diff --git a/.ipynb_checkpoints/test-checkpoint.ipynb b/.ipynb_checkpoints/test-checkpoint.ipynb
deleted file mode 100644
index e92fe3c..0000000
--- a/.ipynb_checkpoints/test-checkpoint.ipynb
+++ /dev/null
@@ -1,635 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "id": "afc3548e-91c2-4443-bd96-457a57a202cc",
- "metadata": {},
- "outputs": [],
- "source": [
- "from mdlp import MDLP\n",
- "import pandas as pd\n",
- "from benchmark import Datasets\n",
- "from bayesclass import TAN"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "id": "8ff3f4d6-e681-4252-ac4d-dc5bd14dcede",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " RI | \n",
- " Na | \n",
- " Mg | \n",
- " Al | \n",
- " Si | \n",
- " 'K' | \n",
- " Ca | \n",
- " Ba | \n",
- " Fe | \n",
- " Type | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 1.51793 | \n",
- " 12.79 | \n",
- " 3.50 | \n",
- " 1.12 | \n",
- " 73.03 | \n",
- " 0.64 | \n",
- " 8.77 | \n",
- " 0.0 | \n",
- " 0.00 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 1.51643 | \n",
- " 12.16 | \n",
- " 3.52 | \n",
- " 1.35 | \n",
- " 72.89 | \n",
- " 0.57 | \n",
- " 8.53 | \n",
- " 0.0 | \n",
- " 0.00 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 1.51793 | \n",
- " 13.21 | \n",
- " 3.48 | \n",
- " 1.41 | \n",
- " 72.64 | \n",
- " 0.59 | \n",
- " 8.43 | \n",
- " 0.0 | \n",
- " 0.00 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 1.51299 | \n",
- " 14.40 | \n",
- " 1.74 | \n",
- " 1.54 | \n",
- " 74.55 | \n",
- " 0.00 | \n",
- " 7.59 | \n",
- " 0.0 | \n",
- " 0.00 | \n",
- " 2 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 1.53393 | \n",
- " 12.30 | \n",
- " 0.00 | \n",
- " 1.00 | \n",
- " 70.16 | \n",
- " 0.12 | \n",
- " 16.19 | \n",
- " 0.0 | \n",
- " 0.24 | \n",
- " 3 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " RI Na Mg Al Si 'K' Ca Ba Fe Type\n",
- "0 1.51793 12.79 3.50 1.12 73.03 0.64 8.77 0.0 0.00 0\n",
- "1 1.51643 12.16 3.52 1.35 72.89 0.57 8.53 0.0 0.00 1\n",
- "2 1.51793 13.21 3.48 1.41 72.64 0.59 8.43 0.0 0.00 0\n",
- "3 1.51299 14.40 1.74 1.54 74.55 0.00 7.59 0.0 0.00 2\n",
- "4 1.53393 12.30 0.00 1.00 70.16 0.12 16.19 0.0 0.24 3"
- ]
- },
- "execution_count": 2,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# Get data as a dataset\n",
- "dt = Datasets()\n",
- "data = dt.load(\"glass\", dataframe=True)\n",
- "features = dt.dataset.features\n",
- "class_name = dt.dataset.class_name\n",
- "factorization, class_factors = pd.factorize(data[class_name])\n",
- "data[class_name] = factorization\n",
- "data.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "id": "7c9e1eae-6a66-4930-a125-f9f3def45574",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " RI | \n",
- " Na | \n",
- " Mg | \n",
- " Al | \n",
- " Si | \n",
- " 'K' | \n",
- " Ca | \n",
- " Ba | \n",
- " Fe | \n",
- " Type | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 30.0 | \n",
- " 14.0 | \n",
- " 16.0 | \n",
- " 18.0 | \n",
- " 38.0 | \n",
- " 32.0 | \n",
- " 14.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 17.0 | \n",
- " 3.0 | \n",
- " 18.0 | \n",
- " 21.0 | \n",
- " 34.0 | \n",
- " 24.0 | \n",
- " 10.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 30.0 | \n",
- " 24.0 | \n",
- " 15.0 | \n",
- " 22.0 | \n",
- " 22.0 | \n",
- " 27.0 | \n",
- " 6.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 3.0 | \n",
- " 51.0 | \n",
- " 6.0 | \n",
- " 23.0 | \n",
- " 47.0 | \n",
- " 0.0 | \n",
- " 3.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 2 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 62.0 | \n",
