mirror of
https://github.com/Doctorado-ML/bayesclass.git
synced 2025-08-20 18:15:57 +00:00
Initial commit
This commit is contained in:
5
bayesclass/__init__.py
Normal file
5
bayesclass/__init__.py
Normal file
@@ -0,0 +1,5 @@
|
||||
from ._estimators import TAN
|
||||
|
||||
from ._version import __version__
|
||||
|
||||
__all__ = ["TAN", "__version__"]
|
136
bayesclass/_estimators.py
Normal file
136
bayesclass/_estimators.py
Normal file
@@ -0,0 +1,136 @@
|
||||
"""
|
||||
This is a module to be used as a reference for building other modules
|
||||
"""
|
||||
import numpy as np
|
||||
from sklearn.base import ClassifierMixin, BaseEstimator
|
||||
from sklearn.utils.validation import check_X_y, check_array, check_is_fitted
|
||||
from sklearn.utils.multiclass import unique_labels
|
||||
|
||||
import networkx as nx
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
from pgmpy.models import BayesianNetwork
|
||||
from benchmark import Datasets
|
||||
|
||||
|
||||
class TAN(ClassifierMixin, BaseEstimator):
|
||||
"""An example classifier which implements a 1-NN algorithm.
|
||||
For more information regarding how to build your own classifier, read more
|
||||
in the :ref:`User Guide <user_guide>`.
|
||||
Parameters
|
||||
----------
|
||||
demo_param : str, default='demo'
|
||||
A parameter used for demonstation of how to pass and store paramters.
|
||||
Attributes
|
||||
----------
|
||||
X_ : ndarray, shape (n_samples, n_features)
|
||||
The input passed during :meth:`fit`.
|
||||
y_ : ndarray, shape (n_samples,)
|
||||
The labels passed during :meth:`fit`.
|
||||
classes_ : ndarray, shape (n_classes,)
|
||||
The classes seen at :meth:`fit`.
|
||||
"""
|
||||
|
||||
def __init__(self, demo_param="demo"):
|
||||
self.demo_param = demo_param
|
||||
|
||||
def fit(self, X, y):
|
||||
"""A reference implementation of a fitting function for a classifier.
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_features)
|
||||
The training input samples.
|
||||
y : array-like, shape (n_samples,)
|
||||
The target values. An array of int.
|
||||
Returns
|
||||
-------
|
||||
self : object
|
||||
Returns self.
|
||||
"""
|
||||
# Check that X and y have correct shape
|
||||
X, y = check_X_y(X, y)
|
||||
# Store the classes seen during fit
|
||||
self.classes_ = unique_labels(y)
|
||||
|
||||
self.X_ = X
|
||||
self.y_ = y
|
||||
self.__train()
|
||||
# Return the classifier
|
||||
return self
|
||||
|
||||
def __train(self):
|
||||
dt = Datasets()
|
||||
data = dt.load("balance-scale", dataframe=True)
|
||||
features = dt.dataset.features
|
||||
class_name = dt.dataset.class_name
|
||||
factorization, class_factors = pd.factorize(data[class_name])
|
||||
data[class_name] = factorization
|
||||
data.head()
|
||||
net = [(class_name, feature) for feature in features]
|
||||
model = BayesianNetwork(net)
|
||||
# 1st feature correlates with other features
|
||||
first_node = features[0]
|
||||
edges2 = [
|
||||
(first_node, feature)
|
||||
for feature in features
|
||||
if feature != first_node
|
||||
]
|
||||
edges = []
|
||||
for i in range(len(features)):
|
||||
for j in range(i + 1, len(features)):
|
||||
edges.append((features[i], features[j]))
|
||||
print(edges2)
|
||||
model.add_edges_from(edges2)
|
||||
nx.draw_circular(
|
||||
model,
|
||||
with_labels=True,
|
||||
arrowsize=30,
|
||||
node_size=800,
|
||||
alpha=0.3,
|
||||
font_weight="bold",
|
||||
)
|
||||
plt.show()
|
||||
discretiz = MDLP()
|
||||
Xdisc = discretiz.fit_transform(
|
||||
data[features].to_numpy(), data[class_name].to_numpy()
|
||||
)
|
||||
features_discretized = pd.DataFrame(Xdisc, columns=features)
|
||||
dataset_discretized = features_discretized.copy()
|
||||
dataset_discretized[class_name] = data[class_name]
|
||||
dataset_discretized
|
||||
model.fit(dataset_discretized)
|
||||
from pgmpy.estimators import TreeSearch
|
||||
|
||||
# learn graph structure
|
||||
est = TreeSearch(dataset_discretized, root_node=first_node)
|
||||
dag = est.estimate(estimator_type="tan", class_node=class_name)
|
||||
nx.draw_circular(
|
||||
dag,
|
||||
with_labels=True,
|
||||
arrowsize=30,
|
||||
node_size=800,
|
||||
alpha=0.3,
|
||||
font_weight="bold",
|
||||
)
|
||||
plt.show()
|
||||
|
||||
def predict(self, X):
|
||||
"""A reference implementation of a prediction for a classifier.
