart", "samples": 270, "features": 13, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004742431640625, "time_std": 2.0857831882474873e-05}, {"dataset": "statlog-image", "samples": 2310, "features": 18, "classes": 7, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.000569906234741211, "time_std": 2.4697345955738982e-05}, {"dataset": "statlog-vehicle", "samples": 846, "features": 18, "classes": 4, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004927825927734375, "time_std": 1.563114389126116e-05}, {"dataset": "synthetic-control", "samples": 600, "features": 60, "classes": 6, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0005029439926147461, "time_std": 2.310920582115409e-05}, {"dataset": "tic-tac-toe", "samples": 958, "features": 9, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.000490875244140625, "time_std": 3.752674020224061e-05}, {"dataset": "vertebral-column-2clases", "samples": 310, "features": 6, "classes": 2, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004799652099609375, "time_std": 2.8855490070195133e-05}, {"dataset": "wine", "samples": 178, "features": 13, "classes": 3, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.00047484397888183596, "time_std": 2.4478924911636095e-05}, {"dataset": "zoo", "samples": 101, "features": 16, "classes": 7, "hyperparameters": {"base_estimator": "Stree(random_state=0)", "max_features": 0.75, "max_samples": 0.4, "n_estimators": 10}, "nodes": 0.0, "leaves": 0.0, "depth": 0.0, "score": NaN, "score_std": NaN, "time": 0.0004682588577270508, "time_std": 1.727319092653043e-05}]} \ No newline at end of file diff --git a/results/results_accuracy_ODTE_Galgo_2022-02-17_09:59:54_0.xlsx b/results/results_accuracy_ODTE_Galgo_2022-02-17_09:59:54_0.xlsx index 2a5493ae5624e09492543402890880cacce4ee92..8c0af80d45986f8ed75d1c1fa9c075a6f19bf7ff 100644 GIT binary patch delta 339 zcmV-Z0j&P@T=rbB^e6>r4kv~slldqff6Z#cFc5_AeF~$yEz6-H2-|_SF321JF)Y}SuG^=!h5+9fr ztTh@c)PqOM`k~~Oa^v9584E5*@JR$|Pr0qoE(A+4_IwA5`7Ang6gS2x7GmkPf7mkq z!?u8nJfC9)fe98EJ^)iY6441M_=vQ>t{nh^V`xEv4jz+?;EOkaQ+~2xP_CRxhTg)Y z^(>C=y_ci0>$<*%_2E<;P+ba6xdRrAt4n-c#KX1Bhjl#hMuK?i zqdxI=TIARVB8dU$G45IUoISrZB`Z`Hc~PW!krt#Ob2@vZWbu6%dDDLZs?(6WiD$qu l_w6UB{{gc(D!Bs%XbvZaC6o6pQ~^4ZOfDk^;41(C007Lko%R3# delta 338 zcmV-Y0j>V_T=iVA^e6=lRo!(Ylldqff6HpaFc3xe{R*SKE!m-^2-|_SWYs{SDJ|Uz zX_AOq4Rp9CHmmdzB|b1M zSYtF)=m;Jy>${R$%8i3JXDqlN!6y-|AS`w%R}*z-Lo=CkO~QQR7*Scs+De__k` z58DAQ2zkH?0uwAS+yPTN5z&Ygd_vk^*Yp6vF*Kk+2aoeC$7gQ8gKy@iN k*Po#N2eUdVxdR0aRo!(YllU!E0XdURE+YotD*ylh0Otdkn*aa+ diff --git a/src/Results.py b/src/Results.py index 049c5c3..768cc5b 100644 --- a/src/Results.py +++ b/src/Results.py @@ -717,7 +717,12 @@ class Summary: data = [x for x in data if x["score"] == score] if model: data = [x for x in data if x["model"] == model] - data = sorted(data, key=itemgetter(sort_key, "time"), reverse=True) + keys = ( + itemgetter(sort_key, "time") + if sort_key == "date" + else itemgetter(sort_key, "date", "time") + ) + data = sorted(data, key=keys, reverse=True) if number > 0: data = data[:number] max_file = max(len(x["file"]) for x in data)