mirror of
https://github.com/Doctorado-ML/bayesclass.git
synced 2025-08-17 16:45:54 +00:00
First try to link with bayesnet
This commit is contained in:
@@ -1,2 +1,4 @@
|
|||||||
include README.md LICENSE
|
include README.md LICENSE
|
||||||
include bayesclass/FeatureSelect.h
|
include bayesclass/FeatureSelect.h
|
||||||
|
include bayesclass/Node.h
|
||||||
|
include bayesclass/Network.h
|
5305
bayesclass/BayesNetwork.cpp
Normal file
5305
bayesclass/BayesNetwork.cpp
Normal file
File diff suppressed because it is too large
Load Diff
52
bayesclass/BayesNetwork.pyx
Normal file
52
bayesclass/BayesNetwork.pyx
Normal file
@@ -0,0 +1,52 @@
|
|||||||
|
# distutils: language = c++
|
||||||
|
# cython: language_level = 3
|
||||||
|
from libcpp.vector cimport vector
|
||||||
|
from libcpp.string cimport string
|
||||||
|
from libcpp.pair cimport pair
|
||||||
|
from libcpp cimport bool
|
||||||
|
|
||||||
|
|
||||||
|
cdef extern from "Node.h" namespace "bayesnet":
|
||||||
|
cdef cppclass Node:
|
||||||
|
pass
|
||||||
|
cdef extern from "Network.h" namespace "bayesnet":
|
||||||
|
cdef cppclass Network:
|
||||||
|
Network(float, float) except +
|
||||||
|
void fit(vector[vector[int]], vector[int], vector[string], string)
|
||||||
|
vector[int] predict(vector[vector[int]])
|
||||||
|
vector[vector[float]] predict_proba(vector[vector[int]])
|
||||||
|
float score(const vector[vector[int]], const vector[int])
|
||||||
|
void addNode(string, int);
|
||||||
|
void addEdge(string, string);
|
||||||
|
vector[string] getFeatures();
|
||||||
|
int getClassNumStates();
|
||||||
|
string getClassName();
|
||||||
|
string version()
|
||||||
|
|
||||||
|
cdef class BayesNetwork:
|
||||||
|
cdef Network *thisptr
|
||||||
|
def __cinit__(self, maxThreads=0.8, laplaceSmooth=1.0):
|
||||||
|
self.thisptr = new Network(maxThreads, laplaceSmooth)
|
||||||
|
def __dealloc__(self):
|
||||||
|
del self.thisptr
|
||||||
|
def fit(self, X, y, features, className):
|
||||||
|
self.thisptr.fit(X, y, features, className)
|
||||||
|
return self
|
||||||
|
def predict(self, X):
|
||||||
|
return self.thisptr.predict(X)
|
||||||
|
def predict_proba(self, X):
|
||||||
|
return self.thisptr.predict_proba(X)
|
||||||
|
def score(self, X, y):
|
||||||
|
return self.thisptr.score(X, y)
|
||||||
|
def addNode(self, name, states):
|
||||||
|
self.thisptr.addNode(name, states)
|
||||||
|
def addEdge(self, source, destination):
|
||||||
|
self.thisptr.addEdge(source, destination)
|
||||||
|
def getFeatures(self):
|
||||||
|
return self.thisptr.getFeatures()
|
||||||
|
def getClassName(self):
|
||||||
|
return self.thisptr.getClassName()
|
||||||
|
def getClassNumStates(self):
|
||||||
|
return self.thisptr.getClassNumStates()
|
||||||
|
def __reduce__(self):
|
||||||
|
return (BayesNetwork, ())
|
235
bayesclass/Network.cc
Normal file
235
bayesclass/Network.cc
Normal file
@@ -0,0 +1,235 @@
|
|||||||
|
#include <thread>
|
||||||
|
#include <mutex>
|
||||||
|
#include "Network.h"
|
||||||
|
namespace bayesnet {
|
||||||
|
Network::Network() : laplaceSmoothing(1), features(vector<string>()), className(""), classNumStates(0), maxThreads(0.8) {}
|
||||||
|
Network::Network(float maxT) : laplaceSmoothing(1), features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT) {}
|
||||||
|
Network::Network(float maxT, int smoothing) : laplaceSmoothing(smoothing), features(vector<string>()), className(""), classNumStates(0), maxThreads(maxT) {}
|
||||||
|