- " 4.0 | \n",
- " 0.0 | \n",
- " 13.0 | \n",
- " 0.0 | \n",
- " 8.0 | \n",
- " 30.0 | \n",
- " 0.0 | \n",
- " 5.0 | \n",
- " 3 | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 209 | \n",
- " 13.0 | \n",
- " 33.0 | \n",
- " 11.0 | \n",
- " 19.0 | \n",
- " 23.0 | \n",
- " 27.0 | \n",
- " 4.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 210 | \n",
- " 11.0 | \n",
- " 19.0 | \n",
- " 18.0 | \n",
- " 29.0 | \n",
- " 23.0 | \n",
- " 33.0 | \n",
- " 3.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 3 | \n",
- "
\n",
- " \n",
- " 211 | \n",
- " 14.0 | \n",
- " 41.0 | \n",
- " 18.0 | \n",
- " 20.0 | \n",
- " 34.0 | \n",
- " 14.0 | \n",
- " 3.0 | \n",
- " 0.0 | \n",
- " 5.0 | \n",
- " 3 | \n",
- "
\n",
- " \n",
- " 212 | \n",
- " 20.0 | \n",
- " 8.0 | \n",
- " 8.0 | \n",
- " 23.0 | \n",
- " 42.0 | \n",
- " 33.0 | \n",
- " 11.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 3 | \n",
- "
\n",
- " \n",
- " 213 | \n",
- " 43.0 | \n",
- " 46.0 | \n",
- " 6.0 | \n",
- " 23.0 | \n",
- " 23.0 | \n",
- " 0.0 | \n",
- " 15.0 | \n",
- " 0.0 | \n",
- " 0.0 | \n",
- " 2 | \n",
- "
\n",
- " \n",
- "
\n",
- "
214 rows × 10 columns
\n",
- "
"
- ],
- "text/plain": [
- " RI Na Mg Al Si 'K' Ca Ba Fe Type\n",
- "0 30.0 14.0 16.0 18.0 38.0 32.0 14.0 0.0 0.0 0\n",
- "1 17.0 3.0 18.0 21.0 34.0 24.0 10.0 0.0 0.0 1\n",
- "2 30.0 24.0 15.0 22.0 22.0 27.0 6.0 0.0 0.0 0\n",
- "3 3.0 51.0 6.0 23.0 47.0 0.0 3.0 0.0 0.0 2\n",
- "4 62.0 4.0 0.0 13.0 0.0 8.0 30.0 0.0 5.0 3\n",
- ".. ... ... ... ... ... ... ... ... ... ...\n",
- "209 13.0 33.0 11.0 19.0 23.0 27.0 4.0 0.0 0.0 1\n",
- "210 11.0 19.0 18.0 29.0 23.0 33.0 3.0 0.0 0.0 3\n",
- "211 14.0 41.0 18.0 20.0 34.0 14.0 3.0 0.0 5.0 3\n",
- "212 20.0 8.0 8.0 23.0 42.0 33.0 11.0 0.0 0.0 3\n",
- "213 43.0 46.0 6.0 23.0 23.0 0.0 15.0 0.0 0.0 2\n",
- "\n",
- "[214 rows x 10 columns]"
- ]
- },
- "execution_count": 3,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# Fayyad Irani\n",
- "discretiz = MDLP()\n",
- "Xdisc = discretiz.fit_transform(\n",
- " data[features].to_numpy(), data[class_name].to_numpy()\n",
- ")\n",
- "features_discretized = pd.DataFrame(Xdisc, columns=features)\n",
- "dataset_discretized = features_discretized.copy()\n",
- "dataset_discretized[class_name] = data[class_name]\n",
- "X = dataset_discretized[features]\n",
- "y = dataset_discretized[class_name]\n",
- "dataset_discretized"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "id": "2840a103-99fb-466f-ae75-45e11c1b9c5a",
- "metadata": {},
- "outputs": [],
- "source": [
- "from sklearn.model_selection import cross_validate, StratifiedKFold, KFold, cross_val_score\n",
- "import numpy as np\n",
- "n_folds = 5\n",
- "score_name = \"accuracy\"\n",
- "random_state=17\n",
- "def validate_classifier(model, X, y, stratified, fit_params):\n",
- " stratified_class = StratifiedKFold if stratified else KFold\n",
- " kfold = stratified_class(shuffle=True, random_state=random_state, n_splits=n_folds)\n",
- " #return cross_validate(model, X, y, cv=kfold, return_estimator=True, scoring=score_name)\n",
