Files
bayesclass/bayesclass/Network.cc

250 lines
9.1 KiB
C++

#include <thread>
#include <mutex>
#include "Network.h"
namespace bayesnet {
Network::Network() : laplaceSmoothing(1), features(vector<string>()), className(""), classNumStates(0), maxThreads(0.8) {}
Network::Network(float maxT) : laplaceSmoothing(1), features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT) {}
Network::Network(float maxT, int smoothing) : laplaceSmoothing(smoothing), features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT) {}
Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other.getmaxThreads())
{
for (auto& pair : other.nodes) {
nodes[pair.first] = new Node(*pair.second);
}
}
Network::~Network()
{
for (auto& pair : nodes) {
delete pair.second;
}
}
float Network::getmaxThreads()
{
return maxThreads;
}
torch::Tensor& Network::getSamples()
{
return samples;
}
void Network::addNode(string name, int numStates)
{
if (nodes.find(name) != nodes.end()) {
// if node exists update its number of states
nodes[name]->setNumStates(numStates);
return;
}
nodes[name] = new Node(name, numStates);
}
vector<string> Network::getFeatures()
{
return features;
}
int Network::getClassNumStates()
{
return classNumStates;
}
int Network::getStates()
{
int result = 0;
for (auto node : nodes) {
result += node.second->getNumStates();
}
return result;
}
string Network::getClassName()
{
return className;
}
bool Network::isCyclic(const string& nodeId, unordered_set<string>& visited, unordered_set<string>& recStack)
{
if (visited.find(nodeId) == visited.end()) // if node hasn't been visited yet
{
visited.insert(nodeId);
recStack.insert(nodeId);
for (Node* child : nodes[nodeId]->getChildren()) {
if (visited.find(child->getName()) == visited.end() && isCyclic(child->getName(), visited, recStack))
return true;
else if (recStack.find(child->getName()) != recStack.end())
return true;
}
}
recStack.erase(nodeId); // remove node from recursion stack before function ends
return false;
}
void Network::addEdge(const string parent, const string child)
{
if (nodes.find(parent) == nodes.end()) {
throw invalid_argument("Parent node " + parent + " does not exist");
}
if (nodes.find(child) == nodes.end()) {
throw invalid_argument("Child node " + child + " does not exist");
}
// Temporarily add edge to check for cycles
nodes[parent]->addChild(nodes[child]);
nodes[child]->addParent(nodes[parent]);
unordered_set<string> visited;
unordered_set<string> recStack;
if (isCyclic(nodes[child]->getName(), visited, recStack)) // if adding this edge forms a cycle
{
// remove problematic edge
nodes[parent]->removeChild(nodes[child]);
nodes[child]->removeParent(nodes[parent]);
throw invalid_argument("Adding this edge forms a cycle in the graph.");
}
}
map<string, Node*>& Network::getNodes()
{
return nodes;
}
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<string>& featureNames, const string& className)
{
features = featureNames;
this->className = className;
dataset.clear();
// Build dataset & tensor of samples
samples = torch::zeros({ static_cast<int64_t>(input_data[0].size()), static_cast<int64_t>(input_data.size() + 1) }, torch::kInt64);
for (int i = 0; i < featureNames.size(); ++i) {
dataset[featureNames[i]] = input_data[i];
samples.index_put_({ "...", i }, torch::tensor(input_data[i], torch::kInt64));
}
dataset[className] = labels;
samples.index_put_({ "...", -1 }, torch::tensor(labels, torch::kInt64));
classNumStates = *max_element(labels.begin(), labels.end()) + 1;
int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads);
if (maxThreadsRunning < 1) {
maxThreadsRunning = 1;
}
vector<thread> threads;
mutex mtx;
condition_variable cv;
int activeThreads = 0;
int nextNodeIndex = 0;
while (nextNodeIndex < nodes.size()) {
unique_lock<mutex> lock(mtx);
cv.wait(lock, [&activeThreads, &maxThreadsRunning]() { return activeThreads < maxThreadsRunning; });
if (nextNodeIndex >= nodes.size()) {
break; // No more work remaining
}
threads.emplace_back([this, &nextNodeIndex, &mtx, &cv, &activeThreads]() {
while (true) {
unique_lock<mutex> lock(mtx);
if (nextNodeIndex >= nodes.size()) {
break; // No more work remaining
}
auto& pair = *std::next(nodes.begin(), nextNodeIndex);
++nextNodeIndex;
lock.unlock();
pair.second->computeCPT(dataset, laplaceSmoothing);
lock.lock();
nodes[pair.first] = pair.second;
lock.unlock();
}
lock_guard<mutex> lock(mtx);
--activeThreads;
cv.notify_one();
});
++activeThreads;
}
for (auto& thread : threads) {
thread.join();
}
}
vector<int> Network::predict(const vector<vector<int>>& tsamples)
{
vector<int> predictions;
vector<int> sample;
for (int row = 0; row < tsamples[0].size(); ++row) {
sample.clear();
for (int col = 0; col < tsamples.size(); ++col) {
sample.push_back(tsamples[col][row]);
}
vector<double> classProbabilities = predict_sample(sample);
// Find the class with the maximum posterior probability
auto maxElem = max_element(classProbabilities.begin(), classProbabilities.end());
int predictedClass = distance(classProbabilities.begin(), maxElem);
predictions.push_back(predictedClass);
}
return predictions;
}
vector<vector<double>> Network::predict_proba(const vector<vector<int>>& tsamples)
{
vector<vector<double>> predictions;
vector<int> sample;
for (int row = 0; row < tsamples[0].size(); ++row) {
sample.clear();
for (int col = 0; col < tsamples.size(); ++col) {
sample.push_back(tsamples[col][row]);
}
predictions.push_back(predict_sample(sample));
}
return predictions;
}
double Network::score(const vector<vector<int>>& tsamples, const vector<int>& labels)
{
vector<int> y_pred = predict(tsamples);
int correct = 0;
for (int i = 0; i < y_pred.size(); ++i) {
if (y_pred[i] == labels[i]) {
correct++;
}
}
return (double)correct / y_pred.size();
}
vector<double> Network::predict_sample(const vector<int>& sample)
{
// Ensure the sample size is equal to the number of features
if (sample.size() != features.size()) {
throw invalid_argument("Sample size (" + to_string(sample.size()) +
") does not match the number of features (" + to_string(features.size()) + ")");
}
map<string, int> evidence;
for (int i = 0; i < sample.size(); ++i) {
evidence[features[i]] = sample[i];
}
return exactInference(evidence);
}
double Network::computeFactor(map<string, int>& completeEvidence)
{
double result = 1.0;
for (auto node : getNodes()) {
result *= node.second->getFactorValue(completeEvidence);
}
return result;
}
vector<double> Network::exactInference(map<string, int>& evidence)
{
vector<double> result(classNumStates, 0.0);
vector<thread> threads;
mutex mtx;
for (int i = 0; i < classNumStates; ++i) {
threads.emplace_back([this, &result, &evidence, i, &mtx]() {
auto completeEvidence = map<string, int>(evidence);
completeEvidence[getClassName()] = i;
double factor = computeFactor(completeEvidence);
lock_guard<mutex> lock(mtx);
result[i] = factor;
});
}
for (auto& thread : threads) {
thread.join();
}
// Normalize result
double sum = accumulate(result.begin(), result.end(), 0.0);
for (double& value : result) {
value /= sum;
}
return result;
}
}