Network::Network(Network& other) : laplaceSmoothing(other.laplaceSmoothing), features(other.features), className(other.className), classNumStates(other.getClassNumStates()), maxThreads(other.getmaxThreads())
|
||||||
|
{
|
||||||
|
for (auto& pair : other.nodes) {
|
||||||
|
nodes[pair.first] = new Node(*pair.second);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Network::~Network()
|
||||||
|
{
|
||||||
|
for (auto& pair : nodes) {
|
||||||
|
delete pair.second;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
float Network::getmaxThreads()
|
||||||
|
{
|
||||||
|
return maxThreads;
|
||||||
|
}
|
||||||
|
void Network::addNode(string name, int numStates)
|
||||||
|
{
|
||||||
|
if (nodes.find(name) != nodes.end()) {
|
||||||
|
// if node exists update its number of states
|
||||||
|
nodes[name]->setNumStates(numStates);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
nodes[name] = new Node(name, numStates);
|
||||||
|
}
|
||||||
|
vector<string> Network::getFeatures()
|
||||||
|
{
|
||||||
|
return features;
|
||||||
|
}
|
||||||
|
int Network::getClassNumStates()
|
||||||
|
{
|
||||||
|
return classNumStates;
|
||||||
|
}
|
||||||
|
string Network::getClassName()
|
||||||
|
{
|
||||||
|
return className;
|
||||||
|
}
|
||||||
|
bool Network::isCyclic(const string& nodeId, unordered_set<string>& visited, unordered_set<string>& recStack)
|
||||||
|
{
|
||||||
|
if (visited.find(nodeId) == visited.end()) // if node hasn't been visited yet
|
||||||
|
{
|
||||||
|
visited.insert(nodeId);
|
||||||
|
recStack.insert(nodeId);
|
||||||
|
for (Node* child : nodes[nodeId]->getChildren()) {
|
||||||
|
if (visited.find(child->getName()) == visited.end() && isCyclic(child->getName(), visited, recStack))
|
||||||
|
return true;
|
||||||
|
else if (recStack.find(child->getName()) != recStack.end())
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
recStack.erase(nodeId); // remove node from recursion stack before function ends
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
void Network::addEdge(const string parent, const string child)
|
||||||
|
{
|
||||||
|
if (nodes.find(parent) == nodes.end()) {
|
||||||
|
throw invalid_argument("Parent node " + parent + " does not exist");
|
||||||
|
}
|
||||||
|
if (nodes.find(child) == nodes.end()) {
|
||||||
|
throw invalid_argument("Child node " + child + " does not exist");
|
||||||
|
}
|
||||||
|
// Temporarily add edge to check for cycles
|
||||||
|
nodes[parent]->addChild(nodes[child]);
|
||||||
|
nodes[child]->addParent(nodes[parent]);
|
||||||
|
unordered_set<string> visited;
|
||||||
|
unordered_set<string> recStack;
|
||||||
|
if (isCyclic(nodes[child]->getName(), visited, recStack)) // if adding this edge forms a cycle
|
||||||
|
{
|
||||||
|
// remove problematic edge
|
||||||
|
nodes[parent]->removeChild(nodes[child]);
|
||||||
|
nodes[child]->removeParent(nodes[parent]);
|
||||||
|
throw invalid_argument("Adding this edge forms a cycle in the graph.");
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
map<string, Node*>& Network::getNodes()
|
||||||
|
{
|
||||||
|
return nodes;
|
||||||
|
}
|
||||||
|
void Network::fit(const vector<vector<int>>& input_data, const vector<int>& labels, const vector<string>& featureNames, const string& className)
|
||||||
|
{
|
||||||
|
features = featureNames;
|
||||||
|
this->className = className;
|
||||||
|
dataset.clear();
|
||||||
|
|
||||||
|
// Build dataset
|
||||||
|
for (int i = 0; i < featureNames.size(); ++i) {
|
||||||
|
dataset[featureNames[i]] = input_data[i];
|
||||||
|
}
|
||||||
|