|
||||
Parameters
|
||||
----------
|
||||
X : array-like, shape (n_samples, n_features)
|
||||
The input samples.
|
||||
Returns
|
||||
-------
|
||||
y : ndarray, shape (n_samples,)
|
||||
The label for each sample is the label of the closest sample
|
||||
seen during fit.
|
||||
"""
|
||||
# Check is fit had been called
|
||||
check_is_fitted(self, ["X_", "y_"])
|
||||
|
||||
# Input validation
|
||||
X = check_array(X)
|
||||
|
||||
closest = np.argmin(euclidean_distances(X, self.X_), axis=1)
|
||||
return self.y_[closest]
|
1
bayesclass/_version.py
Normal file
1
bayesclass/_version.py
Normal file
@@ -0,0 +1 @@
|
||||
__version__ = "0.0.1"
|
0
bayesclass/tests/__init__.py
Normal file
0
bayesclass/tests/__init__.py
Normal file
14
bayesclass/tests/test_common.py
Normal file
14
bayesclass/tests/test_common.py
Normal file
@@ -0,0 +1,14 @@
|
||||
import pytest
|
||||
|
||||
from sklearn.utils.estimator_checks import check_estimator
|
||||
|
||||
from bayesclass import TemplateEstimator
|
||||
from bayesclass import TemplateClassifier
|
||||
from bayesclass import TemplateTransformer
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"estimator", [TemplateEstimator(), TemplateTransformer(), TemplateClassifier()]
|
||||
)
|
||||
def test_all_estimators(estimator):
|
||||
return check_estimator(estimator)
|
65
bayesclass/tests/test_template.py
Normal file
65
bayesclass/tests/test_template.py
Normal file
@@ -0,0 +1,65 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
from sklearn.datasets import load_iris
|
||||
from numpy.testing import assert_array_equal
|
||||
from numpy.testing import assert_allclose
|
||||
|
||||
from bayesclass import TemplateEstimator
|
||||
from bayesclass import TemplateTransformer
|
||||
from bayesclass import TemplateClassifier
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def data():
|
||||
return load_iris(return_X_y=True)
|
||||
|
||||
|
||||
def test_template_estimator(data):
|
||||
est = TemplateEstimator()
|
||||
assert est.demo_param == "demo_param"
|
||||
|
||||
est.fit(*data)
|
||||
assert hasattr(est, "is_fitted_")
|
||||
|
||||
X = data[0]
|
||||
y_pred = est.predict(X)
|
||||
assert_array_equal(y_pred, np.ones(X.shape[0], dtype=np.int64))
|
||||
|
||||
|
||||
def test_template_transformer_error(data):
|
||||
X, y = data
|
||||
trans = TemplateTransformer()
|
||||
trans.fit(X)
|
||||
with pytest.raises(ValueError, match="Shape of input is different"):
|
||||
X_diff_size = np.ones((10, X.shape[1] + 1))
|
||||
trans.transform(X_diff_size)
|
||||
|
||||
|
||||
def test_template_transformer(data):
|
||||
X, y = data
|
||||
trans = TemplateTransformer()
|
||||
assert trans.demo_param == "demo"
|
||||
|
||||
trans.fit(X)
|
||||
assert trans.n_features_ == X.shape[1]
|
||||
|
||||
X_trans = trans.transform(X)
|
||||
assert_allclose(X_trans, np.sqrt(X))
|
||||
|
||||
X_trans = trans.fit_transform(X)
|
||||
assert_allclose(X_trans, np.sqrt(X))
|
||||
|
||||
|
||||
def test_template_classifier(data):
|
||||
X, y = data
|
||||
clf = TemplateClassifier()
|
||||
assert clf.demo_param == "demo"
|
||||
|
||||
clf.fit(X, y)
|
||||
assert hasattr(clf, "classes_")
|
||||
assert hasattr(clf, "X_")
|
||||
assert hasattr(clf, "y_")
|
||||
|
||||
y_pred = clf.predict(X)
|
||||
assert y_pred.shape == (X.shape[0],)
|
Reference in New Issue
Block a user