mirror of
https://github.com/Doctorado-ML/bayesclass.git
synced 2025-08-15 23:55:57 +00:00
45 lines
910 B
Python
45 lines
910 B
Python
"""
|
|
============================
|
|
Plotting Template Classifier
|
|
============================
|
|
|
|
An example plot of :class:`bayesclass.TAN`
|
|
"""
|
|
import numpy as np
|
|
from matplotlib import pyplot as plt
|
|
from bayesclass import TAN
|
|
|
|
X = [[0, 0], [1, 1]]
|
|
y = [0, 1]
|
|
clf = TAN()
|
|
clf.fit(X, y)
|
|
|
|
rng = np.random.RandomState(13)
|
|
X_test = rng.randint(2, size=(500, 2))
|
|
y_pred = clf.predict(X_test)
|
|
|
|
X_0 = X_test[y_pred == 0]
|
|
X_1 = X_test[y_pred == 1]
|
|
|
|
|
|
p0 = plt.scatter(0, 0, c="red", s=100)
|
|
p1 = plt.scatter(1, 1, c="blue", s=100)
|
|
|
|
ax0 = plt.scatter(X_0[:, 0], X_0[:, 1], c="crimson", s=50)
|
|
ax1 = plt.scatter(X_1[:, 0], X_1[:, 1], c="deepskyblue", s=50)
|
|
|
|
leg = plt.legend(
|
|
[p0, p1, ax0, ax1],
|
|
["Point 0", "Point 1", "Class 0", "Class 1"],
|
|
loc="upper left",
|
|
fancybox=True,
|
|
scatterpoints=1,
|
|
)
|
|
leg.get_frame().set_alpha(0.5)
|
|
|
|
plt.xlabel("Feature 1")
|
|
plt.ylabel("Feature 2")
|
|
plt.xlim([-0.5, 1.5])
|
|
|
|
plt.show()
|