dataset[className] = labels;
|
||||||
|
classNumStates = *max_element(labels.begin(), labels.end()) + 1;
|
||||||
|
int maxThreadsRunning = static_cast<int>(std::thread::hardware_concurrency() * maxThreads);
|
||||||
|
if (maxThreadsRunning < 1) {
|
||||||
|
maxThreadsRunning = 1;
|
||||||
|
}
|
||||||
|
vector<thread> threads;
|
||||||
|
mutex mtx;
|
||||||
|
condition_variable cv;
|
||||||
|
int activeThreads = 0;
|
||||||
|
int nextNodeIndex = 0;
|
||||||
|
|
||||||
|
while (nextNodeIndex < nodes.size()) {
|
||||||
|
unique_lock<mutex> lock(mtx);
|
||||||
|
cv.wait(lock, [&activeThreads, &maxThreadsRunning]() { return activeThreads < maxThreadsRunning; });
|
||||||
|
|
||||||
|
if (nextNodeIndex >= nodes.size()) {
|
||||||
|
break; // No more work remaining
|
||||||
|
}
|
||||||
|
|
||||||
|
threads.emplace_back([this, &nextNodeIndex, &mtx, &cv, &activeThreads]() {
|
||||||
|
while (true) {
|
||||||
|
unique_lock<mutex> lock(mtx);
|
||||||
|
if (nextNodeIndex >= nodes.size()) {
|
||||||
|
break; // No more work remaining
|
||||||
|
}
|
||||||
|
auto& pair = *std::next(nodes.begin(), nextNodeIndex);
|
||||||
|
++nextNodeIndex;
|
||||||
|
lock.unlock();
|
||||||
|
|
||||||
|
pair.second->computeCPT(dataset, laplaceSmoothing);
|
||||||
|
|
||||||
|
lock.lock();
|
||||||
|
nodes[pair.first] = pair.second;
|
||||||
|
lock.unlock();
|
||||||
|
}
|
||||||
|
lock_guard<mutex> lock(mtx);
|
||||||
|
--activeThreads;
|
||||||
|
cv.notify_one();
|
||||||
|
});
|
||||||
|
|
||||||
|
++activeThreads;
|
||||||
|
}
|
||||||
|
for (auto& thread : threads) {
|
||||||
|
thread.join();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
vector<int> Network::predict(const vector<vector<int>>& samples)
|
||||||
|
{
|
||||||
|
vector<int> predictions;
|
||||||
|
vector<int> sample;
|
||||||
|
for (int row = 0; row < samples[0].size(); ++row) {
|
||||||
|
sample.clear();
|
||||||
|
for (int col = 0; col < samples.size(); ++col) {
|
||||||
|
sample.push_back(samples[col][row]);
|
||||||
|
}
|
||||||
|
predictions.push_back(predict_sample(sample).first);
|
||||||
|
}
|
||||||
|
return predictions;
|
||||||
|
}
|
||||||
|
vector<vector<float>> Network::predict_proba(const vector<vector<int>>& samples)
|
||||||
|
{
|
||||||
|
vector<pair<int, double>> predictions;
|
||||||
|
vector<int> sample;
|
||||||
|
for (int row = 0; row < samples[0].size(); ++row) {
|
||||||
|
sample.clear();
|
||||||
|
for (int col = 0; col < samples.size(); ++col) {
|
||||||
|
sample.push_back(samples[col][row]);
|
||||||
|
}
|
||||||
|
predictions.push_back(predict_sample(sample.second));
|
||||||
|
}
|
||||||
|
return predictions;
|
||||||
|
}
|
||||||
|
double Network::score(const vector<vector<int>>& samples, const vector<int>& labels)
|
||||||
|
{
|
||||||
|
vector<int> y_pred = predict(samples);
|
||||||
|
int correct = 0;
|
||||||
|
for (int i = 0; i < y_pred.size(); ++i) {
|
||||||
|
if (y_pred[i] == labels[i]) {
|
||||||
|
correct++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return (double)correct / y_pred.size();
|
||||||
|
}
|
||||||
|
pair<int, double> Network::predict_sample(const vector<int>& sample)
|
||||||
|
{
|
||||||
|
// Ensure the sample size is equal to the number of features
|
||||||
|
if (sample.size() != features.size()) {
|
||||||
|
throw invalid_argument("Sample size (" + to_string(sample.size()) +
|
||||||
|
") does not match the number of features (" + to_string(features.size()) + ")");
|
||||||
|
}
|
||||||
|
map<string, int> evidence;
|
||||||
|
