mirror of
https://github.com/Doctorado-ML/bayesclass.git
synced 2025-08-15 23:55:57 +00:00
First AODENew implementation working
This commit is contained in:
@@ -539,37 +539,68 @@ class KDBNew(KDB):
|
||||
class SpodeNew(BayesBase):
|
||||
"""This class implements a classifier for the SPODE algorithm similar to TANNew and KDBNew"""
|
||||
|
||||
def __init__(self, random_state, show_progress, structure):
|
||||
def __init__(
|
||||
self,
|
||||
random_state,
|
||||
show_progress,
|
||||
discretizer_depth=1e6,
|
||||
discretizer_length=3,
|
||||
discretizer_cuts=0,
|
||||
):
|
||||
super().__init__(
|
||||
random_state=random_state, show_progress=show_progress
|
||||
)
|
||||
self.structure = structure
|
||||
self.discretizer_depth = discretizer_depth
|
||||
self.discretizer_length = discretizer_length
|
||||
self.discretizer_cuts = discretizer_cuts
|
||||
|
||||
def _check_params(self, X, y, kwargs):
|
||||
expected_args = ["class_name", "features", "state_names"]
|
||||
return self._check_params_fit(X, y, expected_args, kwargs)
|
||||
|
||||
def _build(self):
|
||||
...
|
||||
|
||||
|
||||
class AODENew:
|
||||
def __init__(self, show_progress=False, random_state=None):
|
||||
self.show_progress = show_progress
|
||||
self.random_state = random_state
|
||||
class AODENew(AODE):
|
||||
def __init__(
|
||||
self,
|
||||
random_state=None,
|
||||
show_progress=False,
|
||||
discretizer_depth=1e6,
|
||||
discretizer_length=3,
|
||||
discretizer_cuts=0,
|
||||
):
|
||||
self.discretizer_depth = discretizer_depth
|
||||
self.discretizer_length = discretizer_length
|
||||
self.discretizer_cuts = discretizer_cuts
|
||||
super().__init__(
|
||||
show_progress=show_progress, random_state=random_state
|
||||
)
|
||||
|
||||
def _train(self, kwargs):
|
||||
self.estimators_ = []
|
||||
states = dict(state_names=kwargs.pop("state_names", []))
|
||||
kwargs["states"] = states
|
||||
for spode in build_spodes(self.feature_names_in_, self.class_name_):
|
||||
model = SpodeNew(self.random_state, self.show_progress, spode)
|
||||
self.models_ = []
|
||||
for model in build_spodes(self.feature_names_in_, self.class_name_):
|
||||
spode = SpodeNew(
|
||||
random_state=self.random_state,
|
||||
show_progress=self.show_progress,
|
||||
discretizer_cuts=self.discretizer_cuts,
|
||||
discretizer_depth=self.discretizer_depth,
|
||||
discretizer_length=self.discretizer_length,
|
||||
)
|
||||
spode.dag_ = model
|
||||
estimator = Proposal(spode)
|
||||
self.estimators_.append(estimator.fit(self.X_, self.y_, **kwargs))
|
||||
return self
|
||||
self.models_.append(estimator.fit(self.X_, self.y_, **kwargs))
|
||||
|
||||
def predict(self, X: np.ndarray) -> np.ndarray:
|
||||
check_is_fitted(self, ["X_", "y_", "fitted_"])
|
||||
# Input validation
|
||||
X = check_array(X)
|
||||
n_samples = X.shape[0]
|
||||
n_estimators = len(self.estimators_)
|
||||
n_estimators = len(self.models_)
|
||||
result = np.empty((n_samples, n_estimators))
|
||||
for index, model in enumerate(self.estimators_):
|
||||
result[:, index] = model.predict(X).values.ravel()
|
||||
for index, model in enumerate(self.models_):
|
||||
result[:, index] = model.predict(X)
|
||||
return mode(result, axis=1, keepdims=False).mode.ravel()
|
||||
|
||||
@property
|
||||
@@ -584,6 +615,18 @@ class AODENew:
|
||||
) / len(self.models_)
|
||||
return 0
|
||||
|
||||
@property
|
||||
def depth_(self):
|
||||
return self.states_
|
||||
|
||||
def nodes_edges(self):
|
||||
nodes = 0
|
||||
edges = 0
|
||||
if hasattr(self, "fitted_"):
|
||||
nodes = sum([len(x.estimator.dag_) for x in self.models_])
|
||||
edges = sum([len(x.estimator.dag_.edges()) for x in self.models_])
|
||||
return nodes, edges
|
||||
|
||||
|
||||
class Proposal:
|
||||
def __init__(self, estimator):
|
||||
@@ -593,7 +636,6 @@ class Proposal:
|
||||
def fit(self, X, y, **kwargs):
|
||||
# Check parameters
|
||||
self.estimator._check_params(X, y, kwargs)
|
||||
|
||||
# Discretize train data
|
||||
self.discretizer = FImdlp(
|
||||
n_jobs=1,
|
||||
@@ -613,9 +655,14 @@ class Proposal:
|
||||
if upgraded:
|
||||
kwargs = self.update_kwargs(y, kwargs)
|
||||
super(self.class_type, self.estimator).fit(self.Xd, y, **kwargs)
|
||||
self.fitted_ = True
|
||||
return self
|
||||
|
||||
def predict(self, X):
|
||||
# Check is fit had been called
|
||||
check_is_fitted(self, ["fitted_"])
|
||||
# Input validation
|
||||
X = check_array(X)
|
||||
Xd = self.discretizer.transform(X)
|
||||
self.check_integrity("predict", Xd)
|
||||
return super(self.class_type, self.estimator).predict(Xd)
|
||||
|
Reference in New Issue
Block a user