- " return cross_val_score(model, X, y, fit_params=fit_params)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "id": "6a1aad95-370f-4854-ae9a-32205aff5d39",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "b620372c05294afc853885da0848e389",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0/43 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "ad33ee9f224d4abfa9a23338f07b32f2",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0/43 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "fa05948fc73d43da8a3f01adc71c5e53",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0/43 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "1b67f117ceed43818c98342221b11184",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0/43 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "2399fb4327a242f0bd1c3e64b84382a6",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- " 0%| | 0/42 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n",
- "/Users/rmontanana/Code/pgmpy/pgmpy/factors/discrete/DiscreteFactor.py:541: UserWarning: Found unknown state name. Trying to switch to using all state names as state numbers\n",
- " warnings.warn(\n"
- ]
- },
- {
- "ename": "IndexError",
- "evalue": "only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) and integer or boolean arrays are valid indices",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)",
- "Cell \u001b[0;32mIn [19], line 9\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m head \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;241m4\u001b[39m):\n\u001b[1;32m 7\u001b[0m \u001b[38;5;66;03m#model.fit(X, y, head=head, features=features, class_name=class_name)\u001b[39;00m\n\u001b[1;32m 8\u001b[0m score \u001b[38;5;241m=\u001b[39m validate_classifier(model, X, y, stratified\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m, fit_params\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mdict\u001b[39m(head\u001b[38;5;241m=\u001b[39mhead, features\u001b[38;5;241m=\u001b[39mfeatures, class_name\u001b[38;5;241m=\u001b[39mclass_name))\n\u001b[0;32m----> 9\u001b[0m model\u001b[38;5;241m.\u001b[39mplot(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msimple_init=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00msimple_init\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m head=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mhead\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m score=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnp\u001b[38;5;241m.\u001b[39mmean(score[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtest_score\u001b[39m\u001b[38;5;124m'\u001b[39m])\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n",
- "\u001b[0;31mIndexError\u001b[0m: only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) and integer or boolean arrays are valid indices"
- ]
- }
- ],
- "source": [
- "import warnings\n",
- "from stree import Stree\n",
- "warnings.filterwarnings('ignore')\n",
- "for simple_init in [False, True]:\n",
- " model = TAN(simple_init=simple_init)\n",
- " for head in range(4):\n",
- " #model.fit(X, y, head=head, features=features, class_name=class_name)\n",
- " score = validate_classifier(model, X, y, stratified=False, fit_params=dict(head=head, features=features, class_name=class_name))\n",
- " #model.plot(f\"simple_init={simple_init} head={head} score={np.mean(score['test_score'])}\")\n",
- " model.plot(f\"simple_init={simple_init} head={head} score={np.mean(score)}\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "c389ff1e-76d9-4c5b-9860-ea6d4752fac7",
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "9c58629f-000b-4d8c-8896-efd032f1090c",
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.10.8"
- },
- "vscode": {
- "interpreter": {
- "hash": "a5f800306069c11c1b9a793f47dfeb8c7d63d06a771fda00cf3476e3d4088a52"
- }
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}