for (int i = 0; i < sample.size(); ++i) {
|
||||||
|
evidence[features[i]] = sample[i];
|
||||||
|
}
|
||||||
|
vector<double> classProbabilities = exactInference(evidence);
|
||||||
|
|
||||||
|
// Find the class with the maximum posterior probability
|
||||||
|
auto maxElem = max_element(classProbabilities.begin(), classProbabilities.end());
|
||||||
|
int predictedClass = distance(classProbabilities.begin(), maxElem);
|
||||||
|
double maxProbability = *maxElem;
|
||||||
|
|
||||||
|
return make_pair(predictedClass, maxProbability);
|
||||||
|
}
|
||||||
|
double Network::computeFactor(map<string, int>& completeEvidence)
|
||||||
|
{
|
||||||
|
double result = 1.0;
|
||||||
|
for (auto node : getNodes()) {
|
||||||
|
result *= node.second->getFactorValue(completeEvidence);
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
vector<double> Network::exactInference(map<string, int>& evidence)
|
||||||
|
{
|
||||||
|
vector<double> result(classNumStates, 0.0);
|
||||||
|
vector<thread> threads;
|
||||||
|
mutex mtx;
|
||||||
|
for (int i = 0; i < classNumStates; ++i) {
|
||||||
|
threads.emplace_back([this, &result, &evidence, i, &mtx]() {
|
||||||
|
auto completeEvidence = map<string, int>(evidence);
|
||||||
|
completeEvidence[getClassName()] = i;
|
||||||
|
double factor = computeFactor(completeEvidence);
|
||||||
|
lock_guard<mutex> lock(mtx);
|
||||||
|
result[i] = factor;
|
||||||
|
});
|
||||||
|
}
|
||||||
|
for (auto& thread : threads) {
|
||||||
|
thread.join();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Normalize result
|
||||||
|
double sum = accumulate(result.begin(), result.end(), 0.0);
|
||||||
|
for (double& value : result) {
|
||||||
|
value /= sum;
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
}
|
41
bayesclass/Network.h
Normal file
41
bayesclass/Network.h
Normal file
@@ -0,0 +1,41 @@
|
|||||||
|
#ifndef NETWORK_H
|
||||||
|
#define NETWORK_H
|
||||||
|
#include "Node.h"
|
||||||
|
#include <map>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
class Network {
|
||||||
|
private:
|
||||||
|
map<string, Node*> nodes;
|
||||||
|
map<string, vector<int>> dataset;
|
||||||
|
float maxThreads;
|
||||||
|
int classNumStates;
|
||||||
|
vector<string> features;
|
||||||
|
string className;
|
||||||
|
int laplaceSmoothing;
|
||||||
|
bool isCyclic(const std::string&, std::unordered_set<std::string>&, std::unordered_set<std::string>&);
|
||||||
|
pair<int, double> predict_sample(const vector<int>&);
|
||||||
|
vector<double> exactInference(map<string, int>&);
|
||||||
|
double computeFactor(map<string, int>&);
|
||||||
|
public:
|
||||||
|
Network();
|
||||||
|
Network(float, int);
|
||||||
|
Network(float);
|
||||||
|
Network(Network&);
|
||||||
|
~Network();
|
||||||
|
float getmaxThreads();
|
||||||
|
void addNode(string, int);
|
||||||
|
void addEdge(const string, const string);
|
||||||
|
map<string, Node*>& getNodes();
|
||||||
|
vector<string> getFeatures();
|
||||||
|
int getClassNumStates();
|
||||||
|
string getClassName();
|
||||||
|
void fit(const vector<vector<int>>&, const vector<int>&, const vector<string>&, const string&);
|
||||||
|
vector<int> predict(const vector<vector<int>>&);
|
||||||
|
vector<vector<float>> predict_proba(const vector<vector<int>>&);
|
||||||
|
double score(const vector<vector<int>>&, const vector<int>&);
|
||||||
|
};
|
||||||
|
}
|
||||||
|
#endif
|
114
bayesclass/Node.cc
Normal file
114
bayesclass/Node.cc
Normal file
@@ -0,0 +1,114 @@
|
|||||||
|
#include "Node.h"
|
||||||
|
|
||||||
|
