mirror of
https://github.com/Doctorado-ML/bayesclass.git
synced 2025-08-16 16:15:57 +00:00
Begin AODE implementation
This commit is contained in:
@@ -510,7 +510,23 @@ class KDBNew(KDB):
|
|||||||
|
|
||||||
|
|
||||||
class AODENew(AODE):
|
class AODENew(AODE):
|
||||||
pass
|
def fit(self, X, y, **kwargs):
|
||||||
|
self.estimator = Proposal(self)
|
||||||
|
return self.estimator.fit(X, y, **kwargs)
|
||||||
|
|
||||||
|
def predict(self, X: np.ndarray) -> np.ndarray:
|
||||||
|
check_is_fitted(self, ["X_", "y_", "fitted_"])
|
||||||
|
# Input validation
|
||||||
|
X = check_array(X)
|
||||||
|
n_samples = X.shape[0]
|
||||||
|
n_estimators = len(self.models_)
|
||||||
|
result = np.empty((n_samples, n_estimators))
|
||||||
|
dataset = pd.DataFrame(
|
||||||
|
X, columns=self.feature_names_in_, dtype=np.int32
|
||||||
|
)
|
||||||
|
for index, model in enumerate(self.models_):
|
||||||
|
result[:, index] = model.predict(dataset).values.ravel()
|
||||||
|
return mode(result, axis=1, keepdims=False).mode.ravel()
|
||||||
|
|
||||||
|
|
||||||
class Proposal:
|
class Proposal:
|
||||||
|
Reference in New Issue
Block a user