namespace bayesnet {
|
||||||
|
|
||||||
|
Node::Node(const std::string& name, int numStates)
|
||||||
|
: name(name), numStates(numStates), cpTable(torch::Tensor()), parents(vector<Node*>()), children(vector<Node*>())
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
string Node::getName() const
|
||||||
|
{
|
||||||
|
return name;
|
||||||
|
}
|
||||||
|
|
||||||
|
void Node::addParent(Node* parent)
|
||||||
|
{
|
||||||
|
parents.push_back(parent);
|
||||||
|
}
|
||||||
|
void Node::removeParent(Node* parent)
|
||||||
|
{
|
||||||
|
parents.erase(std::remove(parents.begin(), parents.end(), parent), parents.end());
|
||||||
|
}
|
||||||
|
void Node::removeChild(Node* child)
|
||||||
|
{
|
||||||
|
children.erase(std::remove(children.begin(), children.end(), child), children.end());
|
||||||
|
}
|
||||||
|
void Node::addChild(Node* child)
|
||||||
|
{
|
||||||
|
children.push_back(child);
|
||||||
|
}
|
||||||
|
vector<Node*>& Node::getParents()
|
||||||
|
{
|
||||||
|
return parents;
|
||||||
|
}
|
||||||
|
vector<Node*>& Node::getChildren()
|
||||||
|
{
|
||||||
|
return children;
|
||||||
|
}
|
||||||
|
int Node::getNumStates() const
|
||||||
|
{
|
||||||
|
return numStates;
|
||||||
|
}
|
||||||
|
void Node::setNumStates(int numStates)
|
||||||
|
{
|
||||||
|
this->numStates = numStates;
|
||||||
|
}
|
||||||
|
torch::Tensor& Node::getCPT()
|
||||||
|
{
|
||||||
|
return cpTable;
|
||||||
|
}
|
||||||
|
/*
|
||||||
|
The MinFill criterion is a heuristic for variable elimination.
|
||||||
|
The variable that minimizes the number of edges that need to be added to the graph to make it triangulated.
|
||||||
|
This is done by counting the number of edges that need to be added to the graph if the variable is eliminated.
|
||||||
|
The variable with the minimum number of edges is chosen.
|
||||||
|
Here this is done computing the length of the combinations of the node neighbors taken 2 by 2.
|
||||||
|
*/
|
||||||
|
unsigned Node::minFill()
|
||||||
|
{
|
||||||
|
set<string> neighbors;
|
||||||
|
for (auto child : children) {
|
||||||
|
neighbors.emplace(child->getName());
|
||||||
|
}
|
||||||
|
for (auto parent : parents) {
|
||||||
|
neighbors.emplace(parent->getName());
|
||||||
|
}
|
||||||
|
return combinations(neighbors).size();
|
||||||
|
}
|
||||||
|
vector<string> Node::combinations(const set<string>& neighbors)
|
||||||
|
{
|
||||||
|
vector<string> source(neighbors.begin(), neighbors.end());
|
||||||
|
vector<string> result;
|
||||||
|
for (int i = 0; i < source.size(); ++i) {
|
||||||
|
string temp = source[i];
|
||||||
|
for (int j = i + 1; j < source.size(); ++j) {
|
||||||
|
result.push_back(temp + source[j]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
void Node::computeCPT(map<string, vector<int>>& dataset, const int laplaceSmoothing)
|
||||||
|
{
|
||||||
|
// Get dimensions of the CPT
|
||||||
|
dimensions.push_back(numStates);
|
||||||
|
for (auto father : getParents()) {
|
||||||
|
dimensions.push_back(father->getNumStates());
|
||||||
|
}
|
||||||
|
auto length = dimensions.size();
|
||||||
|
// Create a tensor of zeros with the dimensions of the CPT
|
||||||
|
cpTable = torch::zeros(dimensions, torch::kFloat) + laplaceSmoothing;
|
||||||
|
// Fill table with counts
|
||||||
|
for (int n_sample = 0; n_sample < dataset[name].size(); ++n_sample) {
|
||||||
|
torch::List<c10::optional<torch::Tensor>> coordinates;
|
||||||
|
coordinates.push_back(torch::tensor(dataset[name][n_sample]));
|
||||||
|
for (auto father : getParents()) {
|
||||||
|
coordinates.push_back(torch::tensor(dataset[father->getName()][n_sample]));
|
||||||
|
}
|
||||||
|
// Increment the count of the corresponding coordinate
|
||||||
|
cpTable.index_put_({ coordinates }, cpTable.index({ coordinates }) + 1);
|
||||||
|
}
|
||||||
|
// Normalize the counts
|
||||||
|
cpTable = cpTable / cpTable.sum(0);
|
||||||
|
}
|
||||||
|
float Node::getFactorValue(map<string, int>& evidence)
|
||||||
|
{
|
||||||
|
torch::List<c10::optional<torch::Tensor>> coordinates;
|
||||||
|
// following predetermined order of indices in the cpTable (see Node.h)
|
||||||
|
coordinates.push_back(torch::tensor(evidence[name]));
|
||||||
|
for (auto parent : getParents()) {
|
||||||
|
coordinates.push_back(torch::tensor(evidence[parent->getName()]));
|
||||||
|
}
|
||||||
|
return cpTable.index({ coordinates }).item<float>();
|
||||||
|
}
|
||||||
|
}
|
35
bayesclass/Node.h
Normal file
35
bayesclass/Node.h
Normal file
@@ -0,0 +1,35 @@
|
|||||||
|
#ifndef NODE_H
|
||||||
|
#define NODE_H
|
||||||
|
#include <torch/torch.h>
|
||||||
|
//#include <torch/extension.h>
|
||||||
|
#include <vector>
|
||||||
|
#include <string>
|
||||||
|
namespace bayesnet {
|
||||||
|
using namespace std;
|
||||||
|
class Node {
|
||||||
|
private:
|
||||||
|
string name;
|
||||||
|
vector<Node*> parents;
|
||||||
|
vector<Node*> children;
|
||||||
|
int numStates; // number of states of the variable
|
||||||
|
torch::Tensor cpTable; // Order of indices is 0-> node variable, 1-> 1st parent, 2-> 2nd parent, ...
|
||||||
|
vector<int64_t> dimensions; // dimensions of the cpTable
|
||||||
|
vector<string> combinations(const set<string>&);
|
||||||
|
public:
|
||||||
|
Node(const std::string&, int);
|
||||||
|
void addParent(Node*);
|
||||||
|
void addChild(Node*);
|
||||||
|
void removeParent(Node*);
|
||||||
|
void removeChild(Node*);
|
||||||
|
string getName() const;
|
||||||
|
vector<Node*>& getParents();
|
||||||
|
vector<Node*>& getChildren();
|
||||||
|
torch::Tensor& getCPT();
|
||||||
|
void computeCPT(map<string, vector<int>>&, const int);
|
||||||
|
int getNumStates() const;
|
||||||
|
void setNumStates(int);
|
||||||
|
unsigned minFill();
|
||||||
|
float getFactorValue(map<string, int>&);
|
||||||
|
};
|
||||||
|
}
|
||||||
|
#endif
|
@@ -1,5 +1,5 @@
|
|||||||
[build-system]
|
[build-system]
|
||||||
requires = ["setuptools", "setuptools-scm", "cython", "wheel"]
|
requires = ["setuptools", "setuptools-scm", "cython", "wheel", "torch"]
|
||||||
build-backend = "setuptools.build_meta"
|
build-backend = "setuptools.build_meta"
|
||||||
|
|
||||||
[tool.setuptools]
|
[tool.setuptools]
|
||||||
|
14
setup.py
14
setup.py
@@ -5,6 +5,7 @@
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
from setuptools import Extension, setup
|
from setuptools import Extension, setup
|
||||||
|
from torch.utils import cpp_extension
|
||||||
|
|
||||||
setup(
|
setup(
|
||||||
ext_modules=[
|
ext_modules=[
|
||||||
@@ -20,5 +21,18 @@ setup(
|
|||||||
"-std=c++17",
|
"-std=c++17",
|
||||||
],
|
],
|
||||||
),
|
),
|
||||||
|
Extension(
|
||||||
|
name="bayesclass.cppBayesNetwork",
|
||||||
|
sources=[
|
||||||
|
"bayesclass/BayesNetwork.pyx",
|
||||||
|
"bayesclass/Network.cc",
|
||||||
|
"bayesclass/Node.cc",
|
||||||
|
],
|
||||||
|
include_dirs=cpp_extension.include_paths(),
|
||||||
|
language="c++",
|
||||||
|
extra_compile_args=[
|
||||||
|
"-std=c++17",
|
||||||
|
],
|
||||||
|
),
|
||||||
]
|
]
|
||||||
)
|
)
|
||||||
|
Reference in New Issue